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Abstract

In label-noise learning, the transition matrix
plays a key role in building statistically consis-
tent classifiers. Existing consistent estimators
for the transition matrix have been developed by
exploiting anchor points. However, the anchor-
point assumption is not always satisfied in real
scenarios. In this paper, we propose an end-to-
end framework for solving label-noise learning
without anchor points, in which we simultane-
ously optimize two objectives: the cross entropy
loss between the noisy label and the predicted
probability by the neural network, and the vol-
ume of the simplex formed by the columns of
the transition matrix. Our proposed framework
can identify the transition matrix if the clean
class-posterior probabilities are sufficiently scat-
tered. This is by far the mildest assumption un-
der which the transition matrix is provably iden-
tifiable and the learned classifier is statistically
consistent. Experimental results on benchmark
datasets demonstrate the effectiveness and ro-
bustness of the proposed method.

1. Introduction
The success of modern deep learning algorithms heavily
relies on large-scale accurately annotated data (Daniely &
Granot, 2019; Han et al., 2020b; Xia et al., 2020; Berthon
et al., 2021). However, it is often expensive or even in-
feasible to annotate large datasets. Therefore, cheap but
less accurate annotating methods have been widely used
(Xiao et al., 2015; Li et al., 2017; Han et al., 2020a; Yu
et al., 2020; Zhu et al., 2021a). As a consequence, these
alternatives inevitably introduce label noise. Training deep
learning models on noisy data can significantly degenerate
the test performance due to overfitting to the noisy labels
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(Arpit et al., 2017; Zhang et al., 2017; Xia et al., 2021; Wu
et al., 2021).

To mitigate the negative impacts of label noise, many meth-
ods have been developed and some of them are based on a
loss correction procedure. In general, these methods are
statistically consistent, i.e., these methods guarantee that
the classifier learned from the noisy data approaches to the
optimal classifier defined on the clean risk as the size of the
noisy training set increases (Liu & Tao, 2016; Scott, 2015;
Natarajan et al., 2013; Goldberger & Ben-Reuven, 2017;
Patrini et al., 2017; Thekumparampil et al., 2018). The idea
is that the clean class-posterior P (Y |X = x) := [P (Y =
1|X = x), . . . , P (Y = C|X = x)]⊤ can be inferred by
utilizing the noisy class-posterior P (Ỹ |X = x) and the
transition matrix T (x) where T ij(x) = P (Ỹ = j|Y =

i,X = x), i.e., P (Y |X = x) = [T (x)]−1P (Ỹ |X = x).
While those methods theoretically guarantee the statistical
consistency, they all heavily rely on the success of estimat-
ing transition matrices.

Generally, the transition matrix is unidentifiable without
additional assumptions (Xia et al., 2019). In the litera-
ture, methods have been developed to estimate the transi-
tion matrices under the so-called anchor-point assumption:
it assumes the existence of anchor points, i.e., instances
belonging to a specific class with probability one (Liu &
Tao, 2016). The assumption is reasonable in certain appli-
cations (Liu & Tao, 2016; Patrini et al., 2017). However,
the violation of the assumption in some cases could lead to
a poorly learned transition matrix and a degenerated clas-
sifier (Xia et al., 2019). This motivates the development
of algorithms without exploiting anchor points (Xia et al.,
2019; Liu & Guo, 2020; Xu et al., 2019; Zhu et al., 2021b).
However, the performance is not theoretically guaranteed
in these works.

Motivation. In this work, our interest lies in designing
a consistent algorithm without anchor points, subject to
class-dependent label noise, i.e., T (x) = T for any x in
the feature space. Our algorithm is based on a geometric
property of the label corruption process. Given an instance
x, the noisy class-posterior probability P (Ỹ |X = x) :=
[P (Y = 1|X = x), . . . , P (Y = C|X = x)]⊤ can be
thought of as a point in the C-dimensional space where
C is the number of classes. Since we have P (Ỹ |X =
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x) = TP (Y |X = x) and
!C

