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Abstract
Game optimization has been extensively studied
when decision variables lie in a finite-dimensional
space, of which solutions correspond to pure
strategies at the Nash equilibrium (NE), and the
gradient descent-ascent (GDA) method works
widely in practice. In this paper, we consider
infinite-dimensional zero-sum games by a min-
max distributional optimization problem over a
space of probability measures defined on a contin-
uous variable set, which is inspired by finding a
mixed NE for finite-dimensional zero-sum games.
We then aim to answer the following question:
Will GDA-type algorithms still be provably effi-
cient when extended to infinite-dimensional zero-
sum games?
To answer this question, we propose a particle-
based variational transport algorithm based on
GDA in the functional spaces. Specifically, the
algorithm performs multi-step functional gradient
descent-ascent in the Wasserstein space via push-
ing two sets of particles in the variable space. By
characterizing the gradient estimation error from
variational form maximization and the conver-
gence behavior of each player with different ob-
jective landscapes, we prove that a theoretical ver-
sion of the generalized GDA algorithm converges
to the NE or the value of the game efficiently for a
class of games under the Polyak-Łojasiewicz (PL)
condition. To conclude, we provide complete sta-
tistical and convergence guarantees for solving an
infinite-dimensional zero-sum game via a prov-
ably efficient particle-based method. Additionally,
our work provides the first thorough statistical
analysis for the particle-based algorithm to learn
an objective functional with a variational form us-
ing universal approximators (i.e., neural networks
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(NNs)), which is of independent interest.

1. Introduction
Recent years have witnessed a resurgence in zero-sum
games for machine learning applications, where two play-
ers’ strategies are usually parameterized with two finite-
dimensional decision variables. The optimal strategies de-
fine the pure NE in the sense that they identify two deter-
ministic strategies. Motivating examples include generative
adversarial networks (GANs) (Nowozin et al., 2016; Sanjabi
et al., 2018a; Gidel et al., 2018a; Sinha et al., 2017), rein-
forcement learning (Dai et al., 2017; Ho & Ermon, 2016),
distributionally robust optimization (DRO) (Van Parys et al.,
2017; Ghosh et al., 2018), and learning exponential fami-
lies (Dai et al., 2018), among others. Such zero-sum games
have been extensively analyzed in convex-concave settings,
where a global Nash equilibrium (NE) can be computed by
gradient descent-ascent (GDA) type algorithms (Facchinei
& Pang, 2007; Hamedani et al., 2018; Monteiro & Svaiter,
2010; Nemirovski, 2004). Nonetheless, in the nonconvex-
nonconcave setting, these methods stagger, and a crucial
issue arises: What if the pure NE does not exist (Arora et al.,
2017; Jin et al., 2019)? The finite-dimensional formula-
tion naturally excludes a potentially better or even the only
existential mixed NE, and meanwhile is restricted to local
convergence in the absence of convexity.

To alleviate the concern above and to further understand the
difficulty at the boundary of contemporary game optimiza-
tion, we consider a class of zero-sum infinite-dimensional
games where each decision variable is a probability mea-
sure representing the mixed strategies over the spaces of
pure strategies. In addition, we assume this distributional
games to satisfy Riemannian Polyak-Łojasiewicz (PL) and
smoothness conditions, which cover a range of nonconvex-
nonconcave landscapes and the practical training objectives
such as GANs with regularization (Arora et al., 2017). A
natural approach to distributional optimization problems is
the particle-based method (Raginsky et al., 2017; Wibisono,
2018; Zou et al., 2018), where stochastic gradient Langevin
dynamics (SGLD) is adopted to draw a sample from the de-
sired distribution via discretization of stochastic differential



Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport

equations (Hsieh et al., 2018). However, SGLD sampling is
quite inefficient for reaching a stationary distribution at each
step. Meanwhile, from the view of games, GDA-type algo-
rithms have not been studied in full generality for infinite-
dimensional settings. Motivated by the two facts above,
we adapt the multi-step GDA-type algorithm to infinite-
dimensional games through particle-based approximation
and provide the first set of theoretical guarantees by analyz-
ing its behavior under infinite-dimensional settings.

We conclude our contributions as follows. (1) To model
the mixed NE of finite-dimensional games, we introduce
the generic infinite-dimensional zero-sum games. We estab-
lish the GDA-type algorithm in the Wasserstein space, also
named variational transport for infinite-dimensional games
(VTIG), for such games via Riemannian gradient propo-
sitions (Proposition 3.1 and 3.2). (2) We provide the first
thorough analysis of both statistical and optimization errors
for the theoretical version of VTIG in two scenarios. One is
the convergence to the first-order NE under a Riemannian
PL condition (Theorem 4.2), and the other is the conver-
gence to the minimax value under a stronger two-sided PL
condition (Theorem 4.4). (3) As a technical component,
we provide statistical analysis for particle-based gradient
estimation by upper bounding the `p-norm of the gradient
by the `p-norm of the function for p ≥ 1.

Related work. Finite-dimensional games under convex-
concave settings (Nemirovski, 2004; Juditsky & Nemirovski,
2016; Hamedani et al., 2018; Monteiro & Svaiter, 2010) are
adequately studied with corresponding monotonic varia-
tional inequalities (Dang & Lan, 2015; Gidel et al., 2018a)
and solved by GDA (Thekumparampil et al., 2019). Mean-
while, primal-dual schemes and negative momentum (Cham-
bolle & Pock, 2016; Daskalakis & Panageas, 2018b; Gidel
et al., 2018b) are proposed to help GDA on conver-
gence, which bypasses cyclic dynamics (Mai et al., 2018;
Mescheder et al., 2018; Daskalakis & Panageas, 2018a). To
tame nonconvexity, (Jin et al., 2019) proves theO(θ−4) rate
in gradient evaluations is required in the convergence to
an θ-first order NE with Max-oracle; (Lu et al., 2019a;b)
reached the same rate when the objective is concave w.r.t.
the max-player strategy; improved rates of O(θ−3.5) and
O(θ−2) are shown in (Sanjabi et al., 2018b) under PL-game
conditions, which is similar to our setting. However, our re-
sults are derived for infinite dimensions as a mixed-strategy
extension.

