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A. Correlated Equilibrium
In this section we define the differences between two com-
peting definitions of approximate correlated equilibrium
(ε-CE) and define the related solution concept approximate
coarse correlated equilibrium (ε-CCE).

A.1. Correlated Equilibrium

An approximate correlated equilibrium (ε-CE) is one where
the advantage of a single player unilaterally switching away
from a recommended action is no more than ε. When ε = 0,
the standard CE is recovered. Define Ap(a′p, ap, a−p) =
G(a′p, a−p) − G(ap, a−p) as the advantage for player p
switching action from ap to a′p, when other players play
a−p. This relationship is described mathematically in Equa-
tion 13. ∑

a−p

σ(a−p|ap)Ap(a′p, ap, a−p) ≤ εp (13)

∑
a−p

σ(a−p, ap)Ap(a
′
p, ap, a−p) ≤ σ(ap)εp (14)

∑
a−p

σ(a−p, ap)
(
Ap(a

′
p, ap, a−p)− εp

)
≤ 0 (15)

∀p ∈ P, a′p 6= ap ∈ Ap

Together, Ap and ε represent the CE linear inequality con-
straints. Mathematically these are equations of a plane, and
separate the mixed joint probability σ(a) into half-spaces.
Together these half-spaces intersect to form a convex poly-
tope of valid CE solutions.

A.2. Alternate Form Correlated Equilibrium

Sometimes another definition for CEs is used which is not
equivalent to the definition above when ε 6= 0. We call
Equation 16 the alternate approximate CE. In matrix form,
we can simply write Aσ ≤ ε.∑

a−p

σ(a−p, ap)Ap(a
′
p, ap, a−p) ≤ εp (16)

∀p ∈ P, a′p 6= ap ∈ Ap

This form is often easier to deal with computationally (par-
ticularly with min ε-MG(C)CE) because it does not require
dealing with a conditional distribution, and the approxi-
mation term is independent of probabilities. We use this
definition throughout this work, although MGCE is still well
defined using the former definition.

A.3. Coarse Correlated Equilibrium

The coarse correlated equilibrium (CCE) is a looser solution
concept where a player must decide if they are going to play

the correlation device’s recommendation before they receive
the recommendation. Define Ap(a′p, a) = G(a′p, a−p) −
G(a) as the gain from deviating before an action has been
recommended. ∑

a

σ(a)Ap(a
′
p, a) ≤ εp (17)∑

a

σ(a)
(
Ap(a

′
p, a)− εp

)
≤ 0 (18)

∀p ∈ P, a′p ∈ Ap

Note that this can be derived from the correlated equilibrium
by mixing over all possible actions, ap, that an agent can
take.∑

ap

σ(ap)
∑
a−p

σ(a−p|ap)Ap(a′p, ap, a−p) ≤
∑
ap

σ(ap)εp∑
ap

∑
a−p

σ(a−p, ap)Ap(a
′
p, ap, a−p) ≤ εp∑

a

σ(a−p, ap)
(
G(a′p, a−p)−G(ap, a−p)

)
≤ εp∑

a

σ(a)Ap(a
′
p, a) ≤ εp

Note that if one wished to solve for MGCCE, simply sub-
stitute the advantage matrix ACE for ACCE , without any
other additional changes.

B. Generalized Entropy
Shannon’s Entropy (Shannon, 1948), IS , is a familiar quan-
tity and is described as a measure of “information gain”.
The Gini Impurity (Breiman et al., 1984; Bishop, 2006) is a
measurement of the probability of mis-classifying a sample
of a discrete random variable, if that sample were randomly
classified according to its own probability mass function,
IG =

∑N
i σi

∑
j 6=i σj = 1−

∑N
i σ

2
i .

Both Shannon’s entropy and Gini Impurity are maximized
when the probability mass function is uniform σi = 1

|A|
and minimized when all mass is on a single outcome. Both
metrics are used in decision tree classification algorithms,
with Gini being more popular because it is easier to compute
(Breiman et al., 1984).

In physics, there has been recent interest in non-extensive
entropies which have been found to better model certain
physical properties. One such entropy is called the Tsallis
entropy, IT =

1−
∑

i σ
q
i

q−1 , (Tsallis, 1988; Havrda et al., 1967;
Wang & Xia, 2017; Kaur & Buttar, 2019) and is parameter-
ized by real q.

A notable property of the Tsallis entropy is that it is non-
additive. Assume that we have two independent variables A
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and B, with joint probability P (A,B) = P (A)P (B), then
the combined Tsallis entropy of this system is IT (A,B) =
IT (A) + IT (B) + (1 − q)IT (A)IT (B). Therefore it can
be seen that the (1− q) quantity is a measure of the depar-
ture from additivity, with additivity being recovered in the
limit when q → 1. This corresponds to the additive Shan-
non’s entropy. The Gini impurity is recovered when q = 2.
Therefore, the Gini impurity is a non-extensive generalized
entropy.

C. Proofs of MG(C)CE Properties
C.1. Uniqueness and Existence

Theorem 1 (Uniqueness and Existence). MG(C)CE pro-
vides a unique solution to the equilibrium solution problem
and always exists.

Proof. The problem is a concave maximization problem
with linear constraints so therefore has a unique solution.
Existence follows from the fact that a CE always exists.

C.2. Scalable Representation

Theorem 2 (Scalable Representation). The maximum Gini
(C)CE, σ∗, has the following forms:

General Support: σ∗ = CATα∗ + Cβ∗ + b (19)

Full Support: σ∗ = CATα∗ + b (20)

Where e is a vector of ones, |A| =
∏
p |Ap|, C = I − eT b,

and b = 1
|A|e are constants. α∗ ≥ 0 and β∗ ≥ 0 are the

optimal dual variables of the solution, corresponding to the
CE and distribution inequality constraints respectively.

Proof. Start with the equation we call the primal Lagrangian
form.

Lσα,β,λ = −1

2
σTσ − α(Aσ − ε)− βTσ (21)

+ λ(eTσ − 1)

To construct the dual Lagrangian we first take derivatives
with respect to the primal variables σ, and set them equal to
zero.

∂Lσα,β,λ
∂σ

= σ∗ −
(
ATα+ β − λ

)
= 0 =⇒

σ∗ = ATα+ β − λe (22)

These can be substituted back into the primal Lagrangian.

Lα,β,λ = −1

2

[
ATα+ β − λe

]T [
ATα+ β − λe

]
+ αT eε− λ

= −1

2
αTAATα− 1

2
βTβ − αTAβ + εαT e

− |A|
2
λ2 +

(
eTATα+ eTβ − 1

)
λ

Taking derivatives with respect to λ.

∂Lα,β,λ
∂λ

= −|A|λ∗ + eTATαp + eTβ − 1 = 0 =⇒

λ∗ =
1

|A|
(
eTATα+ eTβ − 1

)
(23)

And substituting back in:

Lα,β = −1

2
αTAATα− 1

2
βTβ − αTAβ + εαT e

+
1

2|A|
[
eTATα+ eTβ − 1

]T [
eTATα+ eTβ − 1

]
= −1

2
αTAATα− 1

2
βTβ − αTAβ + εαT e

+
1

2|A|
αTAeeTATα+

1

2N
βT eeTβ

− 1

2|A|
+

1

|A|
αTApee

Tβ − 1

|A|
eTATα

− 1

|A|
eTβ

Doing some rearrangement.