i=1 P (Y = i|X = x) = 1,
P (Ỹ |X = x) is then a convex combination of the columns
of T . This means that the simplex Sim{T } formed by the
columns of T encloses P (Ỹ |X = x) for any x (Boyd
et al., 2004). Thus, the problem of identifying the tran-
sition matrix can be treated as the problem of recovering
Sim{T }. However, when no assumption has been made,
the problem is ill-defined as Sim{T } is not identifiable,
i.e., there exists an infinite number of simplexes enclosing
P (Ỹ |X), and any of them can be regarded as the true sim-
plex Sim{T }. It is apparent that under the anchor-point as-
sumption, Sim{T } can be uniquely determined by exploit-
ing anchor points whose noisy class-posterior probabilities
are the vertices of Sim{T }. The goal is thus to identify the
points which have the largest noisy class-posterior proba-
bilities for each class (Liu & Tao, 2016; Patrini et al., 2017).
However, if there are no anchor points, the identified points
would not be the vertices of Sim{T }. In this case, ex-
isting methods cannot consistently estimate the transition
matrices. To recover T without anchor points, a key ob-
servation is that, among all simplexes enclosing P (Ỹ |X),
Sim{T } is the one with minimum volume. See Figure 1 for
a geometric illustration. This observation motivates the de-
velopment of our method which incorporates the minimum
volume constraint of Sim{T } into label-noise learning.

To this end, we propose Volume Minimization Network
(VolMinNet) to consistently estimate the transition matrix
and build a statistically consistent classifier. Specifically,
VolMinNet consists of a classification network hθ and a
trainable transition matrix T̂ . We simultaneously opti-
mize T̂ and hθ with two objectives: i) the discrepancy
between T̂ hθ(x) and the noisy class-posterior distribution
P (Ỹ |X = x), ii) The volume of the simplex formed by
the columns of T̂ . The proposed framework is end-to-
end, and there is no need for identifying anchor points or
pseudo anchor points (i.e., instances belonging to a spe-
cific class with probability close to one) (Xia et al., 2019).
Since our proposed method does not rely on any specific
data points, it yields better noise robustness compared with
existing methods. With a so-called sufficiently scattered as-
sumption where the clean class-posterior distribution is far
from uniform, we theoretically prove that T̂ will converge
to the true transition matrix T while hθ(x) converges to
the clean class-posterior P (Y |X = x). We also prove that
the anchor-point assumption is a special case of the suffi-
ciently scattered assumption.

The rest of this paper is organized as follows. In Section 2,
we set up the notations and review the background of label-
noise learning with anchor points. In Section 3, we intro-
duce our proposed VolMinNet. In Section 4, we present the
main theoretical results. In Section 5, we briefly introduce
the related works in the literature. Experimental results on
both synthetic and real-world datasets are provided in Sec-

Figure 1. Geometric illustration of the problem of estimating the
transition matrix without anchor points. The red triangle is the
simplex of T with vertices denoted by T :;i. When there are no
anchor points, the simplex found with existing methods (blue tri-
angle) by using extreme-valued noisy class-posterior probabilities
(see Eq. (4)) is not the true simplex (red triangle). It is obvious
that among possible enclosing simplexes (black and red triangles),
the true simplex Sim{T } has the minimum volume.

tion 6. Finally, we conclude the paper in Section 7.

2. Label-Noise Learning with Anchor Points
In this section, we review the background of label-noise
learning. We follow common notational conventions in
the literature of label-noise learning. v ∈ Rn and V ∈
Rn×m denote a real-valued n-dimensional vector and a
real-valued n × m matrix, respectively. Elements of a
vector are denoted by a subscript (e.g., vj), while rows
and columns of a matrix are denoted by V i,: and V :,i

respectively. The ith standard basis vector in RC is de-
noted by ei. We denote the all-ones vector by 1, and
∆C−1 ⊂ [0, 1]C is the C-dimensional simplex. In this
work, we also make extensive use of convex analysis. Let
a set V = {v1, . . . ,vm}, and the convex cone of V is de-
noted by cone(V) = {v|v =

!m
j=1 vjαj , αj ≥ 0, ∀j}.

Similarly, the convex hull of V is defined as conv(V) =
{v|v =

!m
j=1 vjαj , αj ≥ 0,

!m
j=1 αj = 1, ∀j}.

Specially, when {v1, . . . ,vm} are affinely independent,
conv(V) is also called a simplex which we denote it as
Sim(V).

Let D be the underlying distribution generating a pair of
random variables (X,Y ) ∈ X × Y, where X ⊆ Rd is the
feature space, Y = {1, 2, . . . , C} is the label space and C
is the number of classes. In many real-world applications,
samples drawn from D are unavailable. Before being ob-
served, labels of these samples are contaminated with noise
and we obtain a set of corrupted data {(xi, ỹi)}ni=1 where
ỹ is the noisy label and we denote by D̃ the distribution of
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the noisy random pair (X, Ỹ ) ∈ X × Y .

