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Abstract
Stochastic gradient algorithms are often unsta-
ble when applied to functions that do not have
Lipschitz-continuous and/or bounded gradients.
Gradient clipping is a simple and effective tech-
nique to stabilize the training process for prob-
lems that are prone to the exploding gradient
problem. Despite its widespread popularity, the
convergence properties of the gradient clipping
heuristic are poorly understood, especially for
stochastic problems. This paper establishes both
qualitative and quantitative convergence results
of the clipped stochastic (sub)gradient method
(SGD) for non-smooth convex functions with
rapidly growing subgradients. Our analyses show
that clipping enhances the stability of SGD and
that the clipped SGD algorithm enjoys finite con-
vergence rates in many cases. We also study the
convergence of a clipped method with momen-
tum, which includes clipped SGD as a special
case, for weakly convex problems under standard
assumptions. With a novel Lyapunov analysis,
we show that the proposed method achieves the
best-known rate for the considered class of prob-
lems, demonstrating the effectiveness of clipped
methods also in this regime. Numerical results
confirm our theoretical developments.

1. Introduction
We study stochastic optimization problems on the form

minimize
x∈Rn

f(x) := EP [f(x;S)] =

∫
S
f(x; s)dP (s), (1)

where S ∼ P is a random variable; f(x; s) is the instanta-
neous loss parameterized by x on a sample s ∈ S. Such
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problems are at the core of many machine-learning appli-
cations, and are often solved using stochastic (sub)gradient
methods. In spite of their successes, stochastic gradient
methods can be sensitive to their parameters (Nemirovski
et al., 2009; Asi & Duchi, 2019a) and have severe instabil-
ity (unboundedness) problems when applied to functions
that grow faster than quadratically in the decision vector x
(Andradöttir, 1996; Asi & Duchi, 2019a). Consequently, a
careful (and sometimes time-consuming) parameter tuning
is often required for these methods to perform well in prac-
tice. Even so, a good parameter selection is not sufficient to
circumvent the instability issue on steep functions.

Gradient clipping and the closely related gradient normal-
ization technique are simple modifications to the underlying
algorithm to control the step length that an update can make
relative to the current iterate. These techniques enhance
the stability of the optimization process, while adding es-
sentially no extra cost to the original update. As a result,
gradient clipping has been a common choice in many ap-
plied domains of machine learning (Pascanu et al., 2013).

In this work, we consider gradient clipping applied to the
classical SGD method. Throughout the paper, we frequently
use the following clipping operator

clipγ : Rn → Rn : x 7→ min

{
1,

γ

‖x‖2

}
x,

which is nothing else but the orthogonal projection onto the
γ-ball. It is important to note that for noiseless gradients,
clipping just changes the magnitude and does not effect the
search direction. However, in the stochastic setting, the
expected value of the clipped stochastic gradient may point
in a completely different direction than the true gradient.

Clipped SGD To solve problem (1), we use an iterative
procedure that starts from x0 ∈ Rn and g0 ∈ ∂f(x0, S0)
and generates a sequence of points xk ∈ Rn by repeating
the following steps for k = 0, 1, 2, . . .:

xk+1 = xk − αkdk, dk = clipγk (gk) . (2)

We refer to αk as the kth stepsize and γk as the kth clipping
threshold, while gk = f ′(xk, Sk) is the kth stochastic sub-
gradient or its mini-batch version, gk= 1

mk

∑mk
i=1 f

′(xk, Sik)
if multiple samples are used in each iteration.
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1.1. Related work

Our work is closely related to a number of topics which we
briefly review below.

Gradient clipping Gradient clipping and normalization
were recognized early in the development of subgradient
methods as a useful tool to obtain convergence for rapidly
growing convex functions (Shor, 1985; Ermoliev, 1988;
Alber et al., 1998). For the normalized method, the sem-
inal work (Shor, 1985) establishes a convergence rate for
the quantity 〈gk/ ‖gk‖2 , xk − x?〉 without any assumptions
on gk. By only requiring that subgradients are bounded
on bounded sets, which always holds for continuous func-
tions, Alber et al. (1998) prove convergence in the objec-
tive value for the clipped subgradient method. The work
(Hazan et al., 2015) considers normalized gradient methods
for quasi-convex and locally smooth functions. Recently,
the authors in (Zhang et al., 2019; 2020) analyze clipped
methods for twice-differentiable functions satisfying a more
relaxed condition than the traditional L-smoothness. How-
ever, much less is known in the stochastic setting. The work
(Andradöttir, 1996) proposes a method that uses two inde-
pendent samples in each iteration and proves its almost sure
convergence under the same growth condition used in (Alber
et al., 1998). Hazan et al. (2015) establish certain complex-
ity results for a mini-batch stochastic normalized gradient
method under some strong assumptions on the closeness
of all the generated iterates to the optimal solution and the
boundedness of all the individual mini-batch functions. In
(Zhang et al., 2019; 2020), stochastic clipped SGD methods
are analyzed under the assumption that the noise in the gra-
dient estimate is bounded for every x almost surely. Such
assumption does not hold even for Gaussian noise in the
gradients. Finally, we refer to (Cutkosky & Mehta, 2020;
Curtis et al., 2019; Gorbunov et al., 2020) for recent theoret-
ical developments for clipped and normalized methods on
standard L-smooth problems.

