
Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

A. DREAM Training Details
Algorithm 2 summarizes a practical algorithm for train-
ing DREAM. We parametrize both the exploration and
exploitation policies as recurrent deep dueling double-Q
networks (Wang et al., 2016b; van Hasselt et al., 2016),
with exploration Q-values Q̂

exp(s, ⌧ exp
, a;�) parametrized

by � (and target network parameters �0) and exploitation
Q-values Q̂

task(s, z, a; ✓) parametrized by ✓ (and target net-
work parameters ✓0). We train on trials with one explo-
ration and one exploitation episode, but can test on arbitrar-
ily many exploitation episodes, as the exploitation policy
acts on each episode independently (i.e. it does not main-
tain a hidden state across episodes). Using the choices for
F and q! in Section 4.3, with target parameters 0 and !0

respectively, training proceeds as follows.

We first sample a new problem for the trial and roll-out the
exploration policy, adding the roll-out to a replay buffer
(lines 7-9). Then, we roll-out the exploitation policy, adding
the roll-out to a separate replay buffer (lines 10-12). We
train the exploitation policy on both stochastic encodings
of the problem ID N (f (µ), ⇢2I) and on encodings of the
exploration trajectory g!(⌧ exp).

Next, we sample from the replay buffers and update the
parameters. First, we sample (st, at, st+1, µ, ⌧

exp)-tuples
from the exploration replay buffer and perform a normal
DDQN update on the exploration Q-value parameters �
using rewards computed from the decoder (lines 13-15).
Concretely, we minimize the following standard DDQN
loss function w.r.t., the parameters �, where the rewards are
computed according to Equation 5:

Lexp(�) = E
���Q̂

exp(st, ⌧
exp
:t�1, at;�) � target

���
2

2

�
,

where target = (rexp
t

+ �Q̂
exp(st+1, [⌧

exp
:t�1; at; st], aDDQN;�0),

r
exp
t

=
��f (µ) � g!(⌧ exp

:t)
��2
2
�

��f (µ) � g!(⌧ exp
:t�1)

��2
2

� c,

aDDQN = arg max
a

Q̂
exp(st+1, [⌧

exp
:t�1; at; st];�).

We perform a similar update with the exploitation Q-value
parameters (lines 16–18). We sample (s, a, r, s

0
, µ, ⌧

exp)-
tuples from the exploitation replay buffer and perform
DDQN updates from the encoding of the problem ID and
from the encoding of the exploration trajectory by minimiz-
ing the following losses:

Ltask-id(✓,) = E
���Q̂

task(s, f (µ), a; ✓) � targetid
���
2

2

�
,

where targetid = (r + Q̂
task(s0, f 0(µ), aid; ✓

0),

aid = arg max
a

Q̂
task(s0, f (µ), a; ✓).

Ltask-traj(✓,!) =

E
���Q̂

task(s, g!(⌧ exp), a; ✓) � targettraj

���
2

2

�
,

where targettraj = (r + Q̂
task(s0, g!0(⌧ exp), atraj; ✓

0),

atraj = arg max
a

Q̂
task(s0, g!(⌧ exp), a; ✓),

Finally, from the same exploitation replay buffer samples,
we also update the problem ID embedder to enforce the in-
formation bottleneck (line 19) and the decoder to approxi-
mate the true conditional distribution (line 20) by minimiz-
ing the following losses respectively:

Lbottleneck() = Eµ

h
min (kf (µ)k22 , K)

i

and Ldecoder(!) = E⌧ exp

"
X

t

��f (µ) � g!(⌧ exp
:t)

��2
2

#
.

Since the magnitude kf (µ)k22 partially determines the
scale of the reward, we add a hyperparameter K and only
minimize the magnitude when it is larger than K. Alto-
gether, we minimize the following loss:

L(�, ✓,!,) =Lexp(�) +

Ltask-traj(✓,!) + Ltask-id(✓,) +

Lbottleneck() + Ldecoder(!).

As is standard with deep Q-learning (Mnih et al., 2015),
instead of sampling from the replay buffers and updating
after each episode, we sample and perform all of these
updates every 4 timesteps. We periodically update the target
networks (lines 20-22).

B. Experiment Details
B.1. Problem Details

Distracting bus / map. Riding each of the four colored
buses teleports the agent to near one of the green goal loca-
tions in the corners. In different problems, the destinations
of the colored buses change, but the bus positions and their
destinations are fixed within each problem. Additionally, in
the distracting bus domain, the problem ID also encodes the
destinations of the gray buses, which are permutations of
the four gray locations on the midpoints of the sides. More
precisely, the problem ID µ 2 {0, 1, . . . , 4! ⇥ 4! = 576} en-
codes both the permutation of the colored helpful bus desti-
nations, indexed as µ (mod 4!) and the permutation of the
gray unhelpful bus destinations as

⌅
µ

4!

⇧
. We hold out most

of the problem IDs during meta-training (2324 ⇥ 576 = 552
are held-out for meta-training).

