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Abstract
Many problems in engineering design and simula-
tion require balancing competing objectives under
the presence of uncertainty. Sample-efficient mul-
tiobjective optimization methods focus on the ob-
jective function values in metric space and ignore
the sampling behavior of the design configura-
tions in parameter space. Consequently, they may
provide little actionable insight on how to choose
designs in the presence of metric uncertainty or
limited precision when implementing a chosen
design. We propose a new formulation that ac-
counts for the importance of the parameter space
and is thus more suitable for multiobjective de-
sign problems; instead of searching for the Pareto-
efficient frontier, we solicit the desired minimum
performance thresholds on all objectives to define
regions of satisfaction. We introduce an active
search algorithm called Expected Coverage Im-
provement (ECI) to efficiently discover the region
of satisfaction and simultaneously sample diverse
acceptable configurations. We demonstrate our
algorithm on several design and simulation do-
mains: mechanical design, additive manufactur-
ing, medical monitoring, and plasma physics.

1. Introduction
Accelerated design and optimization via machine learning
is receiving increasing interest in multiple science and engi-
neering disciplines, such as materials design, drug discovery,
and chemical engineering (Forrester et al., 2008; Negoescu
et al., 2011; Molesky et al., 2018). Using numerical sim-
ulation to study the impact of design decisions prior to
manufacturing has become a common strategy to reduce the
number of fabrications, thus reducing the substantial cost of
development cycles.
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In recent years, active learning has gained popularity in
scientific communities. These adaptive methods more ef-
ficiently identify promising candidates compared to brute-
force or evolutionary algorithms (Song et al., 2018; Attia
et al., 2020; Haghanifar et al., 2020; Duris et al., 2020).
Bayesian optimization (BO) is arguably the most promi-
nent example of active learning, where the goal is to seek
the optimizer arg maxx f(x) of an expensive-to-evaluate
black-box objective f .

However, in most real world applications, multiple compet-
ing objectives need to be investigated (Koziel et al., 2014;
Singh et al., 2016). Optimality of multiobjective problems
is usually defined by the concept of Pareto efficiency, where
no individual objective can be improved without loss in at
least one other objective. Most work on optimizing multiple
objectives focuses on searching for the Pareto efficient fron-
tier (and the corresponding parameters). In general, for an
m-objective problem, the (nearly) Pareto efficient solutions
are assumed to be a dense set of points on an (m − 1)-
dimensional manifold (Konakovic-Lukovic et al., 2020).
Unfortunately, using the Pareto frontier as the measurement
of success is limiting in engineering and design applications;
candidates near the Pareto frontier, unaccounted for in most
optimization literature, are still of scientific interest in the
real world (del Rosario et al., 2020).

In practice, design objectives can also be formulated as in-
equality constraints, where the decision makers seek to find
design choices that satisfy known performance thresholds
on each objective. This formulation is related to the topic
of level set estimation (LSE) in the single objective setting.
Its goal is to determine the decision boundary of parameter
space that separates it above and below the threshold on
the objective (Gotovos et al., 2013). However, the notion
of level set does not naturally extend to the multiobjective
settings; a naive approach of identifying the level set for
each objective and taking the intersection is not computa-
tionally efficient. In addition, most LSE algorithms focus
on searching for the decision boundary; in the multiobjec-
tive setting, this behavior cannot reveal the tradeoff among
objectives, since there are not enough samples within the
region of interest.

Figure 1 illustrates the limitations of multiobjective BO and
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Figure 1. Comparison of BO, LSE, constraint active search, and random search behaviors on the same multiobjective problem. The top
row shows the observed samples in the parameter space; the bottom row, in the metric space. The shaded region represents the satisfactory
regions of interest, where both objectives exceed the known thresholds (labeled with dashed black lines in the metric space).

LSE respectively, and highlights constraint active search as a
new perspective on multiobjective problems. BO focuses on
searching for the Pareto efficient parameters. LSE focuses
on searching for the boundary of the region satisfying the
thresholds. Constraint active search attempts to sample from
that region of interest.

Our paper makes the following contributions:

• We propose an alternative formulation for the multi-
objective design problem as an active search problem.
In this setting, the objectives are treated as constraints
with known threshold values; the goal is to find diverse
samples that satisfy all the thresholds. We call this
formulation constraint active search (CAS).