Robustness and stability The problems of robustness
and stability in stochastic optimization have been empha-
sized in many studies (see, e.g., (Nemirovski et al., 2009;
Andradöttir, 1996; Asi & Duchi, 2019a;b) and references
therein). Much recent work on this topic concentrates
around model-based algorithms that attempt to construct
more accurate models of the objective than the linear one
provided by the stochastic subgradient. When such mod-
els can be obtained and the resulting update steps can be
performed efficiently, these methods often possess good
stability properties and can be less sensitive to parameter se-
lection than traditional stochastic subgradient methods. For
example, the work (Asi & Duchi, 2019a) establishes almost
sure convergence of stochastic (approximate) proximal point
methods under the arbitrary growth condition used in (Alber

et al., 1998; Andradöttir, 1996) and discussed above. In (Asi
& Duchi, 2019b), almost sure convergence of the so-called
truncated method is proven for convex functions that can
grow polynomially from the the set of solutions.

Weakly convex minimization The class of weakly con-
vex functions is broad, allowing for both non-smooth and
non-convex objectives, and has favorable structures for
algorithmic foundations and complexity theory. Earlier
works on weakly convex minimization (Nurminskii, 1973;
Ruszczyński, 1987; Ermol’ev & Norkin, 1998) establish
qualitative convergence results for subgradient-based meth-
ods. With the recent advances in statistical learning and
signal processing, there has been an emerging line of work
on this topic (see, e.g., (Duchi & Ruan, 2018; Davis & Grim-
mer, 2019; Davis & Drusvyatskiy, 2019)). Convergence
properties have been analyzed for many popular stochastic
algorithms such as: model-based methods (Davis & Drusvy-
atskiy, 2019; Duchi & Ruan, 2018; Asi & Duchi, 2019b);
momentum extensions (Mai & Johansson, 2020); adaptive
methods (Alacaoglu et al., 2020); and more.

1.2. Contributions

The performance of stochastic (sub)gradient methods de-
pends heavily on how rapidly the underlying function is
allowed to grow. Much convergence theory for these meth-
ods hinges on the L-smoothness assumption for differen-
tiable functions or uniformly bounded subgradients for non-
smooth ones. These conditions restrict the corresponding
convergence rates to functions with at most quadratic and
linear growth, respectively. Beyond these well-behaved
classes, there is abundant evidence that SGD and its rela-
tives may fail to converge. It is our goal in this work to show,
both theoretically and empirically, that the addition of the
clipping step greatly improves the convergence properties
of SGD. To that end, we make the following contributions:

• We establish stability and convergence guarantees for
clipped SGD on convex problems with arbitrary growth
(exponential, super-exponential, etc.) of the subgradi-
ents. We show that clipping coupled with standard mini-
batching suffices to guarantee almost sure convergence.
Even more, a finite convergence rate can also be obtained
in this setting.

• We then turn to convex functions with polynomial growth
and show that without the need for mini-batching, clipped
SGD can essentially achieve the same optimal conver-
gence rate as for stochastic strongly convex and Lipschitz
continuous functions.

• We consider a momentum extension of clipped SGD for
weakly convex minimization under standard growth con-
ditions. With a carefully constructed Lyapunov function,
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we are able to overcome the bias introduced by the clip-
ping step and preserve the best-known sample complexity
for this function class.

Our experiments on phase retrieval, absolute linear regres-
sion, and classification with neural networks reaffirm our
theoretical findings that gradient clipping can: i) stabilize
and guarantee convergence for problems with rapidly grow-
ing gradients; ii) retain and sometimes improve the best
performance of their unclipped counterparts even on stan-
dard problems. We note also that none of the convergence
results in this work require hard-to-estimate parameters to
set the clipping threshold.

Notation For any x, y ∈ Rn, we denote by 〈x, y〉 the
Euclidean inner product of x and y. We denote by ∂f(x)
the Fréchet subdifferential of f at x; f ′(x) denotes any
element of ∂f(x). The `2-norm is denoted by ‖·‖2. For a
closed and convex setX , the distance and the projection map
are given respectively by: dist(x,X ) = minz∈X ‖z − x‖2
and ΠX (x) = argminz∈X ‖z − x‖2. 1 {E} denotes the
indicator function of an event E; i.e., 1 {E} = 1 if E
is true and 0 otherwise. The closed `2-ball centered at
x with radius r > 0 is denoted B(x, r). We denote by
Fk := σ(S0, . . . , Sk−1) the σ-field formed by the first k
random variables S0, . . . , Sk−1, so that xk ∈ Fk. Finally,
we will impose the following basic assumption throughout
the paper.