In the map domain, the problem µ is an integer representing
which of the 4! permutations of the four green goal loca-

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Algorithm 2 DREAM DDQN
1: Initialize exploitation replay buffer Btask = {} and exploration replay buffer Bexp = {}
2: Initialize exploitation Q-value Q̂task parameters ✓ and target network parameters ✓0

3: Initialize exploration Q-value Q̂exp parameters � and target network parameters �0

4: Initialize problem ID embedder f parameters and target parameters 0

5: Initialize trajectory embedder g! parameters ! and target parameters !0

6: for trial = 1 to max trials do
7: Sample problem µ ⇠ p(µ), defining MDP hS,A,Rµ, Tµi
8: Roll-out ✏-greedy exploration policy Q̂exp(st, ⌧

exp
:t , at;�), producing trajectory ⌧ exp = (s0, a0, . . . , sT).

9: Add tuples to the exploration replay buffer Bexp = Bexp [{(st, at, st+1, µ, ⌧
exp)}t.

10: Compute embedding z ⇠ N (f (µ), ⇢2I) on trial ⌘ 0 (mod 2) and z = g!(⌧ exp) on trial ⌘ 1 (mod 2).
11: Roll-out ✏-greedy exploitation policy Q̂task(st, z, at; ✓), producing trajectory (s0, a0, r0, . . .) with rt = Rµ(st+1).
12: Add tuples to the exploitation replay buffer Btask = Btask [{(st, at, rt, st+1, µ, ⌧

exp)}t.

13: Sample batches of (st, at, st+1, µ, ⌧
exp) ⇠ Bexp from exploration replay buffer.

14: Compute reward rexp
t = kf (µ) � g!(⌧ exp

:t)k22 �
��f (µ) � g!(⌧ exp

:t�1)
��2

2
� c (Equation 5).

15: Optimize � with DDQN update with tuple (st, at, r
exp
t , st+1) with Lexp(�)

16: Sample batches of (s, a, r, s0, µ, ⌧ exp) ⇠ Btask-id from exploitation replay buffer.
17: Optimize ✓ and with DDQN update with tuple ((s, µ), a, r, (s0, µ)) with Ltask-id(✓,) on trial ⌘ 0 (mod 2).
18: Optimize ✓ and ! with DDQN update with tuple ((s, ⌧ exp), a, r, (s0, ⌧ exp)) with Ltask-traj(✓,!) on trial ⌘ 1 (mod 2).
19: Optimize on Lbottleneck() = r min(kf (µ)k22 ,K)

20: Optimize ! on Ldecoder(!) = r!
P

t kf (µ) � g!(⌧ exp
:t)k22 (Equation 4)

21: if trial ⌘ 0 (mod target freq) then
22: Update target parameters �0 = �, ✓0 = ✓, 0 = , !0 = !
23: end if
24: end for

(a) (b) (c)

agent bus goalmap unhelpful bus stop

Figure 9. Examples of different distracting bus and map problems. (a) An example distracting bus problem. Though all unhelpful
distracting buses are drawn in the same color (gray), the destinations of the gray buses are fixed within a problem. (b) Another example
distracting bus problem. The destinations of the helpful colored buses are a different permutation (the orange and green buses have
swapped locations). This takes on permutation 3 ⌘ µ (mod 4!), instead of 1. The unhelpful gray buses are also a different permutation
(not shown), taking on permutation 5 =

⌅
µ
4!

⇧
. (c) An example map problem. Touching the map reveals the destinations of the colored

buses, by adding µ to the state observation.

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

(a) (b) (c)

fridge (ingredients)agent pot

Figure 10. Three example cooking problems. The contents of the
fridges (color-coded) are different in different problems.

tions the colored buses map to. The states include an extra
dimension, which is set to 0 when the agent is not at the
map, and is set to this integer value µ when the agent is at
the map. Figure 9 displays three such examples.

Cooking. In different problems, the (color-coded) fridges
contain 1 of 4 different ingredients. The ingredients in each
fridge are unknown until the goes to the fridge and uses the
pickup action. Figure 10 displays three example problems.
The problem ID µ is an integer between 0 and 43, where
µ = 42a + 4b + c indicates that the top right fridge has
ingredient a, the middle fridge has ingredient b and the
bottom right fridge has ingredient c.

The goals correspond to a recipe of placing the two correct
ingredients in the pot in the right order. Goals are tuples
(a, b), which indicate placing ingredient a in the pot first,
followed by ingredient b. In a given problem, we only
sample goals involving the recipes actually present in that
problem. During meta-training, we hold out a randomly
selected problem µ = 11.

We use the following reward function Rµ. The agent re-
ceives a per timestep penalty of �0.1 reward and receives
+0.25 reward for completing each of the four steps: (i) pick-
ing up the first ingredient specified by the goal; (ii) placing
the first ingredient in the pot; (iii) picking up the second in-
gredient specified by the goal; and (iv) placing the second
ingredient in the pot. To prevent the agent from gaming the
reward function, e.g., by repeatedly picking up the first in-
gredient, dropping the first ingredient anywhere but in the
pot yields a penalty of �0.25 reward, and similarly for all
steps. To encourage efficient exploration, the agent also re-
ceives a penalty of �0.25 reward for picking up the wrong
ingredient.