Lα,β =
1

2
αTA

(
1

|A|
eeT − I

)
ATα− 1

|A|
eTATα

+
1

2
βT
(

1

|A|
eeT − I

)
β − 1

|A|
eTβ

+ αTAp

(
1

|A|
eeT − I

)
β + εαT e+

1

2|A|

Remember that there are non-negative constraints on α ≥ 0
and β ≥ 0. We therefore cannot easily solve for β to reduce
this expression further. By defining C = I − ebT , and
bT = 1

|A|e
T (the uniform distribution), we arrive at the

general support dual Lagrangian form.

Lα,β = −1

2
αTACATα− bTATα+ εTα (24)

− 1

2
βTCβ − bTβ − αTACβ +

1

2
bT b

By combining Equations 22 and 23, we can arrive at an
equation that describes the relationship between the primal
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and dual parameters.

σ∗ = CATα∗ + Cβ∗ + b (25)

It is advantageous to try and obtain a more compact rep-
resentation. We can achieve this if we assume σ has full
support. In this case, β = 0, because none of the σ ≥ 0
constraints are active and we obtain Equation 26 the full
support dual Lagrangian form.

Lα = −1

2
αTACATα− bTATα+ εTα+

1

2
bT b (26)

σ∗ = CATα∗ + b (27)

Theorem 3 (Existence of Full-Support ε-MG(C)CE). For
all games, there exists an ε ≤ max(Ab) such that a full-
support, ε-MG(C)CE exists. A uniform solution, b, always
exists when max(Ab) ≤ ε. When ε < max(Ab), the solu-
tion is non-uniform.

Proof. Note, Aσ ≤ ε ⇐⇒ ACσ + Ab ≤ ε, Cb = 0 and
that b is the uniform distribution with maximum possible
Gini impurity. Note that when max(Ab) ≤ ε the inequality
will always hold with σ = b. And the inequality cannot
hold with σ = b when ε ≤ max(Ab).

C.3. Family

Theorem 4. For non-trivial games, the MG(C)CE lies on
the boundary of the polytope and hence is a weak equilib-
rium.

Proof. MG(C)CE is attempting to be near the uniform dis-
tribution. If the uniform distribution is not a (C)CE the
MG(C)CE lies on the boundary of the (C)CE polytope, and
by definition is weak. If the uniform distribution is a (C)CE,
then it is also a NE (because it factorizes). It therefore lies
on the polytope if it is a non-trivial game by (Nau et al.,
2004).

Table 1 summarizes the family of solutions that make up
MG(C)CE. Note that a similar family can be defined for
ME(C)CE.

C.4. Invariance

Theorem 5 (Affine Payoff Transformation Invariance). If
σ∗ is the ε-MG(C)CE of a game, G, then for each player p
independently we can transform the payoff tensors G̃p =
cpGp + dp and approximation vector ε̃p = apεp for some
positive cp and real dp scalars, without changing the solu-
tion.

Furthermore, if a game, G has (C)CE constraint matrix, A,
and bound vector, ε, then each row can be scaled indepen-
dently without changing the MG(C)CE.

Proof. The only way that a game’s payoff,G, influences the
solution is via the (C)CE constraint matrices Ap. Recall that
these are defined as the difference between action payoffs
ap 6= a′p ∈ Ap. It is easy to see that the constant dp will
cancel immediately.

Ãp,i,j = G̃p(a
′
p, a−p)− G̃p(ap, a−p) (28)

= c(Gp(a
′
p, a−p)−Gp(ap, a−p))

Notice that A always appears alongside the dual variables
α. Therefore any scale in Ãα̃ = cAα̃ can be counteracted
by α̃ = α

c , without changing the nature of the optimization.

Similar to above, not only does αp appear alongside Ap,
each element appears alongside a particular row of Ap.
Therefore not only can a whole Ap be scaled by a positive
factor, each row ofAp can be scaled individually. Intuitively,
each row of the (C)CE constraint matrix defines an equation
of a plane in the simplex, and planes are not altered when
scaled by a positive factor. We may exploit this property to
better condition our optimization problem.

D. MGCE Computation
There are several tricks that can be employed to simplify
the nature of the computation problem.

D.1. Bounded Gradient Methods

It is easy to formulate gradient algorithms to solve for the
MG(C)CE. It is most convenient to work in the reduced dual
form of the problem as it enforces the probability equality
constraint automatically, allows for making the full-support
assumption, and does not require any projection routines.
The computations involve sparse matrices, so appropriate
sparse data structures should be used. The dual variables
have a non-negative constraint, which is also sometimes
referred to as a box or bound constraints in the literature.

For gradient ascent, initialize α0 = 0, β0 = 0, and update
the variables according to their gradient, where NN(σ) =
max(0, σ), ensures the variables remain non-negative.

αt+1 ← NN
[
αt − γ(ACATαt +Ab+ ε+ACβt)

]
βt+1 ← NN

[
βt − γ(Cβt + b+ CTATαt)

]
(29)

If we assume the solution is full-support, we can simplify
the dual version even further by dropping the β variable
updates.

αt+1 ← NN
[
αt − γ(ACATαt +Ab+ ε)

]
(30)
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Table 1. Family of MG(C)CE solutions.
MG(C)CE ε Properties

max(Ab)ε-MG(C)CE max(Ab) Uniform, highest entropy, lowest payoff
1
2 max(Ab)ε-MG(C)CE 1

2 max(Ab) Between uniform and (C)CE
fullε-MG(C)CE ≤ max(Ab) Minimum ε such that MG(C)CE is full-support

MG(C)CE 0 Weak (C)CE, NE in two-player constant sum
min ε-MG(C)CE ≤ 0 Strictest (C)CE, lowest entropy, highest payoff

Second order derivatives are also easily computed, allowing
use of bounded second order linesearch optimizers, such as
L-BFGS-B (Byrd et al., 1995). Other techniques such as
momentum (Rumelhart et al., 1986), preconditioning the
rows of the A matrix, and iterated elimination of strictly
dominated strategies of the payoff matrix will also help. An
efficient conjugate gradient method can be adapted from
Polyak’s algorithm (Polyak, 1969; O’Leary, 1980), which
is a conjugate gradient method modified to support solving
problems with bounds and is proven to converge in finite
iterations.

D.2. Payoff Reductions

There are two methods which could be used to reduce the
size of the payoff tensor and hence reduce the complexity
of the game that is required to be solved; repeated action
elimination, and dominated action elimination.

Repeated Action Elimination: Consider a payoff which
has repeated strategies (identical payoffs). This repre-
sents a redundancy in the game formulation and we can
therefore keep only one of these actions and appropri-
ately modify the objective to account for this alteration.
Let rp be the number of repeats for each action after
elimination (i.e. rp = e if all were unique). Define r =
⊗prp as the flattened repeat count which is the same
size as σ and r̃p = ⊗p′{e if p′ = p else rp′}. Then the
constraints now become rTσ = 0 and Ap(σ · r̃p) ≤ εp,
and the objective becomes 1− σT (σ · r). This has the
dual effect of reducing the number of variables and con-
straints in the problem and, more importantly, breaks
the symmetry of repeated terms which several solvers
can struggle with. It is important to run this procedure
before eliminated dominated actions, because repeated
actions by definition do not dominate one another.