Assumption A1. Let S be a sample drawn from P and
f ′(x, S) ∈ ∂f(x, S), we have: E [f ′(x, S)] ∈ ∂f(x).

2. Stability and its consequences for convex
minimization

In this section, we study the stability of the clipped SGD
algorithm and its consequence for the minimization of (pos-
sibly non-smooth) convex functions. We first specify the
assumptions needed for the results in this section starting
with the basic quadratic growth condition.

Assumption A2 (Quadratic growth). There exists a scalar
µ > 0 such that

f(x)− f(x?) ≥ µdist (x,X ?)2
, ∀x ∈ dom(f).

Assumption A2 gives a lower bound on the speed at which
the objective f grows away from the solution set X ?. Since
we are interested in problems that may exhibit exploding
subgradients, this growth condition is a rather natural as-
sumption. Note also that in many machine learning appli-
cations, the addition of a quadratic regularization term to
improve generalization results in problems which funda-
mentally have quadratic growth.

Assumption A3 (Finite variance). There exists a scalar
σ > 0 such that:

E
[
‖f ′(x, S)− f ′(x)‖22

]
≤ σ2, ∀x ∈ dom(f),

where f ′(x) = E [f ′(x, S)] ∈ ∂f(x).

Finally, unless otherwise stated, we assume that the stepsizes
αk are square summable but not summable:

αk ≥ 0,

∞∑
i=0

αk =∞, and
∞∑
i=0

α2
k <∞.

Before detailing the stability and convergence analyses of
clipped SGD, Example 1 shows that even with stepsizes that
are as small as O(1/k), the vanilla SGD method may fail
miserably when applied to a function satisfying Assump-
tions A2–A3. We refer to (Asi & Duchi, 2019a) for more
examples of the potential instability of SGD.

Example 1 (Super-Exponential Divergence of SGD): Let
f(x) = x4/4 + εx2/2 with ε > 0 and consider the SGD
algorithm applied to f with the stepsizes αk = α1/k:

xk+1 = xk −
α1

k

(
x3
k + εxk

)
.

Then, if we let x1 ≥
√

3/α1, it holds for any k ≥ 1 that
|xk| ≥ |x1| k!. 3

Despite its simplicity, the example highlights that moving
beyond standard (upper) quadratic models, SGD may fail
to guarantee any convergence. Our goal in this section is
to: (i) show that with a simple clipping step added to SGD,
the resulting algorithm becomes much more stable; and (ii)
to prove strong convergence guarantees for clipped SGD in
new settings. Next, we state the first of these results:

Proposition 1 (Stability). Let Assumptions A1, A2, and
A3 hold. Let γk ≤ γ/

√
αk for some γ > 0. Let C =

σ2/(2µ) + γ2, then, the iterates generated by the clipped
SGD method satisfy

E
[
dist (xk,X ?)2

]
≤ dist (x0,X ?)2

+ C

k−1∑
i=0

αi. (3)

Some remarks on Proposition 1 are in order. First, unlike
SGD, where the distance to the optimal set may grow super-
exponentially, the clipped version will not diverge faster
than the sum of the used stepsizes. For example, with the
stepsizes O(1/k) in Example 1, the sum is only of order
log(k). Such a guarantee will play a critical role in establish-
ing all the convergence results in the subsequent sections.
Second, the proposition is reported for time-varying clip-
ping thresholds to facilitate the proofs of some subsequent
results. We note however that the similar estimate holds for
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the constant scheme with a slightly different scaling con-
stant. Finally, we mention that the bound (3) is similar to the
classical results for the stochastic proximal point iteration
(Ryu & Boyd, 2014, Theorem 6), but slightly weaker than
the best bounds for that algorithm (Asi & Duchi, 2019a,
Corollary 3.1).

2.1. Convergence under arbitrary growth

Having studied the stability of clipped SGD, we now turn to
its consequences for the actual convergence guarantees. We
first remark that on deterministic convex problems, the pro-
cedure (2) is known to be convergent under the very weak
growth condition summarized in Assumption A4 below (Al-
ber et al., 1998). Concretely, the subgradients can grow ar-
bitrarily (exponentially, super-exponentially, etc.) as long as
they are bounded on bounded sets. However, the situation is
less clear as stochastic noise enters the problem. Under A4,
similar convergence results have only been established for
the stochastic proximal point method (Asi & Duchi, 2019a)
and a scaled stochastic approximation algorithm proposed
in (Andradöttir, 1996). Note that the former algorithm relies
heavily on the ability to accurately model the objective and
efficiently solve the resulting minimization problem in each
iteration, while the later one needs two independent search
directions to construct its upates. Theorem 1 below demon-
strates that gradient clipping coupled with mini-batching
can also provide such a strong qualitative guarantee.

Assumption A4. There exits an increasing function Gbig :
R+ → [0,∞) such that

E
[
‖f ′(x, S)‖22

]
≤ Gbig(dist (x,X ?)), ∀x ∈ dom(f).