Cooking without goals. While we evaluate on goal-
conditioned benchmarks to deepen the exploration chal-
lenge, forcing the agent to discover all the relevant informa-
tion for any potential goal, many standard benchmarks (Finn
et al., 2017; Yu et al., 2019) don’t involve goals. We there-
fore include a variant of the cooking task, where there are no
goals. We simply concatenate the goal (recipe) to the prob-

lem ID µ. Additionally, we modify the rewards so that pick-
ing up the second ingredient yields +0.25 and dropping it
yields �0.25 reward, so that it is possible to infer the recipe
from the rewards. Finally, to make the problem harder, the
agent cannot pick up new ingredients unless its inventory is
empty (by using the drop action), and we also increase the
number of ingredients to 7. The results are in Section B.2.

Sparse-reward 3D visual navigation. We implement
this domain in Gym MiniWorld (Chevalier-Boisvert, 2018),
where the agent’s observations are 80 ⇥ 60 ⇥ 3 RGB ar-
rays. There are three problems µ = 0 (the sign says “blue”),
µ = 1 (the sign says “red”), and µ = 2 (the sign says
“green”). There are two goals, represented as 0 and 1, cor-
responding to picking up the key and the box, respectively.
The reward function Aµ(s, i) is +1 for picking up the cor-
rect colored object (according to µ) and the correct type of
object (according to the goal) and �1 for picking up an ob-
ject of the incorrect color or type. Otherwise, the reward is
0. On each episode, the agent begins at a random location
on the other side of the barrier from the sign.

B.2. Additional Results

Analysis of the learned policies. Please see https://
ezliu.github.io/dream/ for videos and analysis
of the exploration and exploitation behavior learned by
DREAM and other approaches, which is described in the
text below.

Distracting bus / map. Figure 11 shows the exploration
policy DREAM learns on the distracting bus and map do-
mains. With the information bottleneck, DREAM optimally
explores by riding 3 of the 4 colored buses and inferring
the destination of the last colored bus (Figure 9a). Without
the information bottleneck, DREAM explores the unhelpful
gray buses and runs out of time to explore all of the colored
buses, leading to lower reward (Figure 9b). In the map do-
main, DREAM optimally explores by visiting the map and
terminating the exploration episode. In contrast, the other
methods (RL2, IMPORT, VARIBAD) rarely visit the colored
buses or map during exploration and consequently walk to
their destination during exploitation, which requires more
timesteps and therefore receives lower returns.

In Figure 12, we additionally visualize the exploration trajec-
tory encodings g!(⌧ exp) and problem ID encodings f (µ)
that DREAM learns in the distracting bus domain by apply-
ing t-SNE (van der Maaten & Hinton, 2008). We visualize
the encodings of all possible problem IDs as dots. They
naturally cluster into 4! = 24 clusters, where the problems
within each cluster differ only in the destinations of the gray
distracting buses, and not the colored buses. Problems in
the support of the true posterior p(µ | ⌧

exp) are drawn in
green, while problems outside the support (e.g., a problem

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

agent

bus potential goal

map unhelpful bus stop

ride bus action end episode action

position after ride bus action

(a) DREAM (b) DREAM (no information bottleneck) (c) DREAM

1
2

4

568

9

10

73

11

1
2

4

7
5

8

11

3

6

9

1

4

72

3

5 6

Figure 11. Examples of DREAM’s learned exploration behavior. (a) DREAM learns the optimal exploration behavior on the distraction

variant: riding 3 of the 4 helpful colored buses, which allows it to infer the destinations of all colored buses and efficiently reach any
goal during exploitation episodes. (a) Without the information bottleneck, DREAM also explores the unhelpful gray buses, since they
are part of the problem. This wastes exploration steps, and leads to lower returns during exploitation episodes. (c) DREAM learns the
optimal exploration on the map variant: it goes to read the map revealing all the buses’ destinations, and then ends the episode, though it
unnecessarily rides one of the buses.

that specifies that riding the green bus goes to location (0, 1)
when it has already been observed in ⌧ exp that riding the or-
ange bus goes to location (0, 1)) are drawn in red. We also
plot the encoding of the exploration trajectory ⌧ exp so far as
a blue cross and the mean of the green clusters as a black
square. We find that the encoding of the exploration trajec-
tory g!(⌧ exp) tracks the mean of the green clusters until the
end of the exploration episode, when only one cluster re-
mains, and the destinations of all the colored buses has been
discovered. Intuitively, this captures uncertainty in what the
potential problem ID may be. More precisely, when the de-
coder is a Gaussian, placing g!(⌧ exp) at the center of the en-
codings of problems in the support exactly minimizes Equa-
tion 4.