In machine learning literature, the notion of mixed NE for
GANs is originally presented in (Goodfellow et al., 2014)
without an algorithm to find it. A line of work (Grnarova
et al., 2017; Arora et al., 2017; Oliehoek et al., 2018; Hsieh
et al., 2018) seeks to further understand and find mixed NEs
of GANs. Nonetheless, the existing algorithm in (Hsieh
et al., 2018) using SGLD is computationally demanding

at each step and complicated in the idea of algorithm de-
sign without statistical analysis. Our analysis extends the
GDA-type algorithm to the Wasserstein space and shows the
existence of a provably efficient particle-based algorithm
that pushes a fix-sized set of particles instead of running
SGLD repeatedly.

Optimizing functionals of probability measures is studied
by Frank-Wolfe (Gaivoronski, 1986) and steepest descent
algorithms (Molchanov & Zuyev, 2001) in earlier times.
More recently, descent methods in the space of probability
measures (Richemond & Maginnis, 2017; Frogner & Pog-
gio, 2018) are getting popular in machine learning, where
particle-based methods (Liu et al., 2018; Chen et al., 2018)
approximate probability measures for practical implementa-
tion. Similarly, two sets of particles in our algorithm also
provide the Dirac measure approximation for probability
measures.

In addition, with similar settings, (Chizat & Bach, 2018)
performs a continuous-time gradient descent on particles’
weights and positions. SVGD (Liu, 2017) guarantees to
optimally decrease the KL divergence within a function
space. For zero-sum games, (Domingo-Enrich et al.,
2020) parametrizes mixed strategies as mixtures of particles,
whose positions and weights are updated using gradient
descent-ascent. More generally, (Lin et al., 2020) aims to
solve stochastic mean field games.

Notations. We denote by [n] the set of integers {0, 1, ..., n}
and by N+ the set of positive integers. Let C(Rd) be the set
of continuous functions over the d-dimensional real space
Rd. Let X be a convex compact set in Rd. Given a non-
negative measure µ on X , we define the `p-norm of the
function f ∈ C(Rd) on X as ‖f‖Lpµ(X ) = (

∫
X |f |

pdµ)1/p.
Let P(X ) denote the collection of all Borel probability mea-
sures on the measurable space (X ,B(X )), where B(X ) is
the Borel σ-algebra on X . We denote by P2(X ) ⊆ P(X )
the set of Borel probability measures with finite second mo-
ments. We define the metric space (M, ‖ · ‖) by a vector
space M and a metric induced by the norm ‖ · ‖.

2. Problem Formulation and Optimization
over Wasserstein Spaces

Below we state the formulation and assumptions for infinite-
dimensional games in the Wasserstein space.

2.1. From Finite-Dimensional to Infinite-Dimensional
Games

Consider the classical formulation of a two-player zero-sum
game as folows,

min
xµ∈Xµ

max
xν∈Xν

f(xµ, xν), (2.1)
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where Xµ,Xν ⊆ Rd with d ∈ N+ are convex compact
sets of pure strategies with periodic or zero-flux boundary
conditions, and f is the objective function. In nonconvex-
nonconcave regimes, as finding local Nash equilibria is NP-
hard or even impossible (Jin et al., 2019), a weaker notion
of first-order NE (FNE) for a pair (xµ∗ , x

ν
∗) ∈ Xµ × Xν is

defined as
〈∇xµf(xµ∗ , x

ν
∗), x

µ − xµ∗ 〉 ≥ 0, (2.2)
〈∇xνf(xµ∗ , x

ν
∗), x

ν − xν∗〉 ≤ 0, ∀xµ ∈ Xµ, ∀xν ∈ Xν ,
which corresponds to first-order necessary optimality con-
ditions. Observing that without a probability representa-
tion (2.1) only admits pure Nash strategies, we lift (2.1)
by considering distributions over Xµ and Xν to allow
mixed strategies. The infinite-dimensional distributional
two-player zero-sum game is defined as

min
µ∈M(Xµ)

max
ν∈M(Xν)

F (µ, ν). (2.3)

Here F : M(Xµ)×M(Xν)→ R is the objective functional.
Without loss of generality, we set Xµ = Xν = X and
writeM = M(X ). Also, M(X ) = (P2(X ),W2) is the
Wasserstein (W2-) space, an infinite-dimensional manifold
by (Villani, 2008), with the W2-distance on P2(X ) defined
as
W2(µ, ν) = inf

{
E
[
‖X − Y ‖2

] 1
2
∣∣ L(X) = µ,L(Y ) = ν

}
,

where the infimum is taken over the random variablesX and
Y in X . Here we denote by ‖ · ‖ the geodesic distance on
X and by L(X) the law of a random variable X . Without
specification, the domain of an integral is the setX . We refer
to the two players as player µ and player ν, respectively.
To further characterize the properties ofM, we introduce
geodesics, tangent vectors and tangent spaces below.

Definition 2.1. Let γ : [0, 1]→ P2(X ) be a smooth curve.
We call the curve γ a geodesic if there exists a constant
v ≥ 0 such thatW2

(
γ(t1)− γ(t2)

)
= v · |t1 − t2| for any

t1, t2 ∈ [0, 1]. A tangent vector at µ ∈M is an equivalence
class of differentiable curves through µ with a prescribed
velocity vector at µ. The tangent space at µ, denoted by
TµM, consists of all tangent vectors at µ.