Theorem 1. Let Assumptions A1, A2, and A3 hold. Let
γk = γ for all k. Consider for each k a batch of sam-
ples S1:mk

k and let xk be generated by the clipped SGD
method with gk = 1

mk

∑mk
i=1 f

′(x, Sik). Define %k =

min {1, γ/ ‖gk‖2} and ek = dist (xk,X ?), then

E
[
e2
k+1

∣∣Fk] ≤ (1− µαkE [%k∣∣Fk]) e2
k +

σ2αk
µmk

+ α2
kγ

2.

Suppose further that
∑∞
k=0 αk/mk < ∞, then under As-

sumption A4, we have dist (xk,X ?)
a.s.−→ 0.

Theorem 1 highlights the importance of the clipping step
as no amount of samples in a batch can save SGD from
divergence in this setting. In particular, it implies that
clipped SGD converges for any growth function provided
that sufficiently accurate estimates of the subgradients can
be obtained. This is in stark contrast to SGD without clip-
ping, where, as Example 1 shows, the iterates may diverge
even in the noiseless setting when the objective function
grows faster than the quadratic x2. Since the stepsizes are

square summable, taking mk = 1/αk suffices to guarantee∑∞
k=0 αk/mk <∞.

It turns out that clipping can even provide finite convergence
rate in this setting, as stated in the next result.

Theorem 2. Let Assumptions A1, A2, A3, and A4 hold. Let
αk = (k + 1)−τ with τ ∈ (1/2, 1) and let xk be generated
by clipped SGD using batches of mk = 1/αk samples.
Define ek := dist (xk,X ?) and fix a failure probability
δ ∈ (0, 1), then for any ε > 0, there exists a numerical
constant c0 > 0 such that

Pr
(
e2
K ≤ ε

)
≥1− δ −

δ
(
σ2/µ+ γ2

)∑K−1
k=0 α2

k

e2
0

− c0αK
ε

.

Furthermore, if we take αk = α = α0K
−τ with α0 ≤

1/(µ%), where % = γ/(γ + G
1/2
big (dist (x0,X ?) /δ)) and

η =
(
σ2/µ+ γ2

)
/µ%. Then, for K ∈ N+ satisfying

µ%α0K
1−τ ≥ log

(
e2

0K
τ/ηα0

)
, we have

dist (xK ,X ?)2 ≤ 2ηα0

δKτ
,

with probability at least 1− 2δ − δ · (σ2/µ+γ2)α2
0

dist(x0,X?)2K2τ−1 .

The first result in the theorem refines the asymptotic guaran-
tee in Theorem 1 for general time-varying stepsizes and the
second one shows the iteration complexity for a constant
stepsize and fixed mini-batch size. We have the following
remarks: (i) Setting τ close to one in the second claim yields
a bound with a similar order-dependence on K and δ as for
strongly convex and Lipschitz continuous f (Lan, 2020,
eq. (4.2.61)). Note that the last term in the last probability
bound is negligible for large K; (ii) The proof of the theo-
rem is motivated by a technique developed in (Davis et al.,
2019, Lemma 3.3) to bound the escape probability of their
algorithm’s iterates.

2.2. Convergence under polynomial growth

For the final set of theoretical results of the section, we con-
sider a more specific function class for which we derive the
convergence rate of clipped SGD without the need for mini-
batching. In particular, we impose the following conditions
on the stochastic subgradients.

Assumption A5. There exist real numbers L0, L1, σ ≥ 0
and 2 ≤ p <∞ such that for all x ∈ dom(f):

E
[
‖f ′(x, S)‖22

]
≤ L0 + L1 dist (x,X ?)2(p−1)

,

E
[
‖f ′(x, S)− f ′(x)‖2(p−1)

2

]
≤ σp,

where f ′(x) = E [f ′(x, S)] ∈ ∂f(x).

Note that when p = 2, we have the standard (upper)
quadratic growth model (Polyak & Juditsky, 1992). For
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general values of p, Assumption A5 implies that

‖f ′(x)‖22 ≤ E
[
‖f ′(x, S)‖22

]
≤ L0 + L1 dist (x,X ?)2(p−1)

which, since f is assumed to be convex, guarantees that

f(x)− f(x?) ≤
√
L0 dist (x,X ?) +

√
L1 dist (x,X ?)p .

We thus allow the function f to grow polynomially from the
set of optimal solutions. For example, f(x) = x4/4+εx2/2
satisfies the assumption withL0 = L1 = 2(1+ε) and p = 4.
The second condition in A5 requires that the 2(p− 1)th cen-
tral moment is bounded, which amounts to finite variance
when p = 2. We mention that a closely related assumption
has been used in (Asi & Duchi, 2019b, Assumption A3) to
analyze a method analogous to the classical Polyak subgradi-
ent algorithm. The only difference is in the second condition,
where they require bounded variation of a quantity involving
the objectives instead of the subgradients. This is because
f(x, S) and f(x?) are used to construct their updates.

The next lemma explicitly bounds the expected norm of the
subgradients and the distance between the iterates and the
set of optimal solutions. The proof of this lemma follows
the same arguments in (Asi & Duchi, 2019b, Lemma B2)
and is reported in Appendix E for completeness.