Dominated Action Elimination: Strictly dominated
strategies can be pruned from the payoff without
affecting the results because dominated strategies can
never have non-zero support in CEs where ε ≤ 0.
Any CE solution with non-positive ε can exploit this
reduction.

The nature of JPSRO means that it is common for actions to
be repeated (best responders can produce the same output

over multiple distributions) and actions to be strictly dom-
inated by others (as the algorithm finds better and better
policies).

D.3. Eigenvalue Normalization

Some methods, such as gradient methods, benefit from the
eigenvalues of the problem being similar in magnitude. We
found empirically that re-normalizing by the L2 norm of the
rows of the constraint matrix resulted in eigenvalues close
to 1. By Theorem 5 this is a legal procedure.

D.4. Dual Optimal Learning Rate

For the dual form of the objective there is an optimal
constant learning rate we can use which is based on the
eigenvalues of the Hessian. Calculating the eigenvalues
exactly may be too computationally expensive. We can
instead obtain an upper bound. A good choice of learn-
ing rate that is guaranteed to converge is γ = 2

σmax+σ
+
min
≥

2
maxj

∑
i |Dij |+minj

∑
i |Dij | , where D is the Hessian of the

dual form. A proof follows below.

Proof. C is idempotent and positive semi-definite. For any
B,BBT is positive semi-definite, therefore (AC)(AC)T =
ACAT is positive semi-definite. This is the first part of
the block diagonals of the Hessian, D, which is therefore
singular symmetric positive semi-definite.

It is known that the best choice of constant learning rate
in this setting is γ = 2

σmax++σmin+
. Because the Hessian is

not full rank and positive semi-definite, σmin = 0. We
need to find the smallest non-zero eigenvalue. One possi-
ble upper bound on the maximal eigenvalues of a positive
semi-definitive matrix, by the Gerschgorin circle Theorem
(Gerschgorin, 1931), is:

σmax ≤ max
j

∑
i

|Dij | = max
i

∑
j

|Dij | (31)

σ+
min ≤ min

j

∑
i

|Dij | = min
i

∑
j

|Dij | (32)
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D.5. min ε-MG(C)CE

The previous formulations discussed assume that ε is given
as a hyper-parameter. If we want to directly find the min-
imum ε that produces a valid maximum Gini impurity we
must also optimize over ε. The insight here is that the deriva-
tives of the objective function with respect to the approxima-
tion parameter must always be stronger than the derivatives
of the objective function with respect to the distribution.

∂L

∂ε
≥ eT ∂L

∂σ
= −eTσ = −1 (33)

Therefore an additional objective with a term of −2ε would
be sufficient to ensure this condition holds.

Lσα,β,λ,ε = −1

2
σTσ − 2ε− αT (Aσ − ε)

− βTσ + λ(eTσ − 1) (34)

Lα,β,ε = −2ε− 1

2
αTACATα+ bTATα+ εTα

− 1

2
βTCβ − bTβ − αTACβ +

1

2
bT b

(35)

σ∗ = CATα∗ + Cβ∗ + b (36)

E. Joint PSRO
While the concept of JPSRO is straightforward, careful atten-
tion needs to be made around a) formulating best response
operators, b) creating suitable MSs, c) defining evaluation
metrics, and d) establishing convergence. We discuss these
in detail in this section.

E.1. Meta Game Estimation

There are two strategies for estimating the meta-game (a
normal form payoff tensor populated by the returns of all
the policies); exact sampling and empirical sampling.

Exact Sampling: The exact return is computed for each
player by traversing the entire game tree. This is only
suitable for small games, or when using deterministic
policies that cannot reach the majority of the game tree.

Empirical Sampling: For larger games, or situations
where the policy cannot be easily queried (for example
when using a policy that depends on internal state like
an LSTM) we may have to estimate the return through
sampling.

In this work we used exact sampling so we could conduct an
exact study into the performance of different MSs without
introducing noise form other sources. However, the authors
believe this approach can be scaled with empirical sampling,
as has been achieved with PSRO.

E.2. Meta-Solvers

Many of the traditional PSRO solvers are factorizable solu-
tions. Equivalently, their joint probabilities can be marginal-
ized without losing any information.

Uniform: This solver places equal probability mass over
each policy it has found so far. PSRO using a uni-
form distribution is also known as Fictitious Self Play
(FSP) (Heinrich et al., 2015). A key advantage of this
approach is that it is not necessary to compute the meta-
game to obtain this distribution. It is proven to slowly
converge in the two-player, constant-sum setting.

Nash Equilibrium (NE): The well known solution con-
cept (Nash, 1951), when used in PSRO is called Double
Oracle (DO) (McMahan et al., 2003). This is difficult
to compute for n-player, general-sum, and is equiva-
lent to CE in two-player, constant-sum so we did not
benchmark against this MS.

Projected Replicator Dynamics (PRD): An evolutionary
method of approximating NE, introduced in (Lanctot
et al., 2017).

There are a number of solvers which produce full joint
distributions. We describe some we think are relevant here.
Note that all factorizable solutions mentioned previously
can be trivially promoted to full distributions.

α-Rank: A solution concept based on the stationary distri-
bution of a Markov chain (Omidshafiei et al., 2019).
α-Rank has been studied before in the context of PSRO
(Muller et al., 2020), however the authors marginalized
over the distribution.

Maximum Welfare (C)CE (MW(C)CE): A non-unique
linear formulation that maximizes the sum of pay-
offs over all players. In the case where there are
multiple (C)CEs with maximum welfare we can de-
fine a maximum entropy version to spread weight,
MEMW(C)CE, and a random version to select one
at random, RMW(C)CE. We use the latter as a MS
baseline in experiments.

Random Vertex (C)CE (RV(C)CE): A linear formula-
tion. In our implementation we formulate the standard
linear (C)CE problem and randomly sample a linear
cost function from the unit ball. Note that this selects
a random vertex on the (C)CE polytope and is not sam-
pling from within the polytope volume or elsewhere
on the polytope surface.

Maximum Entropy (C)CE (ME(C)CE): A unique non-
linear convex formulation that maximizes the Shannon
Entropy of the resulting distribution (Ortiz et al., 2007).
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We do not evaluate this solution concept in this work
due to computational difficulties when scaling to large
payoff tensors, however we expects its performance to
be similar to MG(C)CE.

Maximum Gini (C)CE (MGCE): A unique quadratic
convex formulation that maximizes the Gini Impurity
(a form of Tsallis Entropy), introduced in this work.

Random Dirichlet: Sample a distribution randomly from
a Dirichlet distribution with α = 1. This has not been
used in the literature before but we believe acts as a
good (naive) baseline against RVCE.

Random Joint: Sample a single joint policy from the set.
This has not been used in the literature before either
but we believe acts as a good (naive) baseline against
RV(C)CE.

In previous work joint solvers have been used (Muller et al.,
2020), however the authors marginalized the distributions
so they could be used in classic PSRO.

E.3. Joint Best Responders

We provide two best response operators for JPSRO. The first
is required to converge to a CCE in policy space (when using
CCE meta-solvers). The second is required to converge to a
CE in policy space (when using CE meta-solvers).