The manifold M is equipped with a weak Riemannian
structure in the following sense (Villani, 2008). Given
any tangent vectors u, v at µ ∈ M and the vector fields
ũ, ṽ of the gradient form satisfying continuity equations
u = −div(µũ) and v = −div(µṽ), respectively, we de-
fine the inner product of u and v as 〈u, v〉µ =

∫
〈ũ, ṽ〉dµ,

where 〈ũ, ṽ〉 is the inner product in Rd. Such a metric
induces a norm ‖u‖µ = 〈u, u〉1/2µ for any u ∈ TµM. Un-
der such a structure, we define the directional derivative
w.r.t. u ∈ TµM of a differentiable functional g : M→ R
as ∇vg(µ) = d

dtg[γ(t)]
∣∣
t=0

, where γ(0) = µ ∈ M and
γ′(0) = u. In addition, we say g is W2-differentiable at µ if
there exists u′ ∈ TµM such that∇ug(µ) = 〈u′, u〉µ for any
u ∈ TµM, and write grad g(µ) = u′ as the (weak) Rieman-

nian gradient of g at µ. The partial gradient gradµ F (µ, ν)
is defined similarly for a functional F : M×M→ R when
fixing ν. The exponential map at µ, denoted by Expµ, sends
any u ∈ TµM to µ′ = γu(1)1, where γu is a geodesic
such that γu(0) = µ and γ′u(0) = u. For any µ, ν ∈ M,
the parallel transport Γνµ : TµM→ TνM is the map such
that 〈u, v〉µ = 〈Γνµu,Γνµv〉ν for any u, v ∈ TµM. Also,
as X is separable and complete, M is geodesically com-
plete (Villani, 2003) in the sense that the exponential map
is defined on the whole tangent bundle. See §B for more
formal definitions.

We assume the objective functional F in (2.3) to admit the
following variational forms,

F (µ, ν) = Fν(µ) = sup
f∈F

{∫
X
fdµ− F ∗ν (f)

}
,

F (µ, ν) = Fµ(ν) = − sup
f∈F

{∫
X
fdν − F ∗µ(f)

}
, (2.4)

where F is the class of square-integrable functions over X ,
F ∗µ , F

∗
ν : F → R are strongly convex and smooth function-

als w.r.t. the `2-norm. In fact, (2.4) generalize the definition
of the conjugate function, and the example in §C.2 shows
that a wide class of f -divergences admits such forms.

For theoretical analysis, we impose the following assump-
tions on the objective functional F .

Assumption 2.2. We assume that F is Lipschitz continuous
and smooth w.r.t. the Wasserstein distance in the sense that∣∣F (µ1, ν)− F (µ2, ν)

∣∣ ≤ LµW2(µ1, µ2),∣∣F (µ, ν1)− F (µ, ν2)
∣∣ ≤ LνW2(ν1, ν2),

d
(
gradFν(µ1), gradFν(µ2)

)
≤ L1 · W2(µ1, µ2),

d
(
gradFµ(ν1), gradFµ(ν2)

)
≤ L2 · W2(ν1, ν2),

d
(
gradFµ1(ν), gradFµ2(ν)

)
≤ L0 · W2(µ1, µ2),

d
(
gradFν1(µ), gradFν2(µ)

)
≤ L0 · W2(ν1, ν2) (2.5)

for any µ, µ1, µ2, ν, ν1, ν2 ∈M. Here Lµ, Lν , L1, L2, and
L0 are absolute constants and d2(u, v) =

〈
u − Γµνv, u −

Γµνv
〉
µ

for any µ, ν ∈M, u ∈ TµM, and v ∈ TνM.

Assumption 2.2 is a natural extension of Lipschitz continu-
ity and smoothness for Euclidean space to the Wasserstein
space, where the Euclidean distance is replaced by W2-
distance. The following assumption extends the notion of
PL condition, also known as gradient domination (Polyak,
1963; Nesterov & Polyak, 2006; Sanjabi et al., 2018b), to
infinite-dimensional spaces.

Assumption 2.3. (Riemannian PL condition). A W2-
differentiable functional g :M→ R with minimum value
g∗ = infµ∈M g(µ) is called ξ-PL (ξ-gradient dominated) if

1Hence, for µ1, µ2 ∈M, Exp−1
µ1

(µ2) is an analogy to x2−x1
for x1, x2 ∈ X .
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for all µ ∈M we have
〈grad g(µ), grad g(µ)〉µ ≥ 2ξ (g(µ)− g∗) . (2.6)

We call (2.3) a ξ-PL game, or simply a PL game, ifHµ(ν) ,
−F (µ, ν) is ξ-PL w.r.t. ν. We assume (2.3) to be a ξ-PL
game.

In particular, Assumption 2.3 implies that if the norm of
the gradient is small at µ ∈ M, then the functional value
at µ will be close to the optimum. In addition, it is not
restrictive since a non-convex functional can still satisfy
the PL condition (Karimi et al., 2016). To justify all the
above assumptions, we provide the following example stem-
ming from learning GANs, where the pure strategies in (2.3)
correspond to parameters xµ and xν of the GAN.