Lemma 2.1. Let Assumptions A1, A2, and A5 hold. Let
xk be generated by clipped SGD using αk = α0(k + 1)−τ

with τ ∈ (1/2, 1), then there exist positive real constants
D0, D1, G0, G1 (independent of k) such that

E
[
‖f ′(xk, S)‖22

]
≤ G0 +G1k

(p−1)(1−τ),

E
[
dist (xk,X ?)4(p−1)

]
≤ D0 +D1k

2(p−1)(1−τ).

More specifically, if we define for q ≥ 2 the quantities:

P0(q) := 2
q
2 dist(x0,X ?)q and

P1(q) :=
(

(2γ)q + µ−
q
2 σ

q
4 +1
)( 2α0

1− τ

) q
2

,

then G0, G1, D0, D1 are given explicitly by

G0 = L0 + L1P0(2(p− 1)), G1 = L1P1(2(p− 1)),
D0 = P0(4(p− 1)), D1 = P1(4(p− 1)).

The lemma reveals an attractive property: the subgradients
at the iterates can be made small by setting τ close to one,
no matter the value of p. This brings us to a position close
to where we would have been if we had assumed Lipschitz
continuity of f in the first place. The difference is, however,
that the preceding guarantees hold w.r.t the full expectation
while in the alternative case, one is given a priori an upper-
bound on the quantity E[‖f ′(xk, S)‖22

∣∣Fk]. We can now
state the main result of this subsection.

Theorem 3. Let Assumptions A1, A2, and A5 hold. Let
xk be generated by clipped SGD using αk = α0(k + 1)−τ

with τ ∈ (1/2, 1) and γk = γ/
√
αk, then there exists a

numerical constant C such that

E
[
dist (xk+1,X ?)2

]
≤
(

1− µα0

(k + 1)τ

)
E
[
dist (xk,X ?)2

]
+

C

(k + 1)2(1−p(1−τ))
.

Furthermore, we we take τ = 1− ε for some ε > 0, then

E
[
dist (xk,X ?)2

]
≤ C

µα0

1

k1+ε(1−2p)
+ o

(
1

k1+ε(1−2p)

)
.

Some remarks on Theorem 3 are in order:

(i) The numerical constant C can be computed as

C = (2γ2/µ)(L2
0 + L2

1(D0 +D1)) +G0 +G1,

where D0, D1, G0, and G1 are given in Lemma 2.1.
If f is Lipschitz continuous (L1 = 0), then C re-
duces to C = (2γ2/µ)L2

0 + L0. Thus, by setting
γ = O(

√
µ/L0) so that C = O(L0), we recover

the similar order-dependence on L0 as in the standard
bound for unclipped SGD (Lan, 2020).

(ii) Despite the polynomial growth condition, the first
bound in the theorem is quite close to the classical
estimate for SGD (τ = 1), when applied to Lipschitz
continuous f using the small stepsize O(1/k) (Lan,
2020; Beck, 2017; Nemirovski et al., 2009). Note also
that our guarantee is valid for a wide range of large
stepsizes αk = O(k−τ ) with τ ∈ (1/2, 1), which are
more robust than the classical O(1/k) (Nemirovski
et al., 2009).

(iii) The convergence result follows from a direct applica-
tion of Chung’s lemma (Chung, 1954, Lemma 4) to
the first inequality in Theorem 3. The little o term in
the estimate vanishes exponentially fast with the sum
of the used stepsizes in the manner of (Chung, 1954, p.
467) (see also (Bach & Moulines, 2011)). Since we are
free to pick ε > 0, we can, in principle, guarantee a rate
that is arbitrarily close to O(1/k). Recall that O(1/k)
is also the optimal convergence rate for (stochastic)
strongly convex and Lipschitz continuous functions
(two contradicting conditions) (Nemirovski et al., 2009,
Section 2.1). Hence, gradient clipping is able to es-
sentially preserve the optimal rate of SGD while also
supporting a broad class of functions on which SGD
and its relatives would diverge super-exponentially.
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3. Non-asymptotic convergence for weakly
convex functions

The previous section demonstrates that gradient clipping
can greatly improve the performance of SGD when applied
to convex functions with rapidly growing subgradients. We
now turn to non-asymptotic convergence analysis of clipped
methods under standard growth conditions, but for a much
wider class of weakly convex functions. Our goal is to
show that the sample complexity of the clipped methods
matches the best-known result for weakly convex problems,
emphasizing the effectiveness of gradient clipping for a
wide range of problem classes.

Recall that that f : Rn → R ∪ {+∞} is called ρ-weakly
convex if f + ρ

2 ‖·‖
2
2 is convex. Such functions satisfy the

following inequality for any x, y ∈ Rn with g ∈ ∂f(x):

f(y) ≥ f(x) + 〈g, y − x〉 − (ρ/2) ‖y − x‖22 .