• We develop an algorithm called expected coverage
improvement (ECI) for constraint active search that
preserves the sample efficiency of active search whilst
also diversely sampling from the regions of interest.
We provide theoretical analysis on the sample diversity
of ECI; specifically, it guarantees a constant approxi-
mation ratio to the optimal sample diversity.

• We compare ECI to various baselines on a suite of
synthetic multiobjective design benchmarks as well as
real-world multiobjective design and simulation appli-
cations in materials science, medical monitoring, and
plasma physics.

2. Related Work
2.1. Multiobjective Bayesian Optimization

Bayesian optimization (BO) is a popular method for optimiz-
ing expensive, black-box objective functions. BO consists
of two components: a probabilistic model, to model the
objective function f , and an acquisition function, to deter-
mine which parameters x to sample next. In this section,
we focus on reviewing the literature of BO in the multiob-
jective setting. We refer the readers to Frazier (2018) for a
comprehensive review of BO in the single objective setting.

There are several strategies at adapting BO to multiobjective
optimization. The simplest approach is linear scalarization,
where single objective BO strategies optimize a linear com-
bination of the objectives. Knowles (2006) first proposes
using a random scalarization of the objective functions to
search for the entire frontier. This method is further im-
proved in Paria et al. (2020), which models each individual
objective with a separate Gaussian process (GP).

A related approach involves reformulating the problem as
a constrained optimization problem, commonly known as
the ε-constraint method (Haghanifar et al., 2020). In par-
ticular, this formulation leverages prior works from con-
strained Bayesian optimization literature (Gelbart, 2015;
Gardner et al., 2014). In constrained BO, a probabilistic
model is formed for each constraint and used as a multi-
plicative penalty term in the acquisition function (Letham
et al., 2019). Recent works on constrained BO borrow ideas
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from the mathematical optimization community such as the
trust region (Eriksson & Poloczek, 2021) and Alternating
Directions Methods of Multiplier (Ariafar et al., 2019).

A separate line of research in multiobjective BO improves
the hypervolume of the Pareto efficient frontier directly
(Emmerich et al., 2011; Konakovic-Lukovic et al., 2020;
Daulton et al., 2020). Belakaria et al. (2019) adapts the
entropy search acquisition function for the multiobjective
setting, by maximizing the entropy of the Pareto frontier.
Belakaria et al. (2020) and Fernández-Sánchez et al. (2021)
build upon this work to incorporate additional black-box
inequality constraints. Almost all multiobjective BO liter-
ature uses the hypervolume of the Pareto frontier as their
performance criterion. While hypervolume provides a sin-
gle numerical value for the ease of comparison, using it
as the sole criterion of success misses the goal of multi-
objective optimization — understanding tradeoffs between
parameters and objectives.

2.2. Level Set Estimation

The goal of level set estimation is to determine the regions
where the objective function lies above or below a known
threshold level. Bryan et al. (2005) first uses a GP-based
active learning approach to tackle this problem through the
straddle heuristic, defined as

STRADDLE(x) = 1.96
√
v(x)− |f(x)− τ |,

where τ is the threshold of the level set and v is the model
uncertainty. Gotovos et al. (2013) generalizes the straddle
heuristic and provides theoretical guarantees on the classifi-
cation quality. Zanette et al. (2019) maximizes the expected
increase in the volume of the predicted level set. Iwazaki
et al. (2020) considers the LSE problem with input uncer-
tainty, where the input parameter values are subject to per-
turbation from a known Normal distribution. This work
is related to research in safe BO (Sui et al., 2015; 2018),
where only configurations exceeding the threshold with high
probability are sampled.

Almost all LSE methods focus on identifying the decision
boundary. To our best knowledge, Wang et al. (2018) is the
closest example of learning and diversely sampling from a
region of interest (in the single objective setting). It divides
the sampling procedure into two disjoint algorithms: one
determines the level set and the other samples diversely
from the interior of the learned level set.

The notion of a level set does not naturally extend beyond
more than one objective. Bryan & Schneider (2008) only
considers the multiobjective problem in a composite setting,
where a single threshold is used for a linear combination of
the objective functions. One naive and inefficient approach
to extend existing LSE algorithms to multiobjective prob-
lems is to estimate the level set of each objective separately

and then intersect each region of interest.