Example 2.4. Consider the mixed NE of WGANs (Ar-
jovsky et al., 2017) with Kullback-Leibler (KL) divergence
regularization,
min
µ∈M

max
ν∈M

E
xν∼ν

E
ζ∼Preal

[hxν (ζ)]− E
xν∼ν

E
xµ∼µ

E
ζ∼Pxµ

[hxν (ζ)]

− KL(ν‖µ0) + KL(µ‖µ0), (2.7)
where KL(µ‖λ) =

∫
X log( dµ/dλ) dµwith Lebesgue mea-

sures µ and λ, and µ0 is the probability measure of standard
Gaussian. Also, hv denotes the discriminator parameterized
by NNs, of which the input is ζ ∈ X . Without the expecta-
tions of xµ and xν , (2.7) is reduced to the original regular-
ized WGAN objective that admits only finite-dimensional
pure Nash strategies. Further, we define the linear operator
D : M → F by (Dµ)(xν) = Exµ∼µEζ∼Pxµ [hxν (ζ)]
for any xν ∈ X and some continuous function
hxν ∈ F . We also define g(xν) = Eζ∼Preal [hxν (ζ)].
Then the objective F in (2.7) can be rewritten as
F (µ, ν) = 〈ν, g〉 − 〈ν,Dµ〉 − KL(ν‖µ0) + KL(µ‖µ0),
It follows from the logarithmic Sobolev inequality
(LSI) (Otto & Villani, 2000) in W2-space that player
µ meets the PL condition. Since the KL divergence
is an f -divergence, the variantional forms are guaran-
teed as follows, Fν(µ) = supf∈F

{
−
∫

exp
{
f(xµ) +

Exν∼νEζ∼Pxµ [hxν (ζ)]
}

dµ0(xµ) +
∫
fdµ + F̂ν

}
,

Fµ(ν) = − supf∈F

{∫
fdν −

∫
exp

{
f(xν) +

g(xν) − (Dµ)(xν)
}

dµ0(xν) + F̂µ

}
. Here

F̂ν = 1 − KL(ν‖µ0) + Exν∼νEζ∼Preal [hxν (ζ)] and
F̂µ = 1 − KL(µ‖µ0) are constants when fixing ν
and µ, respectively. See §C.3 for details. We remark
that in practical GAN training, KL regularization
terms exist to prevent the mode collapse. More gen-
erally, the KL-regularized distributional bilinear game
minµ∈Mmaxν∈M〈ν,Aµ〉 − KL(ν‖µ0) + KL(µ‖µ0)
given a linear operator A : M → F is widely
studied in games. Similarly, we write its vari-
ational forms as Fν(µ) = supf∈F{

∫
fdµ −∫

exp
{
f(xν) − A∗ν(xν)

}
dµ0(xν) + 1 − KL(ν‖µ0)}

and Fµ(ν) = − supf∈F{
∫
fdν −

∫
exp

{
f(xµ) +

Aµ(xµ)
}

dµ0(xµ) + 1 − KL(µ‖µ0)}, where A∗ is the
adjoint of A.

2.2. Measurement of Solutions

To quantify the accuracy of solutions to (2.3), we gener-
alize the NE of finite-dimensional games to our infinite-
dimensional distributional games. Given the numerical ac-
curacy of iterative algorithms in practice, we define the
notion of infinite-dimensional first-order NE (IFNE) as a
performance measure.

Definition 2.5 (IFNE). For any µ1, ν1 ∈M, we define
Jµ(µ1, ν1) , − min

W2(µ,µ1)≤1

〈
gradµ F (µ1, ν1),Exp−1µ1

(µ)
〉
µ1
,

Jν(µ1, ν1) , max
W2(ν,ν1)≤1

〈
gradν F (µ1, ν1),Exp−1ν1 (ν)

〉
ν1

as the first-order errors (FEs). Then a point (µ∗, ν∗) ∈
M×M is called a θ-IFNE of (2.3) if

Jµ(µ∗, ν∗) ≤ θ and Jν(µ∗, ν∗) ≤ θ. (2.8)

When θ = 0, we call (µ∗, ν∗) an IFNE. Definition 2.5
characterizes how far the solutions are from the FNE in the
W2-space. Also, we characterize the upper bound θ in terms
of the problem parameters for convergence rates in §4.

3. Variational Transport Algorithm for
Infinite-Dimensional Games

In what follows, we introduce the variational transport al-
gorithm to characterize GDA for the infinite-dimensional
game defined in (2.3). Our idea is based on the multi-step
GDA algorithm in (Sanjabi et al., 2018b) with nested loops,
where multiple gradient ascent steps are run for estimating
the gradient of the inner maximization functional defined
as G(µ) = maxν∈M F (µ, ν) w.r.t. µ, which provides a de-
scent direction for the outer minimization problem. Without
specifying, statements below hold for both µ and ν although
they are presented by µ ∈M.

3.1. Gradient Descent beyond the Euclidean Space

We first show the connection between functional gradient
descent in the Wasserstein Space M and transportation
maps in the variable space X . Specifically, we expect to
update the current iterate µ ∈M of the gradient descent in
the direction of gradFν(µ) along the geodesic. Therefore,
in the ideal case, the gradient update is given by

µ← Expµ
[
−η · gradFν(µ)

]
, (3.1)

where η > 0 is the stepsize. The proposition below bridges
the Riemannian gradient of a W2-differentiable functional
on M and its functional gradient w.r.t. the `2-norm. We
denote by f∗µ ∈ F the optimal solution to (2.4) for Fν(µ).

Proposition 3.1 (Riemannian Gradients to Functional Gra-
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Figure 1. Equivalence between particle pushing in the Euclidean
space X and the exponential map in the Wasserstein space M.
The tangent vector v ∈ TxM at x induces the exponential map
Expx and its correspondence in X , the push-forward map T] =[
ExpX

(
−t · ∇f∗µ)

]
]
. Xµ

k is the set of µ-particles at timestep k in
Algorithm 1.

dients). Let F :M→ R be aW2-differentiable functional,
with its functional gradient w.r.t. the `2-norm written as
δF/δµ. Then, it follows that

gradF (µ) = −div

[
µ · ∇

(
δF

δµ

)]
, (3.2)

where div is the divergence operator on X . Furthermore,
by the variational form of (2.3), we have δFν/δµ = f∗µ and
gradFν(µ) = −div(µ · ∇f∗µ).

Proof. See §C.1 for a detailed proof.