JPSRO(CCE) : At each iteration there is a single BR ob-
jective for each player, which expands the player policy
set, Π0:t+1

p = Π0:t
p ∪ Πt+1

p , where Πt+1
p = {BRt+1

p },
and σ(π−p) =

∑
πp∈Π0:t

p
σ(πp, π−p).

BRt+1
p ∈ argmax

π∗p∈Π∗p

∑
π−p∈Π0:t

−p

σt(π−p)G
∗
p(π
∗
p, π−p)

Therefore, the CCE BR attempts to exploit the joint dis-
tribution with the responder’s own policy preferences
marginalized out, resulting in a joint policy distribu-
tion over the other players’ policies. This means that a
player is best responding to a weighted mixture of up
to ⊗−p|Πt

p| joint opponent policies. This is an upper
bound because σ is often sparse.

JPSRO(CE): There is a BR for each possible recommen-
dation a player can get, Πt+1

p = Π0:t
p ∪ Πt+1

p , where
Πt+1
p = {(BRt+1

p (πip))i=1..|Π0:t
p |}.

BRt+1
p (πp) ∈ argmax

π∗p∈Π∗p

∑
π−p∈Π0:t

−p

σt(π−p|πp)G∗p(π∗p , π−p)

Therefore the CE BR attempts to exploit each policy
conditional “slice”. In practice, we only calculate a BR

for positive support policies (similar to Rectified Nash
(Balduzzi et al., 2019). Computing the argmax of the
BRs can be achieved through RL or exactly traversing
the game tree. Similarly each BR is responding to a
weighted mixture of up to ⊗−p|Πt

p| joint opponent
policies.

Notice that if the distribution is factorizable (like NE), then
the CE BR is equal for all player policies, and furthermore is
equal to the CCE BR, illuminating the connection to PSRO’s
BR operator.

The best response is independent of the best responding
player’s policy. We can compute the argmax in a number
of ways. Two common ways are exact best response, and
reinforcement learning.

Exact Best Response: Maintain exact tabular policies and
compute a best response against the joint policies for
each player, through maximizing value by traversing
the game tree. We employ this approach in this work to
allow us to compare meta-solvers without introducing
noise from approximate BRs. This method is only suit-
able for small games, or when using only deterministic
policies.

RL: In this setting, the learning algorithms train against
randomly sampled joint-policies according to σ, and do
standard value maximization. Both on-policy (such as
Policy Gradient) and off-policy (such as Q-Learning)
are suitable learning algorithms. Function approxima-
tion may also be used. This approach has been used
extensively in PSRO before.

E.4. Evaluation Metrics

For two-player, constant-sum games there is a clear evalu-
ation metric; how close the players are to the unique Nash
Equilibrium (measured by NEGap defined below). How-
ever, outside of this narrow setting it is unclear how to fairly
evaluate the policies that have been found. This is true for
a number of reasons including: there being multiple equi-
libria, and equilibria not necessarily having good payoff. A
combination of high payoff and stability is indicative of a
strong set of policies. In this section we describe a num-
ber of metrics that could help describe the strength of the
resulting joint policies.

Value: This describes the undiscounted return for each
player at the root state of a game when following a
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joint policy, mixed under a joint distribution.

Vp(σ) =
∑
π∈Π

σ(π)Gp(π) = E
π∼σ

[
Gp(π)

]
Vp(σ(· |πp)) =

∑
π−p∈Π−p

σ(π−p|πp)Gp(πp, π−p)

= E
π−p∼
σ(·|πp)

[
Gp(πp, π−p)

]

NE Gap: This quantity describes how close joint policies
are to an NE (referred to as NashConv in (Lanctot
et al., 2017)) under σ. This is only defined for marginal
distributions over policies.

NEGapp(σ) =
∑
π∈Π

σ(π)Gp(BRp, π−p)− Vp(σ)

= E
π∼σ

[
Gp(BRp, π−p)

]
− Vp(σ)

NEGap(σ) =
∑
p

NEGapp(σ) (37)

CCE Gap: This quantity describes how close joint policies
are to a coarse correlated equilibrium (CCE) under
σ. The origins of this metric can be deduced from
studying the CCE BR operator.

CCEGapp(σ) =

⌊∑
π∈Π

σ(π)Gp(BRp, π−p)− Vp(σ)

⌋
+

=

⌊
E
π∼σ

[
Gp(BRp, π−p)

]
− Vp(σ)

⌋
+

CCEGap(σ) =
∑
p

CCEGapp(σ)

Where bxc+ = max(0, x), is the non-negative oper-
ator. Note that it is possible for a best response over
all joint strategies to have lower value than playing
according to the joint distribution for a given player
(because a BR is blind to the best responding player’s
correlation with the opponent policies, and deviating
from this correlation can hurt performance).

CE Gap: This quantity describes how close joint policies
are to a correlated equilibrium (CE) under σ.

CEGapp(σ, πp)

=

⌊∑
π−p∈
Π−p

σ(π−p|πp)Gp(BRp(πp), π−p)− Vp(σ(· |πp))
⌋

+

=

⌊
E

π−p∼
σ(·|πp)

[
Gp(BRp(πp), π−p)

]
− Vp(σ(· |πp))

⌋
+

CEGapp(σ) =
∑
πp∈Πp

σ(πp)CEGapp(σ, πp)

CEGap(σ) =
∑
p

CEGapp(σ)

Unique Policy: Each iteration of JPSRO(CCE) produces
n new policies (one for each player), and JPSRO(CE)
produces up to the number of policies found so far.
These are best responses to the joint mixture of exist-
ing polices, however, they are not guaranteed to be
distinct from previous policies that have been found.
The number of unique policies found so far could be
a good indicator of how efficiently a meta-solver is
producing new policies.

E.5. Proof of JPSRO Convergence

We provide two convergence proofs for JPSRO. Firstly,
when using CCE meta-solvers with a CCE best response
operator, which we refer to as JPSRO(CCE), and secondly
when using CE meta-solvers with a CE best response opera-
tor, which we refer to as JPSRO(CE). Note that, in order to
ignore possibly undefined values of σt(π−p|πp), we use the
formulation of correlated equilibria using joint probabilities
instead of conditional ones. The definitions being equiva-
lent, the conclusions are as well. Note that we also assume
that ∀p, t, |BRtp| > 0,∀πp st. σt(πp) > 0, |BRtp(πp)| > 0,
i.e. every time a best response should be computed, it is.
We discuss a relaxation of these conditions, and why it is
useful, in Section E.5.3.

E.5.1. PROOF OF JPSRO(CCE)

Theorem 6 (CCE Convergence). When using a CCE meta-
solver and CCE best response in JPSRO(CCE) the mixed
joint policy converges to a CCE under the meta-solver dis-
tribution.