Weakly convex optimization problems arise naturally in ap-
plications described by compositions of the form f(x) =
h(c(x)), where h : Rm → R is convex and Lh-Lipschitz
and c : Rn → Rm is a smooth map with Lc-Lipschitz
Jacobian. Note also that all convex functions and all differ-
entiable functions with Lipschitz continuous gradient are
weakly convex. We refer to (Duchi & Ruan, 2018; Davis &
Drusvyatskiy, 2019; Asi & Duchi, 2019a; Mai & Johansson,
2020) for practical applications as well as recent theoretical
and algorithmic developments for this function class.

Algorithm We consider the following momentum extension
of clipped SGD:

xk+1 = xk − αkdk (4a)
dk+1 = clipγ ((1− βk)dk + βkgk+1) . (4b)

Here, gk+1 = f ′(xk+1, Sk+1), αk > 0 is the stepsize,
βk ∈ (0, 1] is the momentum parameter, and γ > 0 is
the clipping threshold. The algorithm is initialized from
x0 ∈ Rn and d0 = clipγ (g0) with g0 ∈ ∂f(x0, S0), and
generates the sequences xk ∈ Rn (iterates) and dk ∈ Rn
(search directions). This algorithm goes back to at least
(Gupal & Bazhenov, 1972), and in the sequel, we term
procedure (4) as clipped stochastic heavy ball (SHB).

Next we state the standing assumption in this section.
Assumption A6. There exists a positive real constant L
such that E

[
‖f ′(x, S)‖22

]
≤ L2, ∀x ∈ dom(f).

This is a very basic assumption for non-smooth optimization
(Nemirovski et al., 2009; Davis & Drusvyatskiy, 2019).

As the function f is neither smooth nor convex, even measur-
ing the progress to a stationary point for f is a challenging
task. A common practice is then to use the norm of the gra-
dient of the Moreau envelope as a proxy for near-stationarity

(Davis & Drusvyatskiy, 2019). This is possible since weakly
convex functions admit an implicit smooth approximation
through the classical Moreau envelope:

fλ(x) = inf
y∈Rn

{
f(y) + 1/(2λ) ‖x− y‖22

}
. (5)

For λ < ρ−1, the point achieving fλ(x) in (5), denoted by
proxλf (x), is unique and given by:

proxλf (x) = argmin
y∈Rn

{
f(y) + 1/(2λ) ‖x− y‖22

}
. (6)

With these definitions, for any x ∈ Rn, the point x̂ =
proxλf (x) satisfies:{

‖x− x̂‖2 = λ ‖∇fλ(x)‖2 ,
dist(0, ∂f(x̂)) ≤ ‖∇fλ(x)‖2 .

(7)

Thus, a small gradient ‖∇fλ(x)‖2 implies that x is close to
a point x̂ that is near-stationary for f .

As for most convergence analyses of subgradient-based
methods, we aim to establish the following per-iterate esti-
mate (see, e.g., (Nemirovski et al., 2009; Davis & Drusvy-
atskiy, 2019; Ghadimi & Lan, 2013)):

E[Vk+1] ≤ E[Vk]− c0αk E[ek] + c1α
2
k. (8)

Here ek is some stationarity measure, Vk is a Lyapunov
function, αk is the stepsize, and c0, c1 are some real con-
stants. As discussed above, for minimization of weakly
convex functions it is natural to consider ek = ‖∇fλ(xk)‖2.
It now remains to find an appropriate Lyapunov function
Vk. To build up our Vk, we will go through a number of
supporting lemmas. We begin with the one that concerns
the search direction dk.

Lemma 3.1. Let Assumptions A1 and A6 hold. Let βk =
ναk for some constant ν > 0 such that βk ∈ (0, 1]. Let xk
be generated by the clipped SHB method, then

f(xk)+E
[
1−βk

2ν
‖dk‖22

∣∣∣∣Fk]≤f(xk−1)+
1−βk−1

2ν
‖dk−1‖22

− αk E
[
‖dk‖22

∣∣Fk]+
α2
k−1

2

(
νL2

1− β0
+ ργ2

)
. (9)

It is interesting to note that, despite the bias introduced by
the clipping operator, the estimate in (9) is equivalent to that
of in (Mai & Johansson, 2020, Lemma 3.1). Moreover, our
new proof is arguably simpler, more intuitive and applicable
to both constant and time-varying parameters.

The next lemma brings the gradient of the Moreau envelope
to the stage.
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Lemma 3.2. Let Assumptions A1 and A6 hold. Let βk =
ναk for some constant ν > 0 such that βk ∈ (0, 1]. Let xk
be generated by clipped SHB with γ ≥ 2L and define

Wk =
1

2ν
‖dk −∇fλ(xk)‖22 −

1

2ν
‖∇fλ(xk)‖22 + f(xk).

Let C = νL2 + ργ2/2, then for any k ∈ N, we have

E
[
Wk

∣∣Fk] ≤Wk−1−αk−1E
[
〈gk,∇fλ(xk)〉

∣∣Fk]
+αk−1 〈dk−1,∇fλ(xk−1)〉+αk−1

λν
‖dk−1‖22+Cα2

k−1.