2.3. Active Search

Our proposed work is also related to the topic of active
search (Garnett et al., 2012). Active search can be seen as a
special case of Bayesian optimization, where one has binary
observations and cumulative reward. The goal of active
search is to sequentially discover members of a rare, desired
class. Inspecting any element is assumed to be expensive,
representing, for instance, the cost of performing a real
world laboratory experiment.

Garnett et al. (2012) explores this problem using Bayesian
decision theory, introduces a natural utility function for
active search, and derives the optimal policy for this frame-
work. In general, only myopic (one-step) approximations
to the optimal policy are computationally tractable. More
recently, Jiang et al. (2017) proposes an nonmyopic and
efficient approximation to the optimal policy, which is later
extended to the batch setting in Jiang et al. (2018). Active
search, however, is not designed to solve multiobjective
continuous problems — a problem that we address next.

3. Constraint Active Search
Scientists, engineers, and decision makers seldom rely on
single-point observations to make final design decisions.
Instead, they seek a diverse set of design configurations
to enrich their understanding of each objective function’s
impact and its respective tradeoffs. As Figure 1 illustrates,
neither BO nor LSE is well-suited to address these experi-
mental design concerns. The former clusters around optima,
and the latter clusters around the level set boundary.

We propose an alternative formulation to the multiobjective
design problem better suited to gather a diverse spectrum
of design configurations. The goal of this formulation is to
efficiently cover an unknown, possibly disconnected, set S
defined by the objective thresholds τ in a sequential fashion.
We call this problem constraint active search. In Section 5,
we illustrate how CAS may enable a practitioner to make
better decisions than those made by exclusively identifying
the Pareto frontier on an additive manufacturing problem.

This concept is related to del Rosario et al. (2020) which
advocates that the Pareto frontier itself is insufficient for sci-
entific and engineering settings. That work introduces the
notion of Pareto shells, the set of near Pareto optimal solu-
tions, as the desired outcome of multiobjective optimization.
We propose that, when thresholds τ are available, studying
the full region of constraint satisfaction1 is preferable.

1We use the term satisfaction instead of feasibility merely to
stress that the constraints are over the objectives and not explicitly
defined over the parameter space.
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Figure 2. An illustration of our utility function when constraint active search is run on the 2D sinusoids problem in (Bryan et al., 2005).
Each of the four subfigures above plots a single realization of the underlying stochastic model and outlines the decision boundary of
the satisfactory region in magenta. The observations within the boundary are marked with blue crosses, and a dotted blue ball of radius
r = 0.2 is drawn around each to indicate coverage. A ball is also drawn around the candidate point, itself marked with a black star. The
improvement of the utility is the volume of the blue region, and expected coverage improvement is the average value of all realizations.

3.1. Problem Statement

Suppose we want to search for design configurations in a
compact search space X . We may judge the quality of a
design x ∈ X by evaluating m expensive black-box ob-
jective functions f1, f2, . . . fm, each mapping X to R. We
seek designs x that yield acceptable performance, defined
by threshold values τ = [τ1, τ2, . . . , τm]>. Specifically, we
wish to sequentially select configurations from the set:

S = {x | f(x) � τ},

where f(x) � τ := fi(x) ≥ τi, i = 1, . . . ,m. At iteration
t, we assume we have evaluated t design configurations
Xt = {xj}tj=1 and their respective outputs Yt = {yj}tj=1,
where yj = [yj1 , yj2 , . . . , yjm ] is the potentially noisy ob-
servation of the objective functions f1, f2, . . . fm evaluated
at xj . These observations form the dataset Dt = (Xt,Yt).

We assume we havem independent probabilistic models that
capture our prior beliefs about observations yi = fi(xi)+εi
for i = 1, 2, . . . ,m, as a probability distribution over p(y),
where εi is additive Gaussian noise. We also assume p(y)
allows posterior updates when D is observed, i.e., p(y | D).
Let Z be an indicator variable that tells us if a point x will
satisfy the thresholds, Z(x) = 1

[
y(x) � τ

]
. Our model

of y allows us to compute the probability of any point x
belonging to the satisfactory region S after observing Dt,
which we denote by p(Z(x) = 1 | Dt). We delay discussing
the statistical model’s details until Section 4, as they are
immaterial to decision-making.