Given an instance x sampled from X , Ỹ is derived from
the random variable Y through a noise transition matrix
T (x) ∈ [0, 1]C×C :

P (Ỹ |X = x) = T (x)P (Y |X = x), (1)

where P (Ỹ |X = x) = [P (Y = 1|X = x), . . . , P (Y =
C|X = x)]⊤ and P (Y |X = x) = [P (Ỹ = 1|X =
x), . . . , P (Ỹ = C|X = x)]⊤ are the clean class-posterior
probability and the noisy class-posterior probability, re-
spectively. The ij-th entry of the transition matrix, i.e.,
T ij(x) = P (Ỹ = i|Y = j,X = x), represents the prob-
ability that the instance x with the clean label Y = i will
have a noisy label Ỹ = j. Generally, the transition ma-
trix is non-identifiable without any additional assumption
(Xia et al., 2019). For example, we can decompose the
transition matrix with T (x) = T 1(x)T 2(x). If we define
P ′(Y |X = x) = T 2(x)P (Y |X = x), then P (Ỹ |X =
x) = T (x)P (Y |X = x)) = T 1(x)P

′(Y |X = x) are
both valid. Therefore, in this paper, we study the class-
dependent and instance-independent transition matrix on
which the majority of existing methods focus (Han et al.,
2018b;a; Patrini et al., 2017; Northcutt et al., 2017; Natara-
jan et al., 2013). Formally, we have:

P (Ỹ |X = x) = TP (Y |X = x), (2)

where the transition matrix T is now independent of the
instance x. In this work, we also assume that the true tran-
sition matrix T is diagonally dominant1. Specifically, the
transition matrix T is diagonally dominant if for every col-
umn of T , the magnitude of the diagonal entry is larger
than any non-diagonal entry, i.e., T ii > T ij for any i ∕= j.
This assumption has been commonly used in the literature
of label-noise learning(Patrini et al., 2017; Xia et al., 2019;
Yao et al., 2020b).

As in Eq. (2), the clean class-posterior probability P (Y |X)
can be inferred by using the noisy class-posterior probabil-
ity P (Ỹ |X) and the transition matrix T as P (Y |X) =
T−⊤P (Ỹ |X). For this reason, the transition matrix has
been widely exploited to build statistically consistent clas-
sifiers, i.e., the learned classifier will converge to the op-
timal classifier defined with clean risk. Specifically, the
transition matrix has been used to modify loss functions
to build risk-consistent estimators (Goldberger & Ben-
Reuven, 2017; Patrini et al., 2017; Yu et al., 2018; Xia
et al., 2019), and has been used to correct hypotheses
to build classifier-consistent algorithms (Natarajan et al.,
2013; Scott, 2015; Patrini et al., 2017). Thus, the successes
of these consistent algorithms rely on an accurately learned
transition matrix.

1The definition of being diagonally dominant is different from
the one in matrix analysis, but it has been commonly used in label-
noise learning (Xu et al., 2019)

In recent years, considerable efforts have been invested in
designing algorithms for estimating the transition matrix.
These algorithms rely on a so-called anchor-point assump-
tion which requires that there exist anchor points for each
class (Liu & Tao, 2016; Xia et al., 2019).
Definition 1 (anchor-point assumption). For each class i ∈
{1, 2, . . . , C}, there exists an instance xi ∈ X such that
P (Y = i|X = xi) = 1.

Under the anchor-point assumption, the task of estimating
the transition matrix boils down to finding anchor points for
each class. For example, given anchor points xi, we have

P (Ỹ = j | X = xi) =

C"

k=1

TkjP (Y = k | X = xi) = Tij .

(3)
Namely, the transition matrix can be obtained with the
noisy class-posterior probabilities of anchor points. As-
suming that we can accurately model the noisy class-
posterior P (Ỹ |X) given a sufficient number of noisy data
, anchor points can be easily found as follows (Liu & Tao,
2016; Patrini et al., 2017):

xi = argmax
x

P (Ỹ = i|X = x). (4)

However, when the anchor-point assumption is not satis-
fied, points found with Eq. (4) are no longer anchor points.
Hence, the above-mentioned method can not consistently
estimate the transition matrix with Eq. (3), which will lead
to a statistically inconsistent classifier. This motivates us to
design a statistically classifier-consistent algorithm which
can consistently estimate the transition matrix without an-
chor points.

3. Volume Minimization Network
In this section, we propose a novel framework for label-
noise learning which we call the Volume Minimization
Network (VolMinNet). The proposed framework is end-to-
end, and there is no need for identifying anchor points or
a second stage for loss correction, resulting in better noise
robustness than existing methods.