(10)

To motivate the introduction of Wk, we take a step back and
consider the problem where f is assumed to be L-smooth
and no gradient clipping is applied. In this case, proce-
dure (4) is identical to the algorithm which was analyzed in
(Ruszczynski & Syski, 1983) using a Lyapunov function on
the form

Vk = νf(xk) +
1

2
‖dk −∇f(xk)‖22 +

1

2
‖dk‖22 .

The key insight here is to view the sequence of directions dk
as estimates of the true gradients ∇f(xk). With reasonable
assumptions, the term E[‖dk −∇f(xk)‖22] can indeed be
driven to zero (Ruszczynski & Syski, 1983, Theorem 1).
Since our f is non-smooth, is not immediately applicable to
our problem. Nevertheless, we observe that it is useful to
view dk as an estimate of the gradient of the Moreau enve-
lope. This is the reason why ‖dk −∇fλ(xk)‖22 appears in
Wk, while the other terms arise from the algebraic manip-
ulations to satisfy (10). Finally, due to the presence of the
clipping step, some extra care is needed to make the intuition
work. In particular, since the dk’s always belong to B(0, γ),
we cannot expect that they approximate the ∇fλ(xk) un-
less these also belong to the γ-ball. It turns out that setting
γ ≥ 2L suffices to ensure that∇fλ(xk) ∈ B(0, γ).

We now have all the ingredients needed to construct the
ultimate Lyapunov function:

Lemma 3.3. Assume the same setting of Lemma 3.2. Let
λ > 0 be such that λ−1 ≥ 2ρ and consider the function:

Vk = fλ(xk) +Wk +
f(xk)

λν
+

(
1− βk
2λν2

+
αk
λν

)
‖dk‖22 .

Then, for any k ∈ N+,

E [Vk|Fk] ≤ Vk−1 −
αk−1

2
‖∇fλ(xk)‖22 + Cα2

k−1, (11)

whereC=λ−1γ2(1+ρ/(2ν))+νL2(1+1/(2λν(1−β0))).

Finally, the following complexity result follows by a stan-
dard argument from (11).

Theorem 4. Let Assumptions A1 and A6 hold. Let k∗ be
sampled randomly from {0, . . . ,K − 1} with Pr(k∗ = k +

1) = αk/
∑K−1
i=0 αi. Let ∆ = f(x0)− infx f(x) and let C

be given in (11). Then, under the same setting of Lemma 3.3,
we have

E
[
‖∇Fλ(xk∗)‖22

]
≤ 2 ·

ξ∆ + 2L2/ν + C
∑K−1
i=0 α2

i∑K−1
i=0 αi

,

where ξ = 2+1/(λν). Furthermore, if we set α = α0/
√
K

and ν = 1/α0 for some real α0 > 0

E
[∥∥∇F1/(2ρ)(xk∗)

∥∥2

2

]
≤ 2 · ξ∆ + 2L2/ν + Cα2

0

α0

√
K

.

Finally, if α0 is set to 1/ρ and K ≥ 2, we obtain

E
[∥∥∇f1/(2ρ)(xk∗)

∥∥2

2

]
≤ 6 · ρ∆+γ2

√
K

.

The rate achieved by the clipped SHB is of the same or-
der as the best-known result for weakly convex stochastic
problems (Davis & Drusvyatskiy, 2019, Theorem 1). By
inspection, all the proofs and convergence results in this
section can also be extended (often with significant simplifi-
cations) to the case of clipped SGD. The choice ν = 1/α0

is just for simplicity; we can choose any value of ν as long
as βk = ναk ∈ (0, 1]. Since βk = ναk = O(1/

√
k), one

can put much more weight on the momentum term than
on the fresh subgradient in the search directions dk. As
both αk and βk have the same scale, the algorithm can be
seen as a single time-scale method (Ghadimi et al., 2020;
Ruszczynski & Syski, 1983).

4. Experimental results
For the first two problems, we set up our experiments as
follows. We fix m = 500, n = 50 and generate A ∈ Rm×n
as A = QD, where Q is a matrix with standard normal
distributed entries, and D is a diagonal matrix with linearly
spaced elements between 1/κ and 1. Here, κ ≥ 1 repre-
sents a condition number which we set to κ = 10 in all
experiments. The algorithms are all randomly initialized at
x0 ∼ N (0, 1) and we use the stepsize αk = α0(k+1)−1/2,
where α0 is an initial stepsize. We also refer to m stochastic
iterations as one epoch (pass over the data). Within each in-
dividual run, we set the maximum number of epochs to 500.
Each plot reports the results of 30 experiments, visualized as
the median of the quantity of interest and the corresponding
90% confidence interval. Finally, the so-called epoch-to-
ε-accuracy is defined as the smallest number of epochs q
needed to reach f(xm·q)− f(x?) ≤ ε.