By Proposition 3.1, to obtain a descent direction in W2-
space for Fν(µ), we first solve (2.4) for f∗µ ∈ F and then,
compute the divergence in (3.2). Also, Expµ in (3.1) needs
to be specified. As in practice we only have access to sam-
ples, or particles, from µ, we establish the proposition below
to perform approximate gradient updates in (3.1) via parti-
cles.

Proposition 3.2 (Pushing particles as an exponential map).
For any µ ∈ M and any s ∈ TµM, suppose the ellip-

tic equation −div(µ · ∇u) = s admits a unique solution
u : X → R such that∇u : X → Rd is h-Lipschitz continu-
ous. Then, for any t ∈ [0, 1/h), we have[

ExpX (t · ∇u)
]
]
µ = Expµ(t · s), (3.3)

where we use ExpX (t·∇u) to denote the transportation map
on X that sends any x ∈ X to a point Expx(t ·∇u(x)) ∈ X ,
which is also the exponential map over X . We denote by
T] : P2(X ) → P2(X ) the push-forward map of a trans-
portation map T : X → X such that for any µ ∈M and any
measurable set A ∈ X , we have T]µ(A) = µ(T−1(A)).

Proof. See §C.2 for a detailed proof.

Hence, if ∇f∗µ is h-Lipschitz, by Proposition 3.1 and 3.2,
for any t ∈ [0, 1/h) we obtain Expµ[−t · gradF (µ)] =[
ExpX

(
−t · ∇f∗µ)

]
]
µ. given µ ∈ M. This identifies the

gradient descent update in the Wasserstein spaces with the
push-forward map of probability measures over the Eu-
clidean space, which can be approximated by pushing a set
of particles. We illustrate such correspondence in Figure 1.

Further, we are left with the variational form maximization
(VFM) problem in (2.4), where difficulties lie in the follow-
ing aspects. (i) Firstly, our approach is expected to provide
the reasonable statistical error incurred by estimating f∗µ by
f̃∗µ from the empirical version of VFM,

f̃∗µ = argmax
f∈F

{∫
X
f dµ̂− F ∗ν (f)

}
= argmax

f∈F

{ 1

N

N∑
i=1

f(xi)− F ∗ν (f)
}
, (3.4)

where we replace µ in (2.4) by the empirical measure
µ̂ = 1/N

∑N
i=1 δxi , i.e., an average of Dirac measures over

samples xi’s. (ii) Secondly, maximization over F is com-
putationally intractable. To this end, we perform stochastic
gradient descent (SGD) to learn f∗µ from the following class
F̃ of neural networks (NNs) instead of F , which is a rich
class by the universal approximation theorem (Csáji et al.,
2001; Hofmann et al., 2008).
Neural Network Parametrization. We consider the fol-
lowing class of NNs,

F̃ =

{
f̃

∣∣∣∣ f̃(x) =
1√
w

w∑
i=1

bi · σ
(
[β]>i x

)}
, (3.5)

where w is the width of the neural network, [β]i ∈ Rd, β =
([β]>1 , · · · , [β]>w)> ∈ Rwd are input weights, σ(·) denotes
a smooth activation function, and bi ∈ {−1, 1} (i ∈ [w])
are the output weights. As shown in Algorithm 3, only β
is updated during training while bi (i ∈ [w]) is fixed. In
addition, at each iteration we project the input weights β
to an `2-ball centered at β(0) with radius rf defined as
B0(rf ) = {β : ‖β − β(0)‖2 ≤ rf}. See §D.1 for more
details of F̃ .

3.2. Algorithm for Two-Player Infinite-Dimensional
Games

We now put together two nested loops of gradient de-
scent/ascent updates approximated by particles as the vari-
ational transport algorithm for infinite-dimensional games
(VTIG) in Algorithm 1. In detail, we maintain two sets of
Nµ µ-particles and Nν ν-particles for player µ and player
ν. Also, VTIG output the corresponding probability mea-
sures approximated by these two sets as the solutions to
(2.3), respectively. At outer-loop timestep k, we denote
the set for player µ by Xµ

k = {xµi,k}i∈[Nµ] and the set for
player ν at inner-loop timestep l of outer-loop timestep k
by Xν

l (µ̃k) = {xνi,l(µ̃k)}i∈[Nν ]. Here we write Xν
l (µ̃k)

and xνi,l(µ̃k) to emphasize that we fix Xµ
k (resp. µ̃k) when

updating Xν
l (resp. ν̃l) in Line 7 of Algorithm 1. Also,
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{µ̃k}k≥0 and {ν̃l(µ̃k)}k,l≥0 are sequences of probability
measures of {Xµ

k }k≥0 and {Xν
l (µ̃k)}k,l≥0 constructed im-

plicitly by VTIG, which is specified later. Further, the set of
µ-particles Xµ

k is updated as follows given Xµ
0 for k ≥ 1.

At the outer-loop timestep k, VTIG computes the solution
to (3.4) following Line 10 in Algorithm 1

f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ
)

(3.6)

based on the current µ-particle set Xµ
k , the functional F ∗ν̃k+1

defined in the variational form (2.4), and the number of µ-
particles Nµ. As shown in Algorithm 3, the VFM problem
is solved by learning a neural network f̃∗k belonging to the
class F̃ defined in (3.5) via SGD. With the obtained ∇f̃∗k ,
VTIG push µ-particles in this direction as follows (Line 11
of Algorithm 1),

xµi,k+1 ← Expxµi,k
[
− ηµ · ∇f̃∗k (xµi,k)

]
(3.7)

for all i ∈ [Nµ]. Here ηµ > 0 are the stepsize specified
in Theorem 4.2. This is equivalent to updating the empir-
ical measure µ̂ = N−1µ

∑
i∈[Nµ] δxi,k by the pushforward

measure [ExpX (−ηµ · ∇f̃∗l,k)]]µ̂, which approximates the
Riemannian gradient update in (3.1) with stepsize ηµ. Also,
the exponential map in Euclidean space is reduced to a
gradient descent step on xµi,k ∈ Rd.