3.2. Expected Coverage Improvement

Our approach to constraint active search considers an addi-
tional resolution parameter r; in real-world problems one
can often define r in terms of the robustness of the design
to perturbations. Typically, most experimental design prob-
lems possess a sense of known resolution, such as simulation

accuracy or manufacturing precision/tolerance. This pre-
sumes that any design configuration within distance r of
another does not convey extra information about S.

Definition 3.1 (Coverage neighborhood). The coverage
neighborhood of any x is defined as

Nr(x) = {x′ : d(x,x′) < r},

for an a priori fixed r ∈ R+ and an appropriate distance
function d : X × X 7→ R+. The coverage neighborhood of
a set of points X is defined as

Nr(X) =
⋃
x∈X

Nr(x).

For Euclidean distance, Nr(x) is simply a ball of radius r.

Constraint active search prioritizes datasets D that cover as
much volume of the satisfactory region S as possible. We
express this desire with the following utility function:

u(D) = Vol (Nr(X) ∩ S) .

Intuitively, u(D) measures the total volume of S that is
covered by neighborhood Nr(x) for all x ∈ X. At itera-
tion t, the expected improvement of this utility function for
sampling a candidate configuration2 x is:

α(x | Dt) = Ey [u (Dt ∪ (x,y))− u(Dt)]
= EZ

[
Vol

({
Nr(x) ∩ SZ

}
\Nr(Xt)

)]
.

(1)

We can also refer to (1) as an acquisition function. At
iteration t, our policy selects the location x∗ that maximizes
the acquisition function, i.e., x∗ = arg maxx∈X α(x | Dt).
We visualize the intuition behind our policy for different

2For clarity, we have overloaded the notation for Dt ∪ (x,y)
to indicate a pairwise union, which we hope is clearly understood.
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realizations of Z in Figure 2. Our acquisition function
considers the volume of SZ that a new candidate location is
expected to cover under our current belief about Z.

A common practice in the LSE and active search literature
is to work on discrete search spaces: X could be discretized
by sampling a pool of n points. In this discretized setting,
(1) simplifies to

α(x | Dt) = EZ

[ ∑
x′∈N(x)\Nr(X)

Z(x′)

]
=

∑
x′∈N(x)\Nr(X)

EZ
[
Z(x′)

]
=

∑
x′∈N(x)\Nr(X)

p(Z(x′) = 1 | Dt). (2)

In practice, the argmax of α(x | Dt) is often nonunique,
especially at the start of search. This reflects the intuition
that when only a few observations sparsely cover S , multiple
—and possibly many— candidates will contribute equally to
the expected coverage. Crucially, if this occurs, we break
ties among the multiple optimum points by selecting the
one furthest from all observations in Xt, which encourages
selecting a diverse set of points. We call this policy expected
coverage improvement (ECI).

3.3. Theoretical Analysis of ECI

We present three theoretical results for ECI (proved in the
supplement). All assume that S is fixed a priori — that S
does not change as iteration proceeds.
Theorem 1. If we have a budget of one iteration left, then
ECI is one-step Bayes-optimal among all feasible policies.

This result is not particularly surprising. The next pair of
less trivial theorems concern the convergence of CAS using
ECI. Because CAS seeks to sample a diverse set of points,
we measure this diversity with fill distance. Fill distance is
the standard measure of point diversity in the quasi-Monte
Carlo (Joy et al., 1996), experimental design (Pronzato &
Müller, 2012), and meshfree approximation (Fasshauer &
McCourt, 2015) communities. The convergence of the fill
distance of ECI thus describes the limiting behavior of its
sample diversity.

Given a set of sample points X, the fill distance is formally
defined as the following:

FILL(X,S) = sup
x∈S

min
xj∈X

d(xj ,x). (3)

In Euclidean space, FILL(X,S) is the radius of the largest
empty ball one can fit in S, and measures the spacing of
X in S. The smaller a set’s fill, the better distributed it is
within S . Minimal fill is defined in the following sense:

ρ = min
X∈Xn

FILL(X,S).

Low-discrepancy sequences and Latin hypercubes achieve
low fill in simple domains. However, computing the mini-
mal fill is generically NP-hard (Pronzato & Müller, 2012).

Having defined fill distance, we can now frame convergence
in terms of the limiting behavior of FILL(X,S) as n ap-
proaches infinity. This is formalized as follows.