We recall the definition of coarse correlated equilibria. For
joint probability σ, joint policy set Π = ⊗pΠp where Πp is
the set of valid policies of player p and ⊗ is the Cartesian
product, and payoff function G, such that Gp(σ) is the
payoff of player p when all player play according to σ, a
Coarse Correlated Equilibrium is a joint distribution σ over
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Π such that, for any player p and any policy π′p of player p,∑
π∈Π

σ(π)Gp(π
′
p, π−p) ≤

∑
π∈Π

σ(π)Gp(π) (38)

In other words, a CCE is a distribution from which no player
has an incentive to unilaterally deviate before being assigned
their action. From this definition of CCEs, we derive the
definition of CCEGap, which measures the above gap over
all players

CCEGap(σ) =
∑
p

⌊
max
π′p

∑
π∈Π

σ(π)(Gp(π
′
p, π−p)−Gp(π))

⌋
+

where bxc+ = max(0, x), this bc+ term being necessary
because the gap is potentially negative, as one can see from
Equation 38. From this definition, we introduce the follow-
ing lemma:
Lemma 1 (Game CCE and CCEGap). We have the follow-
ing equivalence:

(i) σ is a CCE of the game

(ii) CCEGap(σ) = 0

Proof. Let us first prove (i) → (ii). Suppose σ is a CCE.
Then for any player p and any policy π′p of player p,∑

π∈Π

σ(π)Gp(π
′
p, π−p) ≤

∑
π∈Π

σ(π)Gp(π)

therefore, by subtracting the right hand-term and taking the
maximum over π′p ∈ Πp,

max
π′p

∑
π∈Π

σ(π)(Gp(π
′
p, π−p)−Gp(π)) ≤ 0

and so⌊
max
π′p

∑
π∈Π

σ(π)(Gp(π
′
p, π−p −Gp(π))

⌋
+

= 0

Summing this last inequality over all players yields (ii).

Let us now prove (ii) → (i). Suppose that σ is such that
CCEGap(σ) = 0. Then, for all p,

max
π′p

∑
π∈Π

σ(π)(Gp(π
′
p, π−p)−Gp(π)) ≤ 0 (39)

For all π′′p ∈ Πp we have∑
π∈Π

σ(π)Gp(π
′′
p , π−p) ≤ max

π′p

∑
π∈Π

σ(π)Gp(π
′
p, π−p)

and therefore, by subtracting
∑
π∈Π

σ(π)Gp(π) and using

Equation 39,∑
π∈Π

σ(π)(Gp(π
′′
p , π−p)−Gp(π)) ≤ 0

Rearranging the terms yields the proof.

The context of JPSRO motivates us to expand and overload
the definition CCEGap. Let us denote by Π∗ the policies of
the extensive form game, and by Π0:t all the policies found
by JPSRO by iteration t. We immediately have, for all t,
Π0:t ⊂ Π∗. We expand CCEGap via, for all t,

CCEGap(σ,Π∗,Π0:t) =∑
p

⌊
max
π∗p∈Π∗p

∑
π∈Π0:t

σ(π)(Gp(π
∗
p, π−p)−Gp(π))

⌋
+

The only difference is the search space of π∗p , which now
lives within Π∗, while the policies used in the sum live in
Π0:t. It is nevertheless easy to see that this new definition
characterizes CCEs of Π∗ (and not of Π0:t), albeit a re-
stricted class, since Π0:t ⊂ Π∗ and one can expand σ to be
zero over Π∗ \Π0:t. Let us now prove Theorem 6.

Proof. To prove that JPSRO with a CCE meta-solver, JP-
SRO(CCE), converges to a CCE, we need only prove one
thing: that JPSRO(CCE) is unable to produce new policies if
and only if it has reached a CCE of the extensive form game.
Provided this is true, and since all games have a finite num-
ber of deterministic policies, we have that JPSRO(CCE) nec-
essarily cannot produce new policies forever, and therefore
eventually can only produce already-discovered policies.

Note that the joint distribution σt of JPSRO(CCE) is by
construction a CCE over Π0:t for all t (when using a CCE
meta-solver). It is nevertheless not necessarily a CCE of
Π∗.

Let us now suppose that JPSRO(CCE) has not produced
any new policy for any player at iteration t. Given the JP-
SRO(CCE) formulation, we can therefore restrict the search
space of policies from Π∗ to Π0:t in the CCEGap max term,
since the max of the expression is reached in Π0:t, and we
thus rewrite the CCEGap definition:

∑
p

⌊
max
π′p∈Π∗p

∑
π∈Π0:t

σt(π)(Gp(π
′
p, π−p)−Gp(π))

⌋
+

=
∑
p

⌊
max
π′p∈Π0:t

p

∑
π∈Π0:t

σt(π)(Gp(π
′
p, π−p)−Gp(π))

⌋
+

But since σt is a CCE over Π0:t, the second term is null.
Therefore, CCEGap(σ,Π∗,Π0:t) = 0, and according to
Lemma 1, σt is therefore a CCE over Π∗, which concludes
the proof.

E.5.2. PROOF OF JPSRO(CE)

Theorem 7 (CE Convergence). When using a CE meta-
solver and CE best response in JPSRO(CE) the mixed joint
policy converges to a CE under the meta-solver distribution.
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We recall the definition of correlated equilibria. Keeping
the same notations as above, a correlated equilibrium is a
joint distribution σ over Π such that, for any player p and
any policies πp, π′p of player p,∑

π−p∈Π−p

σ(πp, π−p)Gp(π
′
p, π−p) ≤∑

π−p∈Π−p

σ(πp, π−p)Gp(πp, π−p)

In other words, a CE is a distribution from which no player
has an incentive to unilaterally deviate even after having
been assigned their action. They are therefore stronger than
CCEs, and the result CEs ⊆ CCEs easily follows from the
above inequality. From this definition of CEs, we derive the
definition of CEGap, which measures the above gap over
all players.

CEGap(σ) =
∑

p,πp∈Πp

⌊
max
π′p

∑
π−p∈Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p))

⌋
+

From this definition, we conclude the following lemma:

Lemma 2 (Game CE and CEGap). We have the following
equivalence:

(i) σ is a CE of the game

(ii) CEGap(σ) = 0

Proof. Let us first prove (i) → (ii). Let σ be a CE of the
game. Therefore, for all p, for all πp, π′p ∈ Πp,∑

π−p∈Π−p

σ(πp, π−p)Gp(π
′
p, π−p) ≤∑

π−p∈Π−p

σ(πp, π−p)Gp(πp, π−p)

therefore∑
π−p∈
Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p)) ≤ 0

which is true for all π′p ∈ Πp, so also true for the max over
them

max
π′p∈Πp

∑
π−p∈
Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p)) ≤ 0

⌊
max

π′p∈Π−p

∑
π−p∈
Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p))

⌋
+

= 0

Therefore (i)→ (ii).

Let us now suppose that σ is such that CEGap(σ) = 0. Thus∑
p,πp∈Π0:t

p
+

⌊
max
π′p

∑
π−p∈
Π−p

σ(πp, π−p)

(Gp(π
′
p, π−p)−Gp(πp, π−p))

⌋
+

= 0

Given the presence of the positivity operator b.c+, we de-
duce that for all p, for all πp, π′p ∈ Π0:t

p ,∑
π−p∈
Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p)) ≤ 0

We therefore deduce∑
π−p∈Π−p

σ(πp, π−p)Gp(π
′
p, π−p) ≤∑

π−p∈Π−p

σ(πp, π−p)Gp(πp, π−p)

which concludes the proof.

Once again, the CEGap definition is extended

CEGap(σ,Π∗,Π0:t) =∑
p,πp∈Π0:t

p

⌊
max
π∗p∈Π∗p

∑
π−p∈Πt

−p

σ(πp,π−p)(Gp(π
∗
p , π−p)−

Gp(πp, π−p))

⌋
+

It is once again easy to see that CEGap(σ,Π∗,Π0:t) charac-
terizes CEs of Π∗.

This lemma proven, we prove Theorem 7.