Similarly, to update the set of ν-particles Xν
l (µ̃k), VTIG

computes the solution to (3.4) following Line 6 in Algo-
rithm 1 at inner-loop timestep l of outer-loop timestep k.
Then, the ν-particles are pushed by

xνi,l+1(µ̃k)← Expxνi,l(µ̃k)
[
ην · ∇f̃∗l,k

(
xνi,l(µ̃k)

)]
(3.8)

for all i ∈ [Nν ] in Line 7 of Algorithm 1, with fixed µ̃k. In
particular, the sequences of probability measures {µ̃k}k≥0
and {ν̃l(µ̃k)}k,l≥0 are constructed as below. We define
sequences of transportation maps {Tµk : X → X}Kµk=0 with
Tµ0 = id and {T νm : X → X}KµKνm=0 with T ν0 = id, by

Tµk+1 = ExpX (−ηµ · ∇f̃∗k ) ◦ Tµk and

T νkl+1 = ExpX (−ην · ∇f̃∗l,k) ◦ T νkl, (3.9)
respectively for k ∈ [Kµ], l ∈ [Kν ]. Here Kµ and Kν are
the numbers of timesteps of the inner and outer loops, re-
spectively. Then for each k ≥ 1 we define µ̃k = (Tµk )]µ̃0

and ν̃k = (T νk )]ν̃0, where µ0 and ν0 are initial probability
measures. Hence, we have ν̃l(µ̃k) = ν̃lk. Also, xµi,k

i.i.d.∼ µ̃k

and xνi,l(µ̃k)
i.i.d.∼ ν̃l(µ̃k) are independent samples. Such

implicit construction of transportation maps and probabil-
ity measures also induces a theoretical version of VTIG
via resampling. See Algorithm 2 for details. Additionally,
we adopt the constructed measure ν̃k+1 to compute F ∗ν̃k+1

in (3.6) since for most objectives F such as that in Exam-
ple 2.4, we can always sample many enough particles to
approximate the expectation terms w.r.t. ν̃k+1 for k ≥ 0.

Algorithm 1 Multi-Step Variational Transport Algorithm
for Infinite-Dimensional Games (VTIG)
1: Input: Functional F :M×M→ R; initial probability mea-

sures µ̃0, ν̃0 ∈M; numbers of particles Nµ, Nν ; numbers of
iterations Kµ,Kν ; and stepsizes ηµ ∈

(
0,min{1/h, 2/L̃}

)
,

ην ∈
(
0,min{1/(4L2), 1/h}

)
.

2: Initialize Nµ (Nν) particles Xµ
0 = {xµi,0}i∈[Nµ]

(
Xν

0

)
by

drawing Nµ (Nν ) i.i.d. samples from µ̃0 (ν̃0).
3: for k = 0, 1, 2, . . . ,Kµ − 1 do
4: Set Xν

0 (µ̃k) = Xν
k

5: for l = 0, 1, 2, . . . ,Kν − 1 do
6: f̃∗l,k ← VFM

(
Xν
l (µ̃k), F

∗
µ̃k
, Nν

)
7: Push ν-particles: xνi,l+1(µ̃k) ← Expxν

i,l
(µ̃k)

[
−ην ·

∇f̃∗l,k
(
xνi,l(µ̃k)

)]
for all i ∈ [Nν ]

8: end for
9: Set Xν

k+1 = Xν
Kν (µ̃k)

10: f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ
)

11: Push µ-particles: xµi,k+1 ← Expxµ
i,k

[−ηµ · ∇f̃∗k (xµi,k)] for

all i ∈ [Nµ]
12: Set Xµ

k+1 = {xµi,k+1}i∈[Nµ]
13: end for
14: Output: µ̃∗ = N−1

µ

∑
i∈[Nµ] δxi,Kµ , ν̃∗ =

N−1
ν

∑
i∈[Nν ] δxi,Kν

4. Main Results
To ensure the independence of the particles for statistical
analysis, we adopt Algorithm 2 for theoretical analysis. We
characterize the statistical error induced by estimating Rie-
mannian gradients using finite particle samples in §4.1 for
both players. In §4.2 we establish the convergence rate of
VTIG to the IFNE under the PL condition for one player.
Furthermore, we present in §4.3 that under a stronger as-
sumption on the objective F , i.e., the two-sided PL condi-
tion, a linear convergence rate to the minimax value of the
game is achieved.

4.1. Statistical Analysis

For each player, VTIG can be viewed as a Riemannian
gradient descent method with biased gradient estimates. We
characterize the bias in terms of the generalization error of
function approximators, where lie the essential difficulties
in theory. In this section, we present the analysis for player
µ. The analysis of player ν is similar.

Gradient estimation. Recall that by Proposition 3.1, the de-
sired descent direction for timestep k ≥ 0 is gradF (µ̃k) =
−div(µ̃k · ∇f∗k ). However, with only finite samples, we
obtain an estimator f̃∗k of f∗k . Hence, the gradient es-
timate at µ̃k is −div(µ̃k · ∇f̃∗k ), and the difference be-
tween gradF (µ̃k) and its estimate is denoted by δk =

−div[µ̃k · (∇f̃∗k −∇f∗k )]. By observing that δk ∈ Tµ̃kM
and that the randomness of δk comes from the intial samples
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Xµ
0 , we define
ε̄k = EXµ0 〈δk, δk〉µ̃k

= EXµ0

∫
X

∥∥∇f̃∗k (x)−∇f∗k (x)
∥∥2
2

dµ̃k(x) (4.1)

as the (expected) gradient error. In general, it is hard to
derive upper bounds of gradients for general functions. Nev-
ertheless, we upper bounds function gradients by function
values for a specific function class, F̃ defined in Section 3.1.
Below we provide a generic assumption on F̃ to derive the
desired upper bounds of gradients.