Theorem 2. If S is dense, ECI produces a dense sequence
of evaluation points in S. Equivalently, the limit as n ap-
proaches infinity of FILL(X,S) is zero.

A more interesting remark is that we are able to bound the
rate at which ECI fills the set S. We can guarantee that
ECI produces a fill bounded above by 4ρ, and that for a
sufficiently large iteration budget, ECI produces a fill that is
no more than 2ρ.

Theorem 3. For a fixed and known S, let ρ =
minX FILL(X,S). For any n, ECI produces a fill bounded
above by 4ρ. Furthermore, there exists a finite n∗ for which
ECI produces a 2-approximation ratio of ρ for all n ≥ n∗.

4. Experiments
In our experiments, we build an independent Gaussian pro-
cess (GP) to model each objective (Rasmussen & Williams,
2005). In particular, for a GP model and a single objective,

p(Z(x) = 1 | Dt) =

∫ ∞
τ

φ(y | µ(x), v(x))dy, (4)

where φ is the Normal PDF, and µ(x) and v(x) are the
GP’s posterior mean and variance, respectively, evaluated
at x. For m objectives modeled by m independent GPs,
p(Z(x) = 1 | Dt) is the product of probabilities associated
with each model. Our GPs use a zero mean function and
a C4 Matérn covariance kernel with length scales fixed a
priori (more information is provided in the supplement).

4.1. Baseline Methodologies

In addition to random search (RND), we compare our al-
gorithm to several (modified) baseline algorithms afore-
mentioned in Section 2: ε-constraint BO (Haghanifar et al.,
2020), STRADDLE (Bryan et al., 2005), and one-step active
search (Garnett et al., 2012). We extend STRADDLE to the
multiobjective setting by alternating the objective functions
at each iteration. For one-step active search, we maximize
the point with highest probability p(Z(x) = 1 | Dt) at each
iteration, which we call ONE-S. In addition, we develop two
information theoretic baselines:

Mutual information (EZ): We consider the mutual infor-
mation between y and Z. Assuming noiseless observations
fi(x) = yi,∀i, this simplifies to the entropy of Z:

MI(y;Z) = H(y)− EZ
[
H(y | Z)

]
= H(Z),
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Figure 3. Median metric values across 20 repetitions for the additive manufacturing application. We plot the fill distance, number of
positive samples, hypervolume, and coverage recall respectively. Shaded region corresponds to values between lower and upper quartiles.

where H(·) is the entropy of a random variable. This would
be the one-step optimal strategy that recovers the most in-
formation about the boundaries of S.

Entropy inside S (EISR): We consider the utility:

uEISR(x) =

{
0 Z = 0,

H(f | x) Z = 1.

uEISR rewards sampling configurations that are inside S and
have high entropy. The corresponding acquisition function
can be written as

αEISR = EZ
[
uEISR(x)

]
= p(Z(x) = 1)H(y).

4.2. Performance Criteria

We emphasize that no single criterion can sufficiently con-
vey the full strength of any methodology; this is especially
true in the multiobjective setting, in which different perfor-
mance criteria already exist to quantify different algorithmic
goals. We hope to impart a nuanced comparison of ECI to
existing baselines. To that end, we consider the following
four criteria.

Fill distance: We want an algorithm that can effectively
explore the entire satisfactory region. This is quantified by
fill distance, which is defined in Equation 3.

Positive samples: The number of satisfactory sampled
points is commonly used in active search literature to judge
the quality of the algorithm. In our experiments, these are
the observed samples inside of S.

Hypervolume: We measure the hypervolume of region in
metric space bounded by the Pareto frontier and the defined
thresholds. In particular, we conjecture that algorithms
which excel at maximizing the hypervolume may underper-
form on other criteria, and vice versa.

Coverage recall: Finally, we want to combine the idea of
maximizing positive samples and minimizing fill distance

to measure sample diversity. We propose a recall metric that
considers coverage. Given a known S and samples X, we
define the coverage recall as

Coverage recall = |Nr(X) ∩ S| /|S|.

Note that the numerator is exactly the utility function that
we have proposed in Section 3.1. We will simply refer to
this as recall in the following text.

4.3. Multiobjective Design Problem Suite

We adopt eight multiobjective engineering design problems
presented in the REPROBLEM suite (Tanabe & Ishibuchi,
2020). These synthetic functions are specifically designed to
mimic real-world applications and avoid having unrealistic
properties of traditional benchmark functions. We follow
the naming convention from the original text and detail the
problems we selected in the supplement.