Cooking. Figure 13 shows the exploration policy DREAM
learns on the cooking domain, which visits each of the
fridges and investigates the contents with the "pickup" ac-
tion. In contrast, the other methods rarely visit the fridges
during exploration, and instead determine the locations of
the ingredients during exploitation, which requires more
timesteps and therefore receives lower returns.

Cooking without goals. We provide additional results in
the case where the cooking domain is modified to not in-
clude goals (see Section B.1). The results are summarized
in Figure 14 and show the same trends as the results in orig-

inal cooking benchmark. DREAM learns to optimally ex-
plore by investigating the fridges, and then also optimally
exploits, by directly collecting the relevant ingredients. The
next best approach E-RL2, only sometimes explores the
fridges, again getting stuck in a local optimum, yielding
only slightly higher reward than no exploration at all.

Sparse-reward 3D visual navigation. DREAM optimally
explores by walking around the barrier and reading the
sign. See https://ezliu.github.io/dream/ for
videos. The other methods do not read the sign at all and
therefore cannot solve the problem.

Robustness to imperfections in the problem ID. Recall
that the problem ID is a simple and easy-to-provide unique
one-hot for each problem. We test of DREAM is robust to
imperfections in the problem ID by assigning each problem
in the map benchmark 3 different problem IDs. When a
problem is sampled during meta-training, it is randomly
labeled with 1 of these 3 different problem IDs. We find
that this imperfection in the problem ID does not impact
DREAM’s final performance at all: it still achieves optimal
exploitation returns of 0.8 after 1M time steps of training.

Robustness to hyperparameters. DREAM uses 3 addi-
tional hyperparameters on top of standard RL algorithm
hyperparameters: the information bottleneck weight �, en-

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

ride orange bus ride green busride blue bus

Figure 12. DREAM’s learned encodings of the exploration trajectory and problems visualized with t-SNE (van der Maaten & Hinton, 2008).

3

1 2

5
4

6

pickup action

fridge (ingredients)agent

pot

Figure 13. DREAM learns the optimal exploration policy, which
learns the fridges’ contents by going to each fridge and using the
pickup action.

coder and decoder variance ⇢, and per timestep exploration
penalty c. We test how sensitive DREAM is to these hyperpa-
rameter values by evaluating DREAM with 3 different values
for each of these hyperparameters, while holding the other
hyperparameter values constant, set to the values described
in Section B.4. Specifically, we evaluate the following val-
ues: � = [0.1, 1, 3], ⇢ = [0.01, 0.1, 0.3], c = [0, 0.01, 0.1].
Across all four domains (distracting bus, map, cooking, and
3D visual navigation), DREAM achieves near-optimal re-
turns for all values except � = 3, suggesting that DREAM is
fairly robust to hyperparameter choices.

B.3. Other Approaches and Architecture Details

In this section, we detail the loss functions that E-RL2, IM-
PORT, and VARIBAD optimize, as well as the model ar-
chitectures used in our experiments. Where possible, we

0 250 500 750 1000 1250 1500 1750 2000

Timesteps (1e3)

�2.0

�1.5

�1.0

�0.5

0.0

Cooking (No Goals)

Dream

E-RL2

Import

VariBAD

Pearl-UB

Optimal

No exploration

0.29

0.14

}2x

Figure 14. Cooking without goals results. Only DREAM learns
the optimal policy, achieving ~2x more reward than the next best
approach.

use the same model architecture for all methods: DREAM,
E-RL2, IMPORT, and VARIBAD. All approaches are im-
plemented in PyTorch (Paszke et al., 2017), using a DQN
implementation adapted from Liu et al. (2020b) and code
adapted from Liu et al. (2020a).

State and problem ID embeddings. All approaches use
the same method to embed the state and problem ID. For
these embeddings, we embed each dimension independently
with an embedding matrix of output dimension 32. Then, we
concatenate the per-dimension embeddings and apply two
linear layers with output dimensions 256 and 64 respectively,
with ReLU activations.

In the 3D visual navigation task, we use a different embed-
ding scheme for the states, as they are images. We apply 3
CNN layers, each with 32 output layers and stride length 2,
and with kernel sizes of 5, 5, and 4 respectively. We apply

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

ReLU activations between the CNN layers and apply a final
linear layer to the flattened output of the CNN layers, with
an output dimension of 128.

All state and problem ID embeddings below use this scheme.

Experience embeddings. E-RL2, IMPORT, VARIBAD
and the exploration and exploitation policies in DREAM
also learn an embedding of the history of prior experiences
⌧ = (s0, a0, r0, s1, . . .) and current state sT . To do this, we
first separately embed each (st+1, at, rt, dt)-tuple, where
dt is an episode termination flag (true if the episode ends on
this experience, and false otherwise), as follows:

• Embed the state st as e(st), using the state embedding
scheme described above.

• Embed the action at as e(at) with an embedding matrix
of output dimension 16. We set a�1 to be 0.

• Embed the rewards with a linear layer of output dimen-
sion 16. We set r�1 to be 0.

• Embed the episode termination dt as e(dt) with an
embedding matrix of output dimension 16. Note that d

is true during all episode terminations within a trial for
RL2, IMPORT, and VARIBAD.