4.1. Phase retrieval

Given m measurements (ai, bi) ∈ Rn × R, the (ro-
bust) phase retrieval problem seeks a vector x? such that
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(c) 1− β = 0.99, ε = 0.25

Figure 1. The number of epochs to achieve ε-accuracy versus initial stepsize α0 for phase retrieval with γ = 10.
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(d) α0 = 1.0

Figure 2. The function gap f(xk)− f(x?) versus iteration count for phase retrieval with γ = 10.

〈ai, x?〉2 ≈ bi for most measurements i = 1, . . . ,m by
solving

minimize
x∈Rn

1

m

m∑
i=1

∣∣〈ai, x〉2 − bi∣∣.
As for the vector b, in each problem instance, we select x?

uniformly from the unit sphere and construct its elements bi
as bi = 〈ai, x?〉2 +δζi, i = 1, . . . ,m, where ζi ∼ N (0, 25)
models corrupted measurements, and δ ∈ {0, 1} is a binary
random variable taking the value 1 with probability pfail =
0.1, so that pfail ·m measurements are noisy.

Figure 1 shows the improved robustness provided by gra-
dient clipping for the SGD and SHB algorithms. These
clipped methods achieve good accuracies (within the al-
lowed number of epochs) for much wider ranges of initial
stepsizes than their unclipped versions. To further elabo-
rate on this, Figure 2 depicts the actual performance for 4
consecutive stepsizes (out of 15) used to produce Figure 1.
We can see that these clipped methods always remain stable,
while (started from the same initial point) SGD and SHB
exhibit the problem of unboundedness when moving beyond
their narrow ranges of working parameters.

4.2. Absolute linear regression

We consider mean absolute error f(x) = 1
m ‖Ax− b‖1.

For each problem instance, we generate b = Ax? + σw
for w ∼ N (0, 1) and σ = 0.01. The problem is well-
behaved as f is both convex and Lipschitz continuous; we
did not observe instability of SGD and SHB. Figure 3 shows

that gradient clipping does not harm and sometimes can
significantly boost the performance of their unclipped coun-
terparts. We can see that although all methods converge
with a similar slope, clipped methods may achieve better
final accuracies. One possible explanation for this result
would be the connection between the used stepsizes and the
final error of the (stochastic) subgradient method; we have
E[f(x̄k)] − f(x?) ≤ O(αk) for αk = O(1/

√
k) (Boyd

et al., 2003; Duchi, 2018). With clipping, using a smaller
γ (if permitted) might have some effect on reducing the
effective stepsizes αk min{1, γ/ ‖gk‖2}, thereby yielding
smaller errors.

4.3. Neural Networks

For our last set of experiments, we consider the image clas-
sification task on the CIFAR10 dataset (Krizhevsky et al.,
2009) with the ResNet-18 architecture (He et al., 2016).
Here, we also compare the previous methods with the Adam
algorithm using its default parameters in PyTorch; β1 = 0.9,
β2 = 0.99, and ε = 10−8.1 Following common practice,
we use mini-batch size 128, momentum parameter β = 0.9,
and weight-decay coefficient 5× 10−4 in all experiments.
For each algorithm, we conduct 5 experiments (up to 200
epochs) and report the medians of the training loss and test
accuracy together with the 90% confidence intervals. For
the stepsizes, we use constant values starting with α0 and
reduce them by a factor of 10 every 50 epochs. The initial
stepsizes α0 for Adam are scaled by 1/100 in actual runs

1https://pytorch.org

https://pytorch.org
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Figure 3. The function gap f(xk)− f(x?) versus iteration count for absolute linear regression with α0 = 5 and 1− β = 0.9.
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Figure 4. The number of epochs to achieve ε training loss and test error versus initial stepsize α0 for CIFAR10 with γ = 10.
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Figure 5. The best achievable accuracy versus initial stepsize α0

for CIFAR10 with γ = 10.

(Asi & Duchi, 2019b).

Figure 4 shows the minimum number of epochs required to
reach desired values for various performance measures as a
function of the initial stepsize. As the classification task on
CIFAR10 is a rather well-conditioned problem, the results
tell a very similar story to our absolute linear regression
experiments. We also observe that Adam is more sensitive
to stepsize selection and needs more time to achieve good
test performance in this example. To further clarify this,
Figure 5 shows that over the tested range of stepsizes, Adam
is not able to reach the same best achievable test accuracies
that the other methods do.

In summary, the results in this section reinforce our theoreti-

cal developments that gradient clipping can: i) stabilize and
guarantee convergence for problems with rapidly growing
gradients; ii) retain and sometimes improve the best per-
formance of their unclipped counterparts even on standard
(“easy”) problems.

5. Conclusions
We analyzed clipped subgradient-based methods for solving
stochastic convex and non-convex optimization problems.
Moving beyond traditional quadratic models, we showed
that these methods enjoy strong stability properties and at-
tain classical convergence rates in settings where standard
convergence theory does not apply. With a novel Lyapunov
analysis, we also proved that the sample complexiy of the
methods match the best-known result for weakly convex
problems, emphasizing the effectiveness of gradient clip-
ping on a wide range of problem classes.
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