4.4. Additive Manufacturing

Haghanifar et al. (2020) studies a numerical simulation to
help design an additive manufacturing strategy for minimiz-
ing the reflection of light at multiple angles of incidence.
We conduct the same search for different nanostructures
which balance a desire for minimizing normal reflection
with reflection at an oblique angle.

The simulation, conducted using the Lumerical FDTD sim-
ulator (Lumerical Inc., 2020), has a level of inaccuracy
associated with the numerical methods. In addition, there is
a level of imprecision associated with the actual manufactur-
ing process which means that the desired design parameters
are only realized to limited precision during fabrication.
Our goal for this reflection minimization problem is to find
nanostructured glass that satisfyingRnormal(x) ≤ τnormal and
Roblique(x) ≤ τoblique. The design parameters are the dimen-
sion of the nanostructures (a cone): maximum cone width,
bottom diameter, top diameter, and height of the structure.
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Table 1. Selected experimental results, consisting of the mean over 20 independent trials. Hypervolume has been rescaled for ease of
viewing: RE33× 10−5, Additive× 10−2, EEG× 102, Plasma× 100. We denote with bold text the best mean for each problem and each
metric. Please refer to the supplementary material for the complete set of experimental results and information regarding the variation
around the mean (standard error). For each problem, ECI has the best recall performance.

Function m d r Methods Fill distance ↓ # Positive ↑ Coverage Recall ↑ Hypervolume ↑

RE33 3 4 0.08

RND 0.34 23.80 0.14 5.53
ONE-S 0.60 101.55 0.18 7.03
EZ 0.26 34.05 0.25 2.77
STRADDLE 0.35 13.70 0.10 2.92
BO 0.42 36.55 0.11 8.65
EISR 0.24 100.05 0.23 7.46
ECI 0.27 100.95 0.73 7.91

Additive 2 4 35.0

RND 108.22 22.40 0.42 7.94
ONE-S 211.86 156.75 0.60 8.77
EZ 92.37 106.05 0.89 8.52
STRADDLE 79.30 21.10 0.43 7.78
BO 107.84 121.95 0.82 9.07
EISR 102.01 121.40 0.98 8.56
ECI 34.92 56.00 1.00 8.07

EEG 2 6 0.25

RND 0.38 4.40 0.58 3.17
ONE-S 0.48 31.20 0.50 3.45
EZ 0.44 17.95 0.58 3.45
STRADDLE 0.41 2.00 0.38 2.28
BO 0.52 4.30 0.35 2.40
EISR 0.45 22.85 0.52 3.55
ECI 0.38 8.30 0.79 3.65

Plasma3 1 9 0.50

RND 1.02 10.85 0.19 5.63
ONE-S 1.01 12.80 0.20 5.88
EZ 1.07 10.70 0.17 5.48
STRADDLE 1.07 10.70 0.17 5.48
BO 1.04 12.60 0.15 5.74
EISR 1.03 10.55 0.14 6.08
ECI 0.90 31.25 0.65 6.64

4.5. EEG for Brain Activity Reconstruction

Electroencephalography (EEG) is a non-invasive strategy
for reconstructing cerebral electric currents from their re-
sulting electrostatic potential measured on a human’s scalp
(Ala et al., 2017). This process consists of solving an in-
verse problem, requiring localization of the electric dipoles’
locations and moments, subject to the associated model of
dipole/potential interaction (Sorrentino & Piana, 2017). The
limited spatial resolution of EEG is a well-known problem
with its practical viability (Samuelsson et al., 2021), mak-
ing constraint active search a potentially interesting tool for
identifying regions of brain activity.

We use a meshfree solver to generate a scalp potential from a
proposed dipole location through a quasi-stationary approx-
imation to Maxwell’s equations (Ala et al., 2015). We then

apply our strategy to identify the proposed dipole which
most closely matches the true potential created by the true
dipole, which is fixed at the start but hidden. We measure
scalp potential at 28 locations and try to minimize the 25th
and 75th percentiles of absolute deviation between the pro-
posed and true potential; this has the effect of pushing both
ends of the interquartile range as low as possible.