To learn the clean class-posterior P (Y |X), we define a
transformation hθ : X → ∆C−1 where hθ is a differen-
tiable function represented by a neural network with pa-
rameters θ. To estimate the transition matrix, we construct
a trainable diagonally dominant column stochastic matrix
T̂ , i.e., T̂ ∈ [0, 1]C×C ,

!C
j=1 T ij = 1 and T ii > T ij

for any i ∕= j. To learn the noisy class posterior distribu-
tion from the noisy data, with some abuse of notation, we
define the composition of T̂ and hθ as T̂hθ : X → ∆C−1.

Intuitively, as explained in Section 1, if T̂hθ models
P (Ỹ |X) perfectly while the simplex of T̂ has the mini-
mum volume, T̂ will converge to the true transition matrix
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Figure 2. Overview of the proposed VolMinNet. The training in the proposed framework is carried out in an end-to-end manner with
two objectives (red blocks) optimized simultaneously.

T and hθ will converge to P (Y |X). This motivates us
to propose the following criterion which corresponds to a
constraint optimization problem:

min
T̂∈T

vol(T̂ )

s.t. T̂hθ = P (Ỹ |X),
(5)

where T = {T̂ ∈ [0, 1]C×C |
!C

j=1 T̂ ij = 1, T ii >
T ij , ∀i ∕= j} is the set of diagonally dominant column
stochastic matrices. vol(T̂ ) denotes a measure that is re-
lated or proportional to the volume of the simplex formed
by the columns of T̂ .

To solve criterion (5), we first note that the constraint
T̂hθ = P (Ỹ |X) can be solved with expected risk min-
imization (Patrini et al., 2017). The risk is defined as
R̃(hθ) = E(x,ỹ)∼D̃[ℓ(T̂hθ(x), ỹ)], where ℓ is a loss func-
tion and we use the cross-entropy loss throughout this pa-
per. We can then re-write criterion (5) as a Lagrangian
under the KKT condition (Karush, 1939; Kuhn & Tucker,
2014) to obtain:

L(θ, T̂ ) := vol(T̂ ) + β · E(x,ỹ)∼D̃[ℓ(T̂hθ(x), ỹ)], (6)

where β > 0 is the KKT multiplier. In the literature,
various functions for measuring the volume of the sim-
plex have been investigated (Fu et al., 2015; Li & Bioucas-
Dias, 2008; Miao & Qi, 2007). Given T̂ is a square ma-
trix, a common choice is vol(T̂ ) = det(T̂ ), where det
denotes the determinant. However, this function is numer-
ically unstable for optimization and computationally hard
to deal with. Hence, we adopt another popular alternative
log det(T̂ ). This function has been widely used in low-
rank matrix recovery and non-negative matrix decomposi-
tion (Fazel et al., 2003; Liu et al., 2012; Fu et al., 2016).
Besides, since we only have access to a set of noisy train-
ing examples {(xi, ỹi)}ni=1 instead of the distribution D̃,
we employ the empirical risk for training. Formally, we

propose the following objective function:

L(θ, T̂ ) :=
1

n

n"

i=1

ℓ̃(T̂hθ(xi)), ỹi) + λ · log det(T̂ ), (7)

where λ > 0 is a regularization coefficient that balances
distribution fidelity versus volume minimization.

The problem remains how to design T̂ so that it is differen-
tiable, diagonally dominant and column stochastic. Specif-
ically, we first create a matrix A ∈ RC×C so that diag-
onal elements Aii = 1 for all i ∈ {1, 2, . . . , C}, and all
other elements Aij = σ(wij) for all i ∕= j where σ is
the sigmoid function σ(w) = 1

1+e−w and each wij ∈ R
is a real-valued variable which will be updated throughout
training. Then we do the normalization T̂ ij =

Aij!C
k=1 Aik

so that the sum of each column of T̂ is equal to one. Since
the sigmoid function returns a value in the range 0 to 1,
we have T ii > T ij for all i, j ∈ {1, 2, . . . , C}. With this
specially designed T̂ , we ensure that T̂ ∈ T, i.e., T̂ is a
diagonally dominant and column stochastic matrix. In ad-
dition, T̂ is differentiable because the sigmoid function and
the normalization operation are differentiable.

With both T̂ and hθ being differentiable, the objective in
Eq. (7) can be easily optimized with any standard gradient-
based learning rule. This allows us to replace the two-stage
loss correction procedure in existing works with an end-
to-end learning framework. See Figure 2 for a less for-
mal, more pedagogical explanation of our proposed learn-
ing framework.