Proof. Once again, it is sufficient to prove that JPSRO(CE)
stops producing new policies if and only if it has reached
a CE of the extensive form game, the rest of the argument
being supplied by the finiteness of the game forcing JP-
SRO(CE) to eventually stop producing new policies.

Let us now suppose that JPSRO(CE) has not produced any
new policy for any new player at iteration t. This means
that for all πp ∈ Πt

p,

max
π∗p∈Π∗p

∑
π−p∈
Π0:t
−p

σ(πp, π−p)Gp(π
∗
p, π−p) =

max
π′p∈Πt

p

∑
π−p∈
Π0:t
−p

σ(πp, π−p)Gp(π
′
p, π−p)



Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

We subtract
∑
π−p∈Πt

−p
σ(πp, π−p)Gp(πp, π−p) to both ex-

pressions, apply b.c+ and sum over πp ∈ Πt
p and p, and

finally apply the fact that σ is a CE of the restricted game to
obtain that

CEGap(σ,Π∗,Π0:t) =
∑

p,πp∈Πp

⌊
max
π′p∈Πt

p

∑
π−p∈Π−p

σ(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p))

⌋
+

= 0

which, by extension, is also true for the CEGap over the
extensive form game. By Lemma 2, σ is therefore a CE of
the extensive form game, which concludes the proof.

E.5.3. RELAXATION ON PROOF REQUIREMENTS

Our definition of Best Responses (BRs) is that they are
functions that return a set of policies which maximize their
value against a given objective. There are two reasons to
add a set of policies. Firstly, the max of a given objective
can be reached at different points, thus returning a set of
policies enables us to potentially include them all. Secondly,
using sets also enables us to potentially set some of the
BR outputs to ∅. Concretely, this means that no policy is
computed by the BR in that case, which saves compute time
and memory. The proofs shown so far rely on each BR
having cardinality greater than or equal to 1, which means
that one should compute at least one new policy every time
the BR operator is called. We can relax this condition into
the following conditions, which we prove are sufficient (but
not necessary) for convergence.

CCE-Condition:

∀T > 0, p,∃t > T, |BRtp| ≥ 1

i.e. each player receives an infinity of best responses.

CE-Condition:

∀T > 0, p, πp,∃t > T, either ∀t′ ≥ t, σt′(πp) = 0

or |BRtp(πp)| ≥ 1

i.e. any policy of any player is either never selected by
the CE meta-solver after some time, or is considered
for a best response an infinite number of times.

Solver-Condition: ∀t,∀t′ ≥ t, if ∀p,∀πp ∈ Π0:t′

p , πp ∈
Π0:t
p , then ∀π ∈ Π0:t (or π ∈ Πt′), σt(π) = σt′(π): if

no new policy has been added to the pool between t
and t′, the amount of mass granted to each policy by
the solver does not change, i.e. repeating policies does
not affect solver outputs, and the solver’s outputs are
constant given the same pools.

The rest of this section presents the relaxed theorems, their
proofs, and discusses why such a relaxation is of interest.

Relaxed Theorems and Proofs

Theorem 8 (Relaxed CCE-Convergence). When using a
CCE meta-solver and CCE best response in JPSRO(CCE),
under CCE-Condition and Solver-Condition, the mixed joint
policy converges to a CCE under the meta-solver distribu-
tion.

Proof. Let us suppose CCE-Condition and Solver-
Condition. We have that JPSRO(CCE) will necessarily be
able to produce new policies until it reaches a CCE. Let us
prove this: while CCEGap(σt,Π

∗,Π0:t) > 0, JPSRO(CCE)
is able to add at least one new policy to its pool. Indeed, let
t > 0 be such that CCEGap(σt,Π

∗,Π0:t) > 0. Then there
exists at least one p such that

max
π′p∈Π∗p

∑
π∈Π0:t

σt(π)(Gp(π
′
p, π−p)−Gp(π)) > 0.

Let us select one of these p with minimal t′ ≥ t, |BRtp| ≥ 1,
i.e. the first best response with positive CCEGap to be added
to the pool after and including t. t′ exists because we sup-
pose CCE-Condition. Let us suppose that no new policies
have been added to the pool between t and t′. Then, since
no new best response has been added to the pool between
t and t′, σt = σt′ since we suppose Solver-Condition, and
therefore ∀π′ ∈ BRt

′

p ,∑
π∈Π0:t

σt(π)(Gp(π
′
p, π−p)−Gp(π)) > 0.

We have that necessarily, BRt
′

p ∩Π0:t
p = ∅, as otherwise σt

would not be a CCE of Π0:t: indeed, since σt is a CCE of
Π0:t, CCEGap(σt,Π

∗,Π0:t) = 0, and thus ∀p, π′p ∈ Π0:t
p ,∑

π∈Π0:t

σt(π)(Gp(π
′
p, π−p)−Gp(π)) ≤ 0,

thus new best responses can be added to the pool. We
therefore have that CCEGap(σt,Π

∗,Π0:t) > 0 implies that
at least one new policy can be found by JPSRO.

Thus a new best response can always be added, and will
always be added since we have CCE-Condition, to the pool
while σt is not a CCE of the extensive form game. There-
fore, if JPSRO(CCE) is unable to add any new policy to
the pool (which has to be verified over all players, or mea-
sured through CCEGap), then it must be at a CCE, which
concludes the proof.

Theorem 9 (Relaxed CE-Convergence). When using a CE
meta-solver and CE best response in JPSRO(CE), under
CE-Condition and Solver-Condition, the mixed joint policy
converges to a CE under the meta-solver distribution.
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Proof. Let us suppose CE-Condition and Solver-Condition.
We have that JPSRO(CE) will necessarily be able to produce
new policies until it reaches a CE. Let us prove this: while
CEGap(σt,Π

∗,Π0:t) > 0, JPSRO(CE) is able to add at
least one new policy to its pool. Indeed, let t > 0 be such
that CEGap(σt,Π

∗,Π0:t) > 0. Then there exists at least
one p, πp st. σt(πp) > 0 such that

max
π′p∈Π∗p

∑
π−p∈Πt

−p

σt(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p)) > 0.

By CE-Condition, we have that either new policies have
been added to the pool before any such p, πp has been se-
lected, or that there exists t′ such that t′ ≥ t, |BRtp(πp)| ≥ 1.
Indeed, if no new best response has been added to the pool
by t′ ≥ t, the Solver-Condition implies that for all these
p, πp st. σt(πp) > 0, we also have σt′(πp) > 0, hence there
exists t′, |BRtp(πp)| > 1. Let us select the minimal t′ over
all p, πp such that CEGapp(σt,Π

∗,Π0:t)(πp) > 0.

Let us suppose that no new policies have been added
to the pool between t and t′. Then, since no new best
response has been added to the pool between t and t′,
σt = σt′ since we suppose Solver-Condition, and therefore
∀π′ ∈ BRt

′

p (πp),
∑
π−p∈Πt

−p
σt(πp, π−p)(Gp(π

′
p, π−p) −

Gp(πp, π−p)) > 0. We have that necessarily, BRt
′

p (πp) ∩
Π0:t
p = ∅, as otherwise σt would not be a CE of Π0:t: in-

deed, since σt is a CE of Π0:t, CEGap(σt,Π
∗,Π0:t) = 0,

and thus ∀p, πp ∈ Π0:t
p , π′p ∈ Π0:t

p ,∑
π−p∈Π0:t

−p

σt(πp, π−p)(Gp(π
′
p, π−p)−Gp(πp, π−p)) ≤ 0.