Then, we apply a final linear layer with output dimension
64 to the concatenation of the above [e(st); e(at); e(rt); dt].
Finally, to obtain an embedding of the entire history ⌧ , we
embed each experience separately as above, and then pass
an LSTM with hidden dimension 64 over the experience
embeddings, where the initial hidden and cell states are set
to be 0-vectors.

DREAM. For the decoder g!(⌧ exp =
(s0, a0, r0, s1, . . . , sT)), we embed each transition
(st, at, rt, st+1) of the exploration trajectory ⌧ exp using the
same embedding scheme as above, except we also embed
the next state st+1. Then, given embeddings for each transi-
tion, we embed the entire trajectory by passing an LSTM
with output dimension 128 on top of the transition embed-
dings, followed by two linear layers of output dimension
128 and 64 with ReLU activations.

For the exploitation policy Q-values Q̂
task
✓

(at | st, ⌧:t, z),
during meta-testing, we choose z to be the decoder em-
bedding of the exploration trajectory g!(⌧ exp), and dur-
ing meta-training, we choose z to be the the embedding
of the problem ID e✓(µ). To embed the history ⌧:t =
(s0, a0, r0, . . . , st�1, at�1, rt�1), we use the experience em-
bedding scheme described above to obtain an embedding
e(⌧:t), omitting the reward embeddings for simplicity. We
embed the state with a learned embedding functions e(s).
Then we apply a linear layer of output dimension 64 to the

concatenation of [e(st); e(⌧:t), z] with a ReLU activation.
Finally, we apply two linear layer heads of output dimension
1 and |A| respectively to form estimates of the value and ad-
vantage functions, using the dueling Q-network parametriza-
tion. To obtain Q-values, we add the value function to the
advantage function, subtracting the mean of the advantages.

For the exploration policy Q-values Q̂
exp
�

(at | st, ⌧
exp
:t), we

embed the st and ⌧ exp
:t according to the embedding scheme

above. Then, we apply two linear layer heads to obtain
value and advantage estimates as above.

E-RL2. E-RL2 learns a policy ⇡(at | st, ⌧:t) producing
actions at given the state st and history ⌧:t. Like with all
approaches, we parametrize this with dueling double Q-
networks, learning Q-values Q̂(st, ⌧:t, at). We embed the
current state st and history ⌧:t using the embedding scheme
described above (with episode termination embeddings).
Then, we apply two final linear layer heads to obtain value
and advantage estimates.

IMPORT IMPORT also learns a recurrent policy ⇡(at |

st, z), but conditions on the embedding z, which is either
an embedding of the problem µ or the history ⌧:t. We also
parametrize this policy with dueling double Q-networks,
learning Q-values Q̂(st, z, at). We embed the state st as
e(st), the problem µ as e�(µ) and the history ⌧:t as e✓(⌧:t)
using the previously described embedding schemes. Then
we alternate meta-training trials between choosing z =
e�(µ) and z = e✓(⌧:t). We apply a linear layer of output
dimension 64 to the concatenation [e(st); z] with ReLU
activations and then apply two linear layer heads to obtain
value and advantage estimates.

Additionally, IMPORT uses the following auxiliary loss func-
tion to encourage the history embedding e✓(⌧:t) to be close
to the problem embedding e�(µ) (optimized only w.r.t., ✓):

LIMPORT(✓) = �E(⌧,µ)

"
X

t

ke✓(⌧:t) � e�(µ)k22

#
,

where ⌧ is a trajectory from rolling out the policy on prob-
lem µ. Following Kamienny et al. (2020), we use � = 1 in
our final experiments, and found that performance changed
very little when we experimented with other values of �.

VARIBAD. VARIBAD also learns a recurrent policy
⇡(at | z), but over a belief state z capturing the history ⌧:t
and current state st. We also parametrize this dueling dou-
ble Q-networks, learning Q-values Q̂(st, z, at).

VARIBAD encodes the belief state with an encoder enc(z |

st, ⌧ : t). Our implementation of this encoder embeds st and
⌧:t using the same experience embedding approach as above,
and use the output as the mean m for a distribution. Then,

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Hyperparameter Value
Discount Factor � 0.99

Test-time ✏ 0
Learning Rate 0.0001

Replay buffer batch size 32
Target parameters syncing frequency 5000 updates

Update frequency 4 steps
Grad norm clipping 10

Table 1. Hyperparameters shared across all methods: DREAM,
RL2, IMPORT, and VARIBAD.

we set enc(z | st, ⌧ : t) = N (m, ⌫
2
I), where ⌫2 = 0.00001.

We also tried learning the variance instead of fixing it to ⌫2I
by applying a linear head to the output of the experience
embeddings, but found no change in performance, so stuck
with the simpler fixed variance approach. Finally, after
sampling z from the encoder, we also embed the current
state st as e(st) and apply a linear layer of output dimension
64 to the concatenation [e(st); z]. Then, we apply two linear
layer heads to obtain value and advantage estimates.