4. Theoretical Results
In this section, we show that criterion (5) guarantees the
consistency of the estimated transition matrix and the
learned classifier under the sufficiently scattered assump-
tion. We also show that the anchor-point assumption is
a special case of the sufficiently assumption. To explain,
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we give a formal definition of the sufficiently scattered as-
sumption:

Definition 2 (Sufficiently Scattered). The clean class-
posterior P (Y |X) is said to be sufficiently scattered if
there exists a set H = {x1, . . . , xm} ⊆ X such that the
matrix H = [P (Y |X = x1), . . . , P (Y |X = xm)] sat-
isfies (1) R ⊆ cone{H}, where R = {v ∈ RC |
v⊤1 ≥

√
C − 1‖v‖2} and cone{H} denotes the convex

cone formed by columns of H . (2) cone{H} ⊈ cone{Q},
for any unitary matrix Q ∈ RC×C that is not a permutation
matrix.

This assumption is evolved from previous works in non-
negative matrix decomposition (Fu et al., 2015; 2018) with
necessary modification. Intuitively, in the case of C = 3,
R corresponds to a “ball” tangential to the triangle formed
by a permutation matrix, e.g., I = [e1, e2, e3]. cone{H}
is the polytope inside this triangle. Columns of Q also form
triangles which are rotated versions of the triangle defined
by permutation matrices; facets of those triangles are also
tangential to R. Condition (1) of the sufficiently scattered
assumption requires that R is enclosed by cone{H}, i.e.,
R is a subset of cone{H}. Condition (2) ensures that given
condition (1), cone{H} is enclosed by the triangle formed
by a permutation matrix and not any other unitary matrix.

To understand the sufficiently scattered assumption and its
relationship with the anchor-point assumption, we provide
several examples in Figure 3. In Figure 3.(a), we show a
situation where both the anchor-point assumption and suf-
ficiently scattered assumption are satisfied. Figure 3.(b)
shows a situation where the sufficiently scattered assump-
tion is satisfied while the anchor-point assumption is vi-
olated. In Figure 3.(c) and 3.(d), both assumptions are
violated. However, in Figure 3.(d), only condition (2) of
the sufficiently scattered assumption is violated while both
conditions of the sufficiently scattered assumption are vio-
lated in 3.(c).

The first observation is that if the anchor-point assump-
tion is satisfied, then the sufficiently scattered assumption
must hold, but not vice versa. Intuitively, if the anchor-
point assumption is satisfied, then there exists a matrix
H = [P (Y |X = x1), . . . , P (Y |X = xC)] = I where
x1, . . . ,xC are anchor points for different classes and I
is the identity matrix. From Figure 3.(a) , it is clear that
R ⊆ cone{I} = cone{H}, and cone{H} can only be
enclosed by the convex cone of permutation matrices. This
shows that the sufficiently scattered assumption is satisfied.
However, from Figure 3.(b), it is clear that the sufficiently
scattered assumption is satisfied but not the anchor-point
assumption. Formally, we show that:

Proposition 1. The anchor-point assumption is a sufficient
but not necessary condition for the sufficiently scattered as-
sumption when C > 2.

The proof of Proposition 1 is included in the supplemen-
tary material. Proposition 1 implies that the anchor-point
assumption is a special case of the sufficiently scattered as-
sumption. This means that the proposed framework can
also deal with the case where the anchor-point assumption
holds. Under the sufficiently scattered assumption, we get
our main result:

Theorem 1. Given sufficiently many noisy data, if
P (Y |X) is sufficiently scattered, then T̂ ! = T and
hθ!(x) = P (Y |X = x) must hold, where (T̂ !,θ!) are
optimal solutions of Eq. (5).

The proof of Theorem 1 can be found in the supplemen-
tary material. Intuitively, if P (Y |X) is sufficiently scat-
tered, the noisy class-posterior P (Ỹ |X) will be sufficiently
spread in the simplex formed by the columns of T . Then,
finding the minimum-volume data-enclosing convex hull of
P (Ỹ |X) recovers the ground-truth T and P (Y |X).

5. Related Works
In this section, we review existing methods in label-noise
learning. Based on the statistical consistency of the learned
classifier, we divided exsisting methods for label-noise
learning into two categories: heuristic algorithms and sta-
tistically consistent algorithms.

Methods in the first category focus on employing heuristics
to reduce the side-effect of noisy labels. For example, many
methods use a specially designed strategy to select reli-
able samples (Yu et al., 2019; Han et al., 2018b; Malach &
Shalev-Shwartz, 2017; Ren et al., 2018; Jiang et al., 2018;
Yao et al., 2020a) or correct labels (Ma et al., 2018; Kremer
et al., 2018; Tanaka et al., 2018; Reed et al., 2015). Al-
though those methods empirically work well, there is not
any theoretical guarantee on the consistency of the learned
classifiers from all these methods.