Thus new best responses can be added to the pool. We
therefore have that CEGap(σt,Π

∗,Π0:t) > 0 implies that
at least one new policy can be found by JPSRO.

Thus a new best response can always be added, and will
always be added since we have CE-Condition, to the pool
while σt is not a CE of the extensive form game. Therefore,
if JPSRO(CE) is unable to add any new policy to the pool
(Which has to be verified over all players, or measured
through CEGap), then it must be at a CE, which concludes
the proof.

Discussion on Relaxation
These relaxed conditions matter especially for JPSRO(CE),
which has potentially exponential complexity in term of
number of policies to keep (if the solver spreads mass on all
policies at each iteration, then the number of policies in each
players’ pools at iteration t is ≥ 1 +

∑t
k=1 2k = 2t+1 − 1).

Given that the policies produced for one player at the same
iteration are potentially similar (even identical), a number
of modifications could be imagined to keep JPSRO(CE)

tractable. For example: a) randomly select only one πp
from which to best respond for each player, b) only compute
a best response for one randomly chosen πp, or c) compute
all BRs, but only add the BR with the largest gap to the
pool.

It could make sense to randomly select only one πp from
which to best respond for each player, at each iteration, or
even to only compute a best response for one randomly
chosen πp for one randomly-chosen p at each iteration.

Note that it is necessary to impose a condition on the solver
(although an alternate Solver-Condition could be formu-
lated). To illustrate this, let us imagine modes between the
best response chooser and the solver. Namely, let us imagine
a two-player game, for which on even t, in JPSRO(CCE),
the best response operator only computes one best response
for player 1 (and on odd t, the best response is computed
only for player 2). Let us also infer that the current restricted
game has two CCEs. The first of these (CCE1) is not “ex-
pandable” for player 1, but is for player 2 (i.e. the best
response for player 1 is already in the pool, but player 2’s
best response is not). The second (CCE2) is expandable for
player 1, but not for player 2. If the CCE solver outputs
CCE1 on even t, and CCE2 on odd t, then the algorithm
never produces new policies, and therefore never converges.

Of course, the conditions provided are sufficient, but not
necessary, and in the case where best response and meta-
solver outputs’ randomizations are decorrelated, it makes
intuitive sense that the algorithm should also converge with
probability 1, which one can prove with a more involved
argument.

F. Games
We study several games with JPSRO; Kuhn Poker, Trade
Comm, and Sheriff. These cover three-player, general-sum,
and common-payoff games. Implementations of all the
games are available in OpenSpiel (Lanctot et al., 2019).

Kuhn Poker: A simplified n-player, zero-sum, sequential,
imperfect information version of poker. It consists of
n+ 1 playing cards. In each round of the game, every
player remaining antes one chip. One card is dealt
to each player. Each player has two choices, bet one
chip or check. If a player bets other players have the
option to call or fold. Out of the players that bet, the
one with the highest card wins. If all players check the
player with the highest card wins. The original two-
player game is described in (Kuhn, 1950). An n-player
extension is described in (Lanctot, 2014). Additional
information about the game (such as equilibrium) can
be found in (Hoehn et al.).

Trade Comm: A simple two-player, common-payoff trad-
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ing game (Sokota et al., 2021). In this game each player
(in secret) receives one of I different items. The first
player can then make one of I utterances to the second
agent, and vice versa. Then each agent chooses one
of I2 trades in private, if the trade is compatible both
agents receive 1 reward, otherwise both receive 0. The
goal of the agents is therefore to find a bijection be-
tween the items and utterances and the trade proposal.
There are I4 deterministic policies per player, and good
learning algorithms will be be able to search over these
policies. Because the game is common-payoff, it is
very transitive, and has many dominated strategies,
however there are multiple strategies with equal pay-
off, and therefore many equilibria in partially explored
policy space. It is for this reason many learning algo-
rithms get stuck exploiting sub-optimal policies they
have already found.

Sheriff: A simplified two-player, general-sum version of
the board game Sheriff of Nottingham (Farina et al.,
2019b). The game consists of a smuggler, who is
motivated to import contraband without getting caught,
and a sheriff, who is motivated to either find contraband
or accept bribes. The players negotiate a bribe over
several rounds after which the bribe if accepted or
rejected. If the sheriff finds contraband, the smuggler
pays a fine, otherwise if no contraband is found the
sheriff must pay compensation to the smuggler. The
smuggler also gets value from smuggling goods. The
game has different optimal values for NFCCE, EFCCE,
EFCE, and NFCE solutions concepts.

G. JPSRO Hyper-parameters
There are a number of ways of implementing JPSRO in
practice through various hyper-parameters.

Best Response: We use an exact best response calculation
that assigns uniform probability over valid actions for
states with zero reach probability. However, other best
response approaches will also work including reinforce-
ment learning (which we will leave to future work).

Pool Type: The data structure used to store the policies
found so far can either be a set or a multi-set. Us-
ing a set ensures that all policies are unique and only
appear once even if multiple iterations produce the
same best response policy. Some meta-solvers rely on
repeated policies being present for convergence con-
vergence (for example, the uniform meta-solver can
converge in two-player, zero-sum because the repeated
policies trend to a NE over repeats). In this case using
a multi-set is more suitable. This parameterization is
only relevant when using tabular policies which can be
checked for equality.

Player Updates Per Iteration: It is not necessary to find
the best response for all players at every iteration.
Other strategies such as cycling through players or
randomly selecting a player will work too. It is suf-
ficient that over time all players should be updated.
Updating a single player at a time is more efficient
when minimizing the number of best responses nec-
essary for convergence, however updating all can be
done in parallel.

Best Responses Per Iteration: When computing the CE
best response, each player has several best responses
to calculate. It is not necessary to compute them all
and, even if they are all computed, it is not necessary to
add them all to the pool of policies. The best responses
can be calculated at random. And only best responses
with nonzero gap need be added, or perhaps only the
one with largest gap. In order to measure convergence
to a CE, all best responses (and their gaps) must be
computed.

Policy Initialization: Policies can be initialized in any
manner and the algorithm will converge to an equilib-
rium under any initial condition. However, the initial
policies does determine the space of equilibrium reach-
able (so for example is may not be possible to find the
MWCE from all initial policies). JPSRO works, with-
out limitation, using only deterministic policies, how-
ever stochastic policies are supported too. A stochastic
uniform policy over valid actions is a reasonable set-
ting.

Best Response Type: The most important parameteriza-
tion is picking one of the two best response types:
CE and CCE. The resulting algorithm is named either
JPSRO(CE) or JPSRO(CCE) respectively.

Meta-Solvers: The second most important parameteriza-
tion is the type of meta-solver to use (Table 2). An
important constraint is that JPSRO(CE) is only guaran-
teed to converge under CE meta-solvers. JPSRO(CCE)
must use CCE meta-solvers (noting that CEs are a
subset of CCEs).

H. Experiments
We conduct experiments over three extensive form games
to demonstrate the versatility of the algorithm over n-player
general-sum games. For each game we run on both JP-
SRO(CCE) and JPSO(CE) algorithms under all suitable
meta-solvers and baselines.