4.6. Plasma Physics

A stellarator is device that uses a set of magnetic coils
to confine a plasma hot enough to sustain nuclear fusion
(Spitzer Jr, 1958). Stellarator coils lack rotational symmetry,

3Since the plasma problem is single objective, the hypervol-
ume is computed as the difference between the threshold and the
minimum value, |τ −miny|.
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10 um

9.2 um

Figure 4. Left two panels: difference from the expected design (in CAD) and the fabricated sample of a nanostructure. Right two panels:
comparison of acceptable configurations in metric space and in the parameter space. Small variations in the Pareto optimal points can lead
to significant discrepancies in the design space. CAS points provide more information about satisfactory design configuration.

and possess notably warped shapes due to the complex,
quasi-symmetric magnetic field they must produce.

Recently, (Giuliani et al., 2020) developed a stellarator
simulator, PyPlasmaOpt, which significantly streamlines
the simulation procedure of previous packages such as
StellOpt (Strickler et al., 2003). PyPlasmaOpt parama-
terizes each coil as a curve in 3D Cartesian coordinates
Γ(θ) = (x(θ), y(θ), z(θ)), where each coordinate admits
the following Fourier expansion, e.g., in the case of x:

x(θ) = c0 +

norder∑
k=1

sk sin(kθ) + ck cos(kθ).

For each coil, the parameters ck and sk represent the search
space that we must search over. We consider a relatively
simple, order one coil which has nine parameters total.

We compute the objective function to be minimized by sim-
ulating the stellarator using the given coil shapes (which
solves a certain first order, nonlinear ordinary differential
equation). The resulting summary information from the
simulation is our objective f and contains three terms:

f(x) = Rmagnetic(x) +Rtransform(x) +Rshape(x).

The first term quantifies the quasi-symmetry of the magnetic
field —the smaller the first term, the more desirable the
resulting field. The second term locks the solution into a
target rotational transform. The third term penalizes overly
complex coils too impractical to manufacture in real life.

4.7. Discussion

We exhaustively tested ECI and other baselines on eleven
total problems, but due to limited space, we present a repre-
sentative subset of our experimental results in this section.
Our analysis holds true for the seven additional problems,
whose results are in the supplement along with accompany-
ing experimental setups for reproducibility purposes.

Specifically, Table 1 shows the mean value over 20 trials for

each performance metric at termination for the RE33 func-
tion from the design problem suite and all our real-world
applications. These results demonstrate that no algorithm
can be the best in all performance metrics. In fact, it high-
lights each method’s strengths and weaknesses, confirming
our thesis that evaluating the performance of multiobjective
problems is itself multiobjective.

As expected, BO typically outperforms all methods on the
hypervolume criterion, which only judges the Pareto fron-
tier. However, it is consistently worse than its peers when
judged by diversity (fill distance) and coverage (recall). Our
proposed method ECI, on the other hand, is effective at di-
verse sampling inside the satisfactory region S; it is almost
always the best performing method for coverage recall and
fill distance. Unsurprisingly, ONE-S excels at accumulat-
ing satisfactory samples since it greedily maximizes the
number of positive samples by design. These samples are
highly clustered, as revealed by the high fill distance and
low coverage recall values.

Each policy’s objective is evident when we consider the
sample progression. Figure 3 shows the variation on per-
formance as a function of the number of observed samples
for the additive manufacturing problem. For instance, ECI
maximizes the coverage recall and also minimizes the fill
distance but stagnates at maximizing hypervolume and num-
ber of positives.

Our investigation reveals that different multiobjective algo-
rithms prioritize different performance criteria. Therefore,
one can tailor a strategy (perhaps an ensemble of methods)
according to each application’s need. If metric optimiza-
tion is of ultimate relevance, we recommend multiobjective
Bayesian optimization. If the decision maker’s goal is to
identify rare elements regardless of diversity, then active
search is the best choice. However, we argue that selecting
a diverse set of satisfactory configurations is the most suited
objective for design problems. We provide an example to
support this claim in the following section.
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5. Constraint Active Search in Practice
This research was motivated, in part, by a collaboration with
materials scientists using additive manufacturing to fabri-
cate nanostructured glass with multiple desirable optical
and physical characteristics. Multiobjective problems are
intrinsically subjective — if we could quantify the tradeoffs
between each metric precisely a priori, we would solve a
single-objective problem instead. Therefore, multiobjective
methodologies provide the decision makers with a set of
points at termination. Traditional multiobjective optimiza-
tion offers a Pareto optimal set of points; our alternative
gives a set of diverse points in parameter space that meet
the user constraints. The decision maker, a domain expert,
must then decide which one or more of these points to pro-
mote to physical manufacturing, often considering two key
complications:

• Computational and manufacturing imprecision prevent
an exact physical realization of the results. See Figure 4
(left two panels) for an example of the CAD model and
the associated fabricated component, which suffered
from limited manufacturing precision.