Statistically consistent algorithms are primarily developed
based on a loss correction procedure (Liu & Tao, 2016; Pa-
trini et al., 2017; Zhang & Sabuncu, 2018). For these meth-
ods, the noise transition matrix plays a key role in build-
ing consistent classifiers. For example, Patrini et al.(2017)
leveraged a two-stage training procedure of first estimat-
ing the noise transition matrix and then use it to modify
the loss to ensure risk consistency. These works rely on
anchor points or instances belonging to a specific class
with probability one or approximately one. When there
are no anchor points in datasets or data distributions, all
the aforementioned methods cannot guarantee the statisti-
cal consistency. Another approach is to jointly learn the
noise transition matrix and classifier. For instance, on top
of the softmax layer of the classification network (Gold-
berger & Ben-Reuven, 2017), a constrained linear layer or
a nonlinear softmax layer is added to model the noise tran-
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Figure 3. Illustration of the anchor-point assumption and the sufficiently scattered assumption in the case of C = 3 by assuming that
the viewer are facing the hyperplane 1⊤x = 1 from the positive orthant. The dots are class-posterior probabilities P (Y |X = x); the
triangle is the non-negative orthant; the inner circle is R; the region encompassed by red lines is cone{H}. Clearly, the anchor-point
assumption (a) is a special case of the sufficiently scattered assumption (b).

sition matrix (Sukhbaatar et al., 2015). Zhang et al. (2021)
concurrently propose a one-step method for the label-noise
learning problem and a derivative-free method for estimat-
ing the transition matrix. Specifically, their method uses
a total variation regularization term to prevent the over-
confidence problem of the neural network, which leads
to a more accurate noisy class-posterior. However, the
anchor-point assumption is still needed for their method.
Based on different motivations, assumptions and learning
objectives, their method achieves different theoretical re-
sults compared with our proposed method. Learning with
noisy labels are also closely related to learning with com-
plementary labels where instead of noisy labels, only com-
pelementary labels are given for training (Yu et al., 2018;
Chou et al., 2020; Feng et al., 2020).

Recently, some methods exploiting semi-supervised learn-
ing techniques have been proposed to solve the label-noise
learning problem like SELF (Nguyen et al., 2019) and Di-
videMix (Li et al., 2019). These methods are aggregations
of multiple techniques such as augmentations and multiple
networks. Noise robustness is significantly improved with
these methods. However, these methods are sensitive to the
choice of hyperparameters and changes in data and noise
types would generate degenerated classifiers. In addition,
the computational cost of these methods increases signifi-
cantly compared with previous methods.

6. Experiments
In this section, we verify the robustness of the pro-
posed volume minimization network (VolMinNet) from
two folds: the estimation error of the transition matrix and
the classification accuracy.

Datasets We evaluate the proposed method on three syn-
thetic noisy datasets, i.e., MNIST, CIFAR-10 and CIFAR-
100 and one real-world noisy dataset, i.e., clothing1M. We

leave out 10% of the training examples as the validation
set. The three synthetic datasets contain clean data. We
corrupted the training and validation sets manually accord-
ing to transition matrices. Specifically, we conduct exper-
iments with two commonly used types of noise: (1) Sym-
metry flipping (Patrini et al., 2017); (2) Pair flipping (Han
et al., 2018b). We report both the classification accuracy on
the test set and the estimation error between the estimated
transition matrix T̂ and the true transition matrix T . All
experiments are repeated five times on all datasets. Fol-
lowing T-Revision (Xia et al., 2019), we also conducted
experiments on datasets where possible anchor points are
removed from the datasets. The details and more experi-
mental results can be found in the Supplementary Material.

Clothing1M is a real-world noisy dataset which consists of
1M images with real-world noisy labels. Existing methods
like Forward (Patrini et al., 2017) and T-revision (Xia et al.,
2019) use the additional 50k clean training data to help
initialize the transition matrix and validate on 14k clean
validation data. Here we use another setting which is also
commonly used in the literature (Xia et al., 2020). We only
exploit the 1M data for both transition matrix estimation
and classification training. Specifically, we leave out 10%
of the noisy training examples as a noisy validation set for
model selection. We think this setting is more natural con-
sidering that it does not require any clean data. All results
of baseline methods are quoted from PTD (Xia et al., 2020)
as we have the same setting.