VARIBAD does not update the encoder via gradients
through the policy. Instead, VARIBAD jointly trains the en-
coder with state decoder T̂ (s0 | a, s, z) and reward decoder
R̂(s0 | a, s, z), where z is sampled from the encoder, as fol-
lows. Both decoders embed the action a as e(a) with an
embedding matrix of output dimension 32 and embed the
state s as e(s). Then we apply two linear layers with output
dimension 128 to the concatenation [e(s); e(a); z]. Finally,
we apply two linear heads, one for the state decoder and one
for the reward decoder and take the mean-squared error with
the true next state s

0 and the true rewards r respectively. In
the 3D visual navigation domain, we remove the state de-
coder, because the state is too high-dimensional to predict.
Note that Zintgraf et al. (2019) found better results when re-
moving the state decoder in all experiments. We also tried to
remove the state decoder in the grid world experiments, but
found better performance when keeping the state decoder.
We also found that VARIBAD performed better without the
KL loss term, so we excluded that for our final experiments.

B.4. Hyperparameters

In this section, we detail the hyperparameters used in our
experiments. Where possible, we used the default DQN hy-
perparameter values from Mnih et al. (2015). and shared the
same hyperparameter values across all methods for fairness.
We optimize all methods with the Adam optimizer (Kingma
& Ba, 2015). Table 1 summarizes the shared hyperparam-
eters used by all methods and we detail any differences in
hyperparameters between the methods below.

All methods use a linear decaying ✏ schedule for ✏-greedy
exploration. For RL2, IMPORT, and VARIBAD, we decay ✏

from 1 to 0.01 over 500000 steps. For DREAM, we split the
decaying between the exploration and exploitation policies.
We decay each policy’s ✏ from 1 to 0.01 over 250000 steps.

We train the recurrent policies (DREAM’s exploration and
exploitation policies, RL2, IMPORT, and VARIBAD) with
a simplified version of the methods in Kapturowski et al.
(2019) by storing a replay buffer with up to 16000 sequences
of 50 consecutive timesteps. We decrease the maximum
size from 16000 to 10000 for the 3D visual navigation ex-
periments in order to fit inside a single NVIDIA GeForce
RTX 2080 GPU.

For DREAM, we additionally use per timestep exploration
reward penalty c = 0.01, decoder and stochastic encoder
variance ⇢2 = 0.1, and information bottleneck weight � =
1. Note that this information bottleneck weight � could be
adapted via dual gradient descent to solve the constrained
optimization problem in (2), but we find that dynamically
adjusting � is not necessary for good performance. For the
MiniWorld experiments, we use c = 0.

C. Analysis
C.1. Consistency

We restate the consistency result of DREAM (Section 5.1)
and prove it below.
Proposition 1. Assume hS, A, Rµ, Tµi is ergodic for all

problems µ 2 M. Let V
⇤(µ) be the maximum expected

returns achievable by any exploitation policy with access

to the problem ID µ, i.e., with complete information. Let

⇡
task

?
,⇡

exp

? , F? and q?(z | ⌧
exp) be the optimizers of the

DREAM objective. Then, if the function classes DREAM op-

timizes over are well-specified, there exists a finite T such

that if the length of the exploration episode is at least T ,

Eµ⇠p(µ),⌧ exp⇠⇡exp

? ,z⇠q?(z|⌧ exp)

h
V
⇡

task

? (z; µ)
i

= Eµ⇠p(µ) [V ⇤(µ)] .

Proof. Recall that ⇡task
?

and F?(z | µ) are optimized to
solve the constrained optimization in (2). In particular, they
must satisfy the constraint, so ⇡task

?
achieves the desired

expected returns conditioned on the stochastic encoding of
the problem F?(z | µ):

Eµ⇠p(µ),z⇠F?(z|µ)

h
V
⇡

task
? (z; µ)

i
= Eµ⇠p(µ) [V ⇤(µ)] ,

where V
⇡

task
? (z; µ) is the expected returns of ⇡task

?
on prob-

lem µ given embedding z. Therefore, it suffices to show
that the distribution over z from the decoder q?(z | ⌧

exp) is
equal to the distribution from the encoder F?(z | µ) for all
exploration trajectories in the support of ⇡exp(⌧ exp

| µ)1, for
1We slightly abuse notation to use ⇡exp(⌧ exp | µ) to denote the

distribution of exploration trajectories ⌧ exp from rolling out ⇡exp

on problem µ.

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

each problem µ. Then,

Eµ⇠p(µ),⌧ exp⇠⇡exp
? ,z⇠q?(z|⌧ exp)

h
V
⇡

task
? (z; µ)

i

= Eµ⇠p(µ),z⇠F?(z|µ)

h
V
⇡

task
? (z; µ)

i

= Eµ⇠p(µ) [V ⇤(µ)]

as desired. We show that this occurs as follows.