• Some metrics are unavailable during optimization –
maybe they can only be computed after manufacturing
(such as anti-fogging or durability) or require costly
expert analysis (such as the supervisor stating expert
opinions on a manufacturing scale).

Both of these complications are better addressed through
sample diversity in parameter space (not in metric space) —
the primary motivation of CAS.

Inaccuracies arising from the transfer of computational re-
sults to manufactured outcomes are best dealt with by choos-
ing points most likely to achieve acceptable performance af-
ter fabrication. Because CAS explores the parameter space,
it has a greater ability to select results far (e.g., in Euclidean
sense) from unacceptable outcomes than multiobjective opti-
mization. When only studying the Pareto frontier, no energy
is spent exploring the safety of those points from undesir-
able results. Figure 4 (right) shows the numerical simula-
tion results for the additive manufacturing example; interior
points in parameter space are more likely to be selected for
physical manufacturing.

For metrics only computable after fabrication, users benefit
from a diverse set of designs in parameter space so they
may manufacture a select few and still hope to achieve good
results on these previously unavailable metrics.

6. Conclusion and Future Work
We introduce constraint active search as a novel methodol-
ogy to explore multiobjective experimental design options
while satisfying minimum performance criteria. One key

differentiation between constraint active search and existing
multiobjective optimization literature is the emphasis on the
design parameters: constraint active search values sample
diversity in the satisfactory region.

We propose a new search policy, expected coverage im-
provement, designed to efficiently improve the coverage
of sampled designs over the satisfactory region; theoretical
properties of this strategy include a constant approximation
ratio to the optimal sample diversity. We define and study
several performance criteria when judging the performance
of proposed algorithms in multiobjective settings, and we
explain the implications of prioritizing each. Using these
criteria, we compare our new policy against existing strate-
gies such as Bayesian optimization, level set estimation, and
active search on synthetic and real world problems.

There are many open problems in the topic of constraint
active search for design and simulation; here we prioritize a
few topics for future investigation.

Distinctness/Precision: A key element of ECI (as well as
the active search baseline) is the choice of the resolution
r, through which the design precision is defined. This is
acceptable, but limited: categorical parameters may exist;
different parts of the domain may have different manufac-
turing precision; some parameters may have different levels
of precision than others. Eventually, it would be beneficial
to allow for a more abstract definition of design distinctness
to support more complicated design circumstances.

Unknown precision: In most design/manufacturing set-
tings, the resolution r is known a priori. It is possible,
however, that this will need to be discovered over the course
of the search process (or, maybe, after the search process).
For this situation, our proposed policy would benefit from
an adaptive r definition, which might start at a very large
value e.g., 10% of the maximum distance between points in
the domain, and then scale down as the search progresses.

Parallelism: ECI is limited to the sequential setting; ex-
tending the search policy to the batch setting and finding a
computationally tractable policy is non-trivial.

Judging performance: Some of our proposed performance
criteria are only computable for benchmark problems where
the true satisfactory region can be estimated. In practice,
judging the results of a search algorithm is less straight-
forward. We believe creating more practical performance
criteria can accelerate our understanding of this problem.
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2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning
Research, pp. 4788–4796. PMLR, 2018.

Tanabe, R. and Ishibuchi, H. An easy-to-use real-world
multi-objective optimization problem suite. Applied Soft
Computing, 89:106078, 2020. ISSN 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2020.106078.

Wang, Z., Garrett, C. R., Kaelbling, L. P., and Lozano-Perez,
T. Active model learning and diverse action sampling for
task and motion planning. In International Conference
on Intelligent Robots and Systems (IROS), 2018.

Zanette, A., Zhang, J., and Kochenderfer, M. J. Robust
super-level set estimation using Gaussian processes. In
Berlingerio, M., Bonchi, Francescoand Gärtner, T., Hur-
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