Network structure and optimization For a fair compar-
ison, we implement all methods with default parameters
by PyTorch on Tesla V100-SXM2. For MNIST, we use a
LeNet-5 network. SGD is used to train the classification
network hθ with batch size 128, momentum 0.9, weight
decay 103 and a learning rate 10−2. Adam with default
parameters is used to train the transition matrix T̂ . The
algorithm is run for 60 epoch. For CIFAR10, we use a
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Figure 4. Transition matrix estimation error on MNIST, CIFAR-10 and CIFAR-100. The error bar for the standard deviation in each
figure has been shaded. The lower the better.

ResNet-18 network. SGD is used to train both the classi-
fication network hθ and the transition matrix T̂ with batch
size 128, momentum 0.9, weight decay 103 and an initial
learning rate 10−2. The algorithm is run for 150 epoch and
the learning rate is divided by 10 after the 30th and 60th
epoch. For CIFAR100, we use a ResNet-32 network. SGD
is used to train the classification network hθ with batch
size 128, momentum 0.9, weight decay 103 and an initial
learning rate 10−2. Adam with default parameters is used
to train the transition matrix T̂ . The algorithm is run for
150 epoch and the learning rate is divided by 10 after the
30th and 60th epoch. For CIFAR-10 and CIFAR-100, we
perform data augmentation by horizontal random flips and
32 × 32 random crops after padding 4 pixels on each side.
For clothing1M, we use a ResNet-50 pre-trained on Ima-
geNet. We only use the 1M noisy data to train and validate
the network. For the optimization, SGD is used train both
the classification network hθ and the transition matrix T̂
with momentum 0.9, weight decay 103, batch size 32, and
run with learning rates 2 × 103 and 2 × 105 for 5 epochs
each. For each epoch, we ensure the noisy labels for each
class are balanced with undersampling. Throughout all ex-
periments, we fixed λ = 10−4 and the trainable weights w
of T̂ are initialized with ln 1

C−2 (roughly -2 for MNIST and
CIFAR10, -4.5 for CIFAR100 and -2.5 for clothing1M).

6.1. Transition Matrix Estimation

For evaluating the effectiveness of estimating the transition
matrix, we compare the proposed method with the follow-
ing methods: (1) T-estimator max (Patrini et al., 2017),
which identify the extreme-valued noisy class-posterior
probabilities from given samples to estimate the transition
matrix. (2) T-estimator 3% (Patrini et al., 2017), which
takes a α-percentile in place of the argmax of Equation
4. (3) T-Revision (Xia et al., 2019), which introduces a
slack variable to revise the noise transition matrix after ini-
tializing the transition matrix with T-estimator. (4) Dual
T-estimator (Yao et al., 2020b), which introduces an inter-
mediate class to avoid directly estimating the noisy class-
posterior and factorizes the transition matrix into the prod-
uct of two easy-to-estimate transition matrices.

To show that the proposed method is more robust in esti-
mating the transition matrix, we plot the estimation error
for the transition matrix, i.e., ‖T − T̂ −∆T̂‖1/‖T‖1. Fig-
ure 4 depicts estimation errors of transition matrices esti-
mated by the proposed VolMinNet and other baseline meth-
ods. For all different settings of noise on three different
datasets (original intact datasets), VolMinNet consistently
gives better results compared to the baselines, which shows
its superior robustness against label noise. For example, on
CIFAR100 (Flip-0.45), our method achieves estimation er-
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MNIST CIFAR-10 CIFAR-100
Sym-20% Sym-50% Sym-20% Sym-50% Sym-20% Sym-50%

Decoupling 97.04± 0.06 94.58± 0.08 77.32± 0.35 54.07± 0.46 41.92± 0.49 22.63± 0.44
MentorNet 97.21± 0.06 95.56± 0.15 81.35± 0.23 73.47± 0.15 42.88± 0.41 32.66± 0.40

Co-teaching 97.07± 0.10 95.20± 0.23 82.27± 0.07 75.55± 0.07 48.48± 0.66 36.77± 0.52
Forward 98.60± 0.19 97.77± 0.16 85.20± 0.80 74.82± 0.78 54.90± 0.74 41.85± 0.71

T-Revision 98.72± 0.10 98.23± 0.10 87.95± 0.36 80.01± 0.62 62.72± 0.69 49.12± 0.22
DMI 98.70± 0.02 98.12± 0.21 87.54± 0.20 82.68± 0.21 62.65± 0.39 52.42± 0.64