Assumption 4.1. The set ∇F̃ = {∇f : f ∈ F̃} is closed,
bounded in (C(X ), `∞). For each ∇f ∈ ∇F̃ , ∇f is h-
Lipschitz for some h > 0.

Such an assumption can be achieved by function classes
with uniformly bounded and Lipschitz continuous gradients,
which includes the class of neural networks defined in (3.5)
with bounded parameters. See §D.1 for more details. More-
over, based on Assumption 4.1 we identify a new type of
reverse Poincaré inequality (Baudoin & Bonnefont, 2016)
in §D.1. Due to the use of fundamental topology and analy-
sis property of X and F̃ , our analysis can also be extended
to non-Euclidean space X .

Generalization error of VFM. By setting p = 2 and
f(x) = f̃∗k (x) − f∗k (x) in Lemma D.1, we are able to
upper bound the gradient errors by the generalization errors
of NNs, which is bounded in §D.3 with the orders of

ε̄µ = O(N−1/2µ ), ε̄ν = O(N−1/2ν ) (4.2)
by wide enough NNs for player µ and player ν, respectively.
Here Nµ and Nν are the numbers of particles for player
µ and player ν, respectively. Such results are standard for
the stochastic gradient descent (SGD) over neural networks,
since the number of iterations t in Algorithm 3 is also the
sample size Nµ (resp. Nν) in our algorithm.

4.2. Convergence to the IFNE for PL Games

Recall that G(µ) = maxν∈M F (µ, ν). We define LG =
maxµ∈M ‖ gradG(µ)‖µ, which is upper bounded since G
is Lipschitz (Lemma E.1) on a compact domainM (Proposi-
tion E.1). We assume that there exist constantsMH > 0 and
MG > 0 such that MH = maxµ,ν0∈M[G(µ) − F (µ, ν0)]
and MG = maxµ0∈MG(µ0) − G(µ∗), where µ∗ ∈
argminµ∈MG(µ). Under Assumption 2.3 for ξ-PL games,
we characterize the following sublinear rate to find an IFNE
defined in Definition 2.5 by VTIG with sample sizesNµ, Nν
and numbers of iterations Kµ,Kν . Recall that L0, L1, and
L2 are Lipschitz constants defined in Assumption 2.2. The
constant ξ for the PL condition is defined in Assumption 2.3.
Also, σ = 1− ξην/2 ∈ (0, 1) is a contraction factor from
Lemma E.5.

Theorem 4.2 (Convergence of Infinite-Dimensional PL
Games). Suppose that the objective F admits a variational

form under Assumption 2.2 and 2.3. Also, the function class
F̃ satisfies Assumption 4.1. We set the stepsizes to be ηµ ∈[
0,min{1/h, 2/L̃}

)
and ην ∈

(
0,min{1/(4Lν), 1/h}

)
,

where L̃ = L1 + L2
0/ξ. Then, for any θ > 0, if

Kν ≥ Kν(θ) = O
(

log
(1− σ)M̂H − ην ε̄ν

θ

/
log

1

σ

)
,

where M̂H = max
{
MH ,

ην ε̄ν + 1

1− σ

}
, (4.3)

there exists an iteration k ∈ [Kµ] such that
EX0

[
J 2
µ (µ̃k, ν̃k+1)

]
= O

((
∆ +

√
ε̄µ
)2 · ((∆ +

√
ε̄µ) +

MG

Kµ

))
,

EX0

[
Jν(µ̃k, ν̃k+1)

]
= O

(L2∆

L0

)
. (4.4)

Here ∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, and the gradient error terms ε̄µ

and ε̄ν are characterized in (4.2).

Proof. See §E.3 for a detailed proof and more dependencies
on other constants.

The proof of Theorem 4.2 is based on Lemma E.5 and a
Danskin-type lemma in §E.1 which ensures an appropriate
estimate of gradG provided by inner loops and the smooth-
ness of the objective defined in Assumption 2.2. Such prop-
erties imply that VTIG behaves as the gradient descent over
the inner maximization value functionalG, which concludes
the proof. The bounds for the first-order errors Jµ and Jν
are composed of the optimization error θ of player ν, the
optimization error O(K−1µ ) of player µ, and the gradient
errors ε̄µ and ε̄ν characterized in (4.2) due to finite samples.
Specifically, the term ∆ encapsulates both the statistical er-
ror and the optimization error of player ν, which are added to√
ε̄µ andO(K−1µ ) in the error bound for player µ. Consider-

ingNµ, Nν ,Kµ, andKν as dominating terms in the bounds,
if we set Nµ = Nν = O(θ−4), Kµ ≥ Kµ(θ) = O(θ−2),
and Kν ≥ Kν(θ) = O(log(θ−1)), by Definition 2.5 we
achieve a θ-IFNE. In this sense, VTIG converges at a sub-
linear rate to the IFNE defined in (2.8) under the PL game
condition.

4.3. Convergence to the Minimax Value under the
Two-Sided PL Condition

In this section, we aim to achieve a stronger convergence
result leading to the minimax value of the game by a stronger
assumption. We give the definition of two-sided Riemannian
PL games below.

Assumption 4.3 (Two-Sided Riemannian PL Game). We
define functionals Hµ(ν) = −F (µ, ν) and Fν(µ) =
F (µ, ν) for fixed µ and ν, respectively. We assume (2.3) to
be a two-sided Riemannian PL game, or simply a two-sided
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PL game, in the sense that Fν(µ) is ξ1-PL and Hµ(ν) is
ξ2-PL for some ξ1, ξ2 > 0.