Given stochastic encoder F?(z | µ), exploration policy ⇡exp
?

maximizes I(⌧ exp; z) = H(z) � H(z | ⌧
exp) (Equation 4)

by assumption. Since only H(z | ⌧
exp) depends on ⇡exp

? , the
exploration policy outputs trajectories that minimize

H(z | ⌧
exp)

= Eµ⇠p(µ)

⇥
E⌧ exp⇠⇡exp(⌧ exp⇠µ)

⇥
Ez⇠F?(z|µ) [� log p(z | ⌧

exp)]
⇤⇤

= Eµ⇠p(µ)

⇥
E⌧ exp⇠⇡exp(⌧ exp⇠µ) [H(F?(z | µ), p(z | ⌧

exp))]
⇤
,

where p(z | ⌧
exp) is the true conditional distribution and

H(F?(z | µ), p(z | ⌧
exp)) is the cross-entropy. The cross-

entropy is minimized when p(z | ⌧
exp) = F?(z | µ), which

can be achieved with long enough exploration trajectories T

if hS, A, Rµ, Tµi is ergodic (by visiting each transition suf-
ficiently many times). Optimized over an expressive enough
function class, q?(z | ⌧

exp) equals the true conditional dis-
tribution p(z | ⌧

exp) at the optimum of Equation 4, which
equals F?(z | µ) as desired.

C.2. Tabular Example

We first formally detail a more general form of the simple
tabular example in Section 5.2, where episodes are horizon
H rather than 1-step bandit problems. Then we prove sam-
ple complexity bounds for RL2 and DREAM, with ✏-greedy
tabular Q-learning with ✏ = 1, i.e., uniform random explo-
ration.

Setting. We construct this horizon H setting so that taking
a sequence of H actions a? (instead of a single action as
before) in the exploration episode leads to a trajectory ⌧ exp

?

that reveals the problem µ; all other action sequences a lead
to a trajectory ⌧ exp

a that reveals no information. Similarly,
the problem µ identifies a unique sequence of H actions aµ
that receives reward 1 during exploitation, while all other
action sequences receive reward 0. Again, taking the action
sequence a? during exploration is therefore necessary and
sufficient to obtain optimal reward 1 during exploitation.

We formally construct this setting by considering a family
of episodic MDPs hS, A, Rµ, Tµi parametrized by the prob-
lem ID µ 2 M, where:

• Each exploitation and exploration episode is horizon
H .

• The action space A consists of A discrete actions
{1, 2, . . . , A}.

• The space of problems M = {1, 2, . . . , |A|
H

} and the
distribution p(µ) is uniform.

To reveal the problem via the optimal action sequence a?
and to allow aµ to uniquely receive reward, we construct
the state space and deterministic dynamics as follows.

• States s 2 S are (H + 2)-dimensional and the deter-
ministic dynamics are constructed so the first index
represents the current timestep t, the middle H indices
represent the history of actions taken, and the last index
reveals the problem ID if a? is taken. The initial state
is the zero vector s0 = 0 and we denote the state at the
t-th timestep st as (t, a0, a1, . . . , at�1, 0, . . . , 0, 0).

• The optimal exploration action sequence a? is set to be
taking action |A| for H timesteps. In problem µ tak-
ing action aH�1 = 1 at state sH�1 = (H � 1, a0 =
1, . . . , aH�2 = 1, 0, 0) (i.e., taking the entire action
sequence a?) transitions to the state sH = (H, a0 =
1, . . . , aH�2 = 1, aH�1 = 1, µ), revealing the prob-
lem µ.

• The action sequence aµ identified by the problem
µ is set as the problem µ in base |A|: i.e., aµ
is a sequence of H actions (a0, a1, . . . , aH�1) withP

H�1
t=0 at|A|

t = µ. In problem µ with aµ =
(a0, a1, . . . , aH�1), taking action aH�1 at timestep
H �1 at state sH�1 = (H �1, a0, a1, . . . , aH�2, 0, 0)
(i.e., taking the entire action sequence aµ) yields
Rµ(sH�1, aH�1) = 1. Reward is 0 everywhere else:
i.e., Rµ(s, a) = 0 for all other states s and actions a.

• With these dynamics, the exploration trajectory ⌧ exp
a =

(s0, a0, r0, . . . , sH) is uniquely identified by the action
sequence a and the problem µ if revealed in sH . We
therefore write ⌧ exp

a = (a, µ) for when a = a? reveals
the problem µ, and ⌧ exp

a = (a, 0), otherwise.

Uniform random exploration. In this general setting, we
analyze the number of samples required to learn the opti-
mal exploration policy with RL2 and DREAM via ✏-greedy
tabular Q-learning. We formally analyze the simpler case
where ✏ = 1, i.e., uniform random exploration, but empiri-
cally find that DREAM only learns faster with smaller ✏, and
RL2 only learns slower.