For JPSRO(CCE), we initialize using uniform policies, up-
date all players at every iteration, and use multi-sets for the
pool. For JPSRO(CE), we initialize using uniform policies,
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Table 2. Summary of meta-solvers used during experiments and
their properties. We use the normalized ε for naming, for example
1

100
ε-MGCE means 1

100
max(Ab)ε-MGCE.

Meta-Solver Joint CCE CE Max
Val

Max
Ent Rand

Uniform X
PRD

α-Rank X
Rand Dirichlet X X

Rand Joint X X
RMWCCE X X X X

RVCCE X X X
1

100 ε-MGCCE X ε X
MGCCE X X X

min ε-MGCCE X X X
RMWCE X X X X X

RVCE X X X X
1

100 ε-MGCE X ε ε X
MGCE X X X X

min ε-MGCE X X X X

update all players at every iteration, only add the highest-
gap BR to the pool for each player at each iteration, and
use multi-sets for the pool. For random meta-solvers we
repeat the experiment five times and show the average, oth-
erwise the experiment is deterministic. The experiments
were run for 6 hours, after which any that had not finished
were truncated.

In order to measure performance, we track five metrics:

1. The gap to equilibrium under a maximum welfare equi-
librium (MW(C)CE) distribution. This describes how
close the algorithm is to finding a set of joint poli-
cies that are in exact equilibrium in the extensive form
game.

2. The gap to equilibrium under the meta-solver’s dis-
tribution. This is the gap that JPSRO theoretically
converges to when using (C)CEs.

3. The value of the game to the players under the
MW(C)CE distribution.

4. The value of the game to the players under the meta-
solver’s distribution.

5. The number of unique policies found so far.

Ultimately, the algorithm should be finding high-value joint
policies that are in equilibrium, over a variety of games.
The first game is a purely competitive, three-player game
called Kuhn Poker (Figure 3). The second game is a purely
cooperative, common-payoff game called Trade Comm (Fig-
ure 4). The final game is a general-sum game called Sheriff
(Figure 5).

I. Open Source Code
An open source implementation of JPSRO is avail-
able in OpenSpiel (Lanctot et al., 2019) under

https://github.com/deepmind/open_spiel/
blob/master/open_spiel/python/examples/
jpsro.py.

J. Necessity of Population Based Training
In the absence of a correlating signal, a single joint policy
is, in general, insufficient to represent a correlated equilib-
rium. To see this, let us consider the Traffic Light game
(Figure 1b). One possible correlated equilibrium consists in
recommending (G, W) half of the time, and (W,G) the other
half.

Let us now consider this game as an extensive-form, partial-
information game, where the row player first chooses their
action, and the column player then chooses their own with-
out knowing the action chosen by the row player. In the
absence of a correlating signal, it is impossible for the col-
umn player to know which action the row player has played,
and therefore playing (G, W) or (W, G) becomes impossible,
as the column player is unable to change their action as a
function of the action taken by the row player.

Therefore, without modifying the game and observation
space to add a correlating signal, convergence to a correlated
equilibrium necessarily requires a distribution over joint
policies. Population Based Training (PBT), a set of methods
that slowly grow the space of (joint) policies, therefore
appears to be the appropriate framework to converge to
(C)CEs without adding correlating signals to the considered
game.

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/jpsro.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/jpsro.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/jpsro.py
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Figure 3. JPSRO(CCE) and JPSRO(CE) on three-player Kuhn Poker. All (C)CE MSs, PRD and α-Rank find joint policies capable of
supporting equilibrium (although α-Rank was slow and was terminated after 6 hours). This is some evidence that classic MSs designed
for the two-player, zero-sum setting can generalize well to the three-player, zero-sum.
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Figure 4. JPSRO(CCE) and JPSRO(CE) on three-item Trade Comm. In JPSRO(CCE), 1
100

min-MGCCE fails find the maximum welfare
equilibrium, however, all other (C)CE MSs find the maximum welfare equilibrium. Unexpectedly, α-Rank performs well on this game,
while all other classic MSs fail to make progress on this purely cooperative game. Performing well on this game requires exploration, so
the random joint MS is able to make progress, albeit naively and slowly.



Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

0 20 40 60 80 100 120
10−6

10−4

10−2

100

102

CC
E 

Ga
p 

Su
m

(u
nd

er
 M

W
CC

E)
(u

nd
er

 M
W

CE
)

JPSRO(CCE) on Sheriff
1

100ε-MGCCE
MGCCE
min-ε-MGCCE
RVCCE
RMWCCE

Uniform
PRD
α-Rank
Random Dirichlet
Random Joint

0 20 40 60 80 100 120
10−6

10−4

10−2

100

102 JPSRO(CE) on Sheriff
1

100ε-MGCE
MGCE
min-ε-MGCE
RVCE
RMWCE

Uniform
PRD
α-Rank
Random Dirichlet
Random Joint

0 20 40 60 80 100 120
10−6

10−4

10−2

100

102

CC
E 

Ga
p 

Su
m

(u
nd

er
 se

lf)
(u

nd
er

 se
lf)

0 20 40 60 80 100 120
10−6

10−4

10−2

100

102

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Va
lu

e 
pe

r P
la

ye
r

  (
un

de
r M

W
CC

E)
  (

un
de

r M
W

CE
)

Player 1

0 20 40 60 80 100 120
0

2

4

6

8

10

12
Player 2

0 20 40 60 80 100 120
0

2

4

6

8

10

12
Player 1

0 20 40 60 80 100 120
0

2

4

6

8

10

12
Player 2

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Va
lu

e 
pe

r P
la

ye
r

  (
un

de
r s

el
f)

  (
un

de
r s

el
f)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

0 20 40 60 80 100 120
0

2

4

6

8

10

12

0 20 40 60 80 100 120
0

2

4

6

8

10

12

0 20 40 60 80 100 120
JPSRO Iterations

0

20

40

60

80

100

120

Un
iq

ue
 P

ol
ici

es
 p

er
 P

la
ye

r

0 20 40 60 80 100 120
JPSRO Iterations

0

20

40

60

80

100

120

0 20 40 60 80 100 120
JPSRO Iterations

0

20

40

60

80

100

120

0 20 40 60 80 100 120
JPSRO Iterations

0

20

40

60

80

100

120

Figure 5. JPSRO(CCE) and JPSRO(CE) on Sheriff. This game is interesting because it is general-sum and different solution concepts
have different optimal maximum welfare values. The maximum welfare NFCCE is 13.64 for the smuggler and 2.0 for the sheriff which
JPSRO(CCE) successfully finds, while the maximum welfare NFCE is 0.82 for the smuggler and 0.0 for the sheriff which JPSRO(CE)
successfully finds. This demonstrates the appeal of using NFCCE as a target equilibrium. Interestingly, for this game, 1

100
ε-MG(C)CE

was able to produce BRs of high enough quality to converge which is evidence that scaled methods that only approximate (C)CEs may be
enough in some settings. RMWCCE converged to an equilibrium, but not the welfare maximizing one, providing evidence that greedy
MSs are not always suitable. In a similar argument, min-ε-MGCCE did not reach the maximum welfare solution within the allocated
number of iterations. RV(C)CE is efficient at finding novel policies but ones of limited utility. PRD and α-Rank perform well and find the
maximum welfare (C)CE equilibria.