Note that the definition of two-sided PL games relaxes that
of the convex-concave games even in infinite-dimensional
spaces. In fact, Example 2.4 provides a two-sided PL game
by KL regularization for both players, which is ubiquitous in
training GANs. Assumption 4.3 also guarantees a PL condi-
tion on G(µ) = maxν∈M F (µ, ν) according to Lemma F.1.
By using such a landscape, we establish the linear conver-
gence rate of finding the minimax value of the game as
below.

Theorem 4.4 (Convergence to the Minimax Value of
Two-Sided PL Games). Let the objective F satisfy (2.4),
Assumption 2.2 and 4.3. Suppose that F̃ satisfies
Assumption 4.1. With the outer-loop stepsize ηµ ∈[
0,min{1/h, 1/(4L̃)}

)
and inner-loop stepsize ην ∈(

0,min{1/(4Lν), 1/h}
)
, for k ≥ 1 it holds that

EX0

[
F
(
µ̃k, ν

∗(µ̃k)
)]
− F (µ∗, ν∗)

≤ σ̃k ·
(
EX0

[
F (µ̃0, ν̃1)

]
− F (µ∗, ν∗)

)
︸ ︷︷ ︸

(i)

+
1− σ̃k

1− σ̃
· ηµ
(
ε̄µ + ∆̃2

)
︸ ︷︷ ︸

(ii)

, (4.5)

where µ̃k and ν̃k+1 are probability measure iterates defined
in Algorithm 2, gradient error terms ε̄µ and ε̄ν are given
in (4.2). The expectation is taken w.r.t. the initial sampleX0.
The contraction factor is σ̃ = 1 − ξ1ηµ/2, and we define
the total error term for player ν as ∆̃2 = L2

0/2ξ2 ·
(
σKν ·

MH + ην ε̄ν · 1−σ
Kν

1−σ

)
, where MH is the upper bound of

F (µ, ν∗(µ))−F (µ, ν0(µ)) defined in §4.2, andKν denotes
the number of timesteps for player ν in Algorithm 2.

Proof. See §F.2 for a detailed proof.

The proof of Theorem 4.4 differs from that of Theorem 4.2
mainly by the lower bounds of gradient norms provided by
ξ1-PL condition on functional G. Under the two-sided PL
condition in Assumption 4.3, Theorem 4.4 characterizes
a linear convergence rate for VTIG of the objective func-
tional value to the minimax value F (µ∗, ν∗) of the game,
with an accumulated statistical error term (ii). In detail, the
optimization error (i) decays by a factor of σ̃ linearly. Ad-
ditionally, our statistical error is composed of the gradient
error ε̄µ of player µ and the error term ∆̃2, which is further
decomposed into the linearly decaying optimization error
σKνMH and the gradient error ε̄ν of player ν scaled by
(1− σKν )/(1− σ). Specifically, in the total bound (4.5) ε̄µ
scales at a rate of (1−σ̃k)/(1−σ̃) with the iteration k and ε̄ν
scales at the rate of (1− σ̃k)/(1− σ̃) · (1− σKν )/(1− σ),

which implies the error accumulation from the the inner
loop of Algorithm 2. Also, we adopt the objective value
instead of IFNE in Theorem 4.2 to measure the error of con-
vergence to the minimax value. Although we suffer from
the finite-sample error to approximate probability measures,
it is flexible to tune parameters Nµ, Nν ,Kµ, and Kν ac-
cording to their corresponding error terms in the bound to
optimize the algorithm in practice, especially when some
parameters are restricted.

5. Toy Experiments
In this section we report some results for a toy experiment
with a Gaussian mixture model with 8 Gaussian distribu-
tions. For simplicity, we drop the regularizer terms from
WGAN loss and consider a mixture of 8 generators and
discriminators corresponding to the particles for parame-
ters of the generator and the discriminator of WGAN. Both
generators and discriminators are MLP with 3 layers. We
also don’t tune the learning rate and set it to be 10−4. We
run the model for 20000 iterations which is small compared
to the typical number of iterations used in practice to train
a WGAN model. In our experiment we reused the code
provided by (Hsieh et al., 2018) with some simple modifi-
cation. We present some samples generated from trained
generators in Figure 2. The blue dots are generated from
real mixture models and the red ones are generated from
generators. We observe that the distribution generated by
our generator matches the groundtruth after a short train-
ing period, and the sampling procedure is faster than the
SGLD-based methd.

6. Conclusion
In this paper, we lift finite-dimensional zero-sum games to
infinite-dimensional distributional zero-sum games over a
space of probability measures, in order to find mixed NEs
for finite-dimensional games. We then propose a particle-
based variational transport algorithm in the functional space
to solve such games, by analogy with the gradient descent-
ascent algorithm in finite-dimensional spaces. Furthermore,
we provide the first complete statistical and convergence
guarantees for such particle-based method. Our analysis
applies to problems with different assumptions on non-
convexity (PL games and two-sided PL games). Toy ex-
periments show promising empirical results.

Acknowledgments
We thank Baptiste Goujaud and Damien Scieur for enlight-
ening discussion. Zhaoran Wang acknowledges National
Science Foundation (Awards 2048075, 2008827, 2015568,
1934931), Simons Institute (Theory of Reinforcement Learn-
ing), Amazon, J.P. Morgan, and Two Sigma for their sup-



Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport

Figure 2. Toy experiment results: blue dots represent samples from the gaussian mixture and the red dots represent the samples generated
from generators.

ports. Zhuoran Yang acknowledges Simons Institute (The-
ory of Reinforcement Learning).



Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein

GAN. arXiv preprint arXiv:1701.07875, 2017.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Gener-
alization and equilibrium in generative adversarial nets
(GANs). In International Conference on Machine Learn-
ing, pp. 224–232. JMLR. org, 2017.

Baudoin, F. and Bonnefont, M. Reverse Poincaré inequali-
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