In this particular tabular example with deterministic dynam-
ics that encode the entire action history and rewards, learn-
ing a per timestep Q-value is equivalent to learning a Q-
value for the entire trajectory. Hence, we denote exploration

Decoupling Exploration and Exploitation for Meta-Reinforcement Learning

Q-values Q̂
exp(a) estimating the returns from taking the en-

tire sequence of H actions a at the initial state s0 and exeuc-
tion Q-values Q̂

task(⌧ exp
,a) estimating the returns from tak-

ing the entire sequence of H actions a at the initial state s0

given the exploration trajectory ⌧ exp. We drop s0 from nota-
tion, since it is fixed.

Recall that RL2 learns exploration Q-values Q̂
exp by regress-

ing toward the exploitation Q-values Q̂
task. We estimate the

exploitation Q-values Q̂
task(⌧ exp

,a) as the sample mean of
returns from taking actions a given the exploration trajec-
tory ⌧ exp and estimate the exploration Q-values Q̂

exp(a) as
the sample mean of the targets. More precisely, for action se-
quences a 6= a?, the resulting exploration trajectory ⌧ exp

a is
deterministically (a, 0), so we set Q̂

exp(a) = V̂
task(⌧ exp

a) =
maxa0 Q̂

task(⌧ exp
a ,a0). For a?, the resulting exploration tra-

jectory ⌧ exp
a?

may be any of (a?, µ) for µ 2 M, so we set
Q̂

exp(a?) as the empirical mean of V̂
task(⌧ exp

a?
) of observed

⌧
exp
a?

.

Recall that DREAM learns exploration Q-values Q̂
exp by

regressing toward the learned decoder log q̂(µ | ⌧
exp
a). We

estimate the decoder q̂(µ | ⌧
exp
a) as the empirical counts

of (µ, ⌧
exp
a) divided by the empirical counts of ⌧ exp

a and
similarly estimate the Q-values as the empirical mean of
log q̂(µ | ⌧

exp
a). We denote the exploration Q-values learned

after t timesteps as Q̂
exp
t

, and similarly denote the estimated
decoder after t timesteps as q̂t.

Given this setup, we are ready to state the formal sample
complexity results. Intuitively, learning the exploitation Q-
values for RL2 is slow, because, in problem µ, it involves
observing the optimal exploration trajectory from taking
actions a? and then observing the corresponding exploita-
tion actions aµ, which only jointly happens roughly once
per |A|

2H samples. Since RL2 regresses the exploration
Q-values toward the exploitation Q-values, the exploration
Q-values are also slow to learn. In contrast, learning the
decoder q̂(µ | ⌧

exp
a) is much faster, as it is independent of

the exploitation actions, and in particular, already learns
the correct value from a single sample of a?. We formalize
this intuition in the following proposition, which shows that
DREAM learns in a factor of at least |A|

H
|M| fewer sam-

ples than RL2.

Proposition 2. Let T be the number of samples

from uniform random exploration such that the greedy-

exploration policy is guaranteed to be optimal (i.e.,

arg maxa Q̂
exp

t
(a) = a?) for all t � T . If Q̂

exp
is learned

with DREAM, the expected value of T is O(|A|
H log |A|

H).
If Q̂

exp
is learned with RL

2
, the expected value of T is

⌦(|A|
2H

|M| log |A|
H).

Proof. For DREAM, Q̂
exp
T

(a?) > Q̂
exp
T

(a) for all a 6= a? if
log q̂T (µ | (a?, µ)) > log q̂T (µ | (a, 0)) for all µ and a 6=
a?. For all t � T , Q̂exp

t
is guaranteed to be optimal, since no

sequence of samples will cause log q̂t(µ | (a?, µ)) = 0

log q̂t(µ | (a, 0)) for any a 6= a?. This occurs once we’ve
observed (µ, (a, 0)) for two distinct µ for each a 6= a?
and we’ve observed (µ, (a?, µ)) for at least one µ. We
can compute an upperbound on the expected number of
samples required to observe (µ, ⌧

exp
a) for two distinct µ for

each action sequence a by casting this as a coupon collector
problem, where each pair (µ, ⌧

exp
a) is a coupon. There are

2|A|
H total coupons to collect. This yields that the expected

number of samples is O(|A|
H log |A|

H).

For RL2, the exploration policy is optimal for all timesteps
t � T for some T only if the exploitation values
V̂

task
T

(⌧ exp = (a?, µ)) = 1 for all µ in M. Otherwise, there
is a small, but non-zero probability that V̂

task
t

(⌧ exp = (a, 0))
will be greater at some t > T . For the exploitation val-
ues to be optimal at all optimal exploration trajectories
V̂

task
T

(⌧ exp = (a?, µ)) = 1 for all µ 2 M, we must jointly
observe exploration trajectory ⌧ exp = (a?, µ) and corre-
sponding action sequence aµ for each problem µ 2 M.
We can lower bound the expected number of samples re-
quired to observe this by casting this as a coupon collector
problem, where each pair (⌧ exp = (a?, µ),aµ) is a coupon.
There are |M| · |A|

H unique coupons to collect and collect-
ing any coupon only occurs with probability 1

|A|H in each
episode. This yields that the expected number of samples is
⌦(|A|

2H
· |M| · log |A|

H).