Dual T 98.43± 0.05 98.15± 0.12 88.35± 0.33 82.54± 0.19 62.16± 0.58 52.49± 0.37
VolMinNet 98.74± 0.08 98.23± 0.16 89.58± 0.26 83.37± 0.25 64.94± 0.40 53.89± 1.26

MNIST CIFAR-10 CIFAR-100
Pair-20% Pair-45% Pair-20% Pair-45% Pair-20% Pair-45%

Decoupling 96.93± 0.07 94.34± 0.54 77.12± 0.30 53.71± 0.99 40.12± 0.26 27.97± 0.12
MentorNet 96.89± 0.04 91.98± 0.46 77.42± 0.00 61.03± 0.20 39.22± 0.47 26.48± 0.37

Co-teaching 97.00± 0.06 96.25± 0.01 80.65± 0.20 73.02± 0.23 42.79± 0.79 27.97± 0.20
Forward 98.84± 0.10 75.06± 12.61 88.21± 0.48 77.44± 6.89 56.12± 0.54 36.88± 2.32

T-Revision 98.89± 0.08 84.56± 8.18 90.33± 0.52 78.94± 2.58 64.33± 0.49 41.55± 0.95
DMI 98.84± 0.09 97.92± 0.76 89.89± 0.45 73.15± 7.31 59.56± 0.73 38.17± 2.02

Dual T 98.86± 0.04 96.71± 0.12 89.77± 0.25 76.53± 2.51 67.21± 0.43 47.60± 0.43
VolMinNet 99.01± 0.07 99.00± 0.07 90.37± 0.30 88.54± 0.21 68.45± 0.69 58.90± 0.89

Table 1. Classification accuracy (percentage) on MNIST, CIFAR-10 and CIFAR-100.

ror around 0.25, while baseline methods can only reach at
around 0.75. These results show that our method estab-
lishes the new state of the art in estimating transition ma-
trices.

6.2. Classification accuracy Evaluation

We compare the classification accuracy of the proposed
method with the following methods: (1) Decoupling
(Malach & Shalev-Shwartz, 2017). (2) MentorNet (Jiang
et al., 2018). (3) Co-teaching (Han et al., 2018b). (4) For-
ward (Patrini et al., 2017). (5) T-Revision (Xia et al., 2019).
(7) DMI (Xu et al., 2019). (8) Dual T (Yao et al., 2020b).
Note that we did not compare the proposed method with
some methods like SELF (Nguyen et al., 2019) and Di-
videMix (Li et al., 2019). This is because these methods are
aggregations of semi-supervised learning techniques which
have high computational complexity and are sensitive to the
choice of hyperparameters. In this work, we are more fo-
cusing on solving the label noise learning without anchor
points theoretically.

In Table 1, we present the classification accuracy by the
proposed VolMinNet and baseline methods on synthetic
noisy datasets. VolMinNet outperforms baseline methods
on almost all settings of noise. This result is natural after
we have shown that VolMinNet leads to smaller estima-
tion error of the transition matrix compared with baseline
methods. While the differences of accuracy among differ-
ent methods are marginal for symmetric noise, VolMinNet
outperforms baselines by over 10% with Pair-45% noise

Decoupling MentorNet Co-teaching Forward
54.53 56.79 60.15 69.91

T-Revision DMI PTD VolMinNet
70.97 70.12 71.67 72.42

Table 2. Classification accuracy (percentage) on Clothing1M.
Only noisy data are exploited for training and validation.

and has much smaller standard deviations. These results
show the clear advantage of the proposed VolMinNet. It has
better robustness to different settings of noise and datasets
compared to baseline methods.

Finally, we show the results on Clothing1M in Table 2. As
explained in the previous section, Forward and T-Revision
exploited the 50k clean data and their noisy versions in
1M noisy data to help initialize the noise transition ma-
trix, which is not practical in real-world settings. For a fair
comparison, we report results by only using the 1M noisy
data to train and validate the network. As shown in Ta-
ble 2, our method outperforms previous transition matrix
based methods and heuristic methods on the Clothing1M
dataset. In addition, the performance on the Clothing1M
dataset shows that the proposed method has certain robust-
ness against instance-dependent noise as well.

7. Discussion and Conclusion
In this paper, we considered the problem of label-noise
learning without anchor points. We relax the anchor-point
assumption with our proposed VolMinNet. The consis-
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tency of the estimated transition matrix and the learned
classifier are theoretically proved under the sufficiently
scattered assumption. Experimental results have demon-
strated the robustness of the proposed VolMinNet. Future
work should focus on improving the estimation of the noisy
class posterior which we believe is the bottleneck of our
method.
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