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Abstract
Predictor combination is the problem of improv-
ing a task predictor using predictors of other
tasks when the forms of individual predictors are
unknown. Previous work approached this prob-
lem by nonparametrically assessing predictor re-
lationships based on their joint evaluations on a
shared sample. This limits their application to
cases where all predictors are defined on the same
task category, e.g. all predictors estimate attributes
of shoes. We present a new predictor combina-
tion algorithm that overcomes this limitation. Our
algorithm aligns the heterogeneous domains of
different predictors in a shared latent space to fa-
cilitate comparisons of predictors independently
of the domains on which they are originally de-
fined. We facilitate this by a new data alignment
scheme that matches data distributions across task
categories. Based on visual attribute ranking ex-
periments on datasets that span diverse task cate-
gories (e.g. shoes and animals), we demonstrate
that our approach often significantly improves the
performances of the initial predictors.

1. Introduction
Can a predictor of a shoe attribute be improved by leverag-
ing knowledge gained from learning animal attributes?

Predictor combination (PC) aims to improve a target pre-
dictor of some task based on reference predictors of other
tasks when the forms of individual predictors are not known.
This scenario occurs when reference predictors are precom-
piled software libraries or Web services. Further, in PC the
unknown reference forms are different from each other and
from the target predictor. For example, a support vector
machine (SVM) ranker might be determined as the best
model for a target task, with Gaussian process (GP) regres-
sors and deep neural network (DNN) classifiers presented
as references.
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Predictor combination is related to multi-task learning
(MTL) and transfer learning (TL). However, since no access
to the forms of the references are provided, existing MTL
and TL approaches, e.g. hard or soft sharing of predictor
parameters (Vandenhende et al., 2020; Gao et al., 2019;
Misra et al., 2016), enforcing parameter similarities (Agar-
wal et al., 2010; Wang et al., 2009; Argyriou et al., 2008), or
embedding these parameters into a shared latent space (Sanh
et al., 2019; Gong et al., 2012; Titsias & Lázaro-Gredilla,
2011; Luo et al., 2013; Lee et al., 2016; Zhang et al., 2019)
are not directly applicable. Furthermore, it is not known in
advance whether a given reference is relevant (i.e. useful in
improving the target) and therefore naı̈vely exploiting all ref-
erences could even degrade the performance similarly to the
case of negative transfer commonly observed in MTL (Lee
et al., 2016; Maninis et al., 2019; Nguyen et al., 2020).

(Kim et al., 2017a) approached this problem by nonparamet-
rically assessing the task relevance: Evaluating all predictors
on a sample dataset, the relevance of a reference is measured
based on the similarity of its sample evaluation to the cor-
responding target evaluation. Under this setting, the target
is improved by selectively enhancing these reference simi-
larities. This instantiates a nonparametric extension of the
classical MTL where the similarities of predictor parameters
are enforced (Agarwal et al., 2010; Argyriou et al., 2008).
(Kim et al., 2020) improved upon this first PC approach by
adopting a Bayesian framework, casting the determination
of relevant references into Bayesian automatic relevance
determination (Rasmussen & Williams, 2006).

Existing PC approaches meet the challenging requirements
of automatically identifying relevant references and improv-
ing the target without requiring known reference forms.
They demonstrated that significant performance improve-
ments can be achieved when the target and references predic-
tors are defined on the same task category (Kim et al., 2017a;
2020): For example, when the target estimates how formal
shoes are while the references are specialized for sporty and
pointy-at-the-front attributes, all predictors belong to the
same Shoes task category (see Sec. 3).

However, these approaches cannot be directly applied when
the target and references lie in different categories, e.g. the
target is constructed for shoe attributes while the presented
references correspond to animal or human face attributes.



Predictor Combination Across Task Categories

This limitation stems from the nonparametric nature of their
relevance determination process: To calculate the similari-
ties among the predictors, all predictors need to be jointly
evaluated on a single sample set X , i.e. each entry in the
evaluation f |X of the target should match the corresponding
reference evaluations {gr|X}Rr=1. When the predictors are
defined across multiple task categories such as shoes and
animals, such a single dataset might not exist.

(Kim & Chang, 2019) partially addressed this by establish-
ing instance-level correspondences across datasets. Once
constructed, such correspondences enable to jointly evalu-
ate all predictors. However, this approach cannot be applied
to heterogeneous task categories since it requires example
ground-truth correspondences, but such ground-truths might
not exist e.g. for shoes and animals.

In this paper, we present a new algorithm that combines
predictors across task categories. Adopting ideas from do-
main adaptation studies, we align datasets of the target and
a reference by mapping them to a shared latent space where
the respective data-generating distributions match. This fa-
cilitates applying the references, originally tailored for their
own data distributions, to the (aligned) target data.

As the target and reference data spaces and the correspond-
ing probability distributions can differ significantly, naı̈vely
matching these distributions in the latent space can gen-
erate maps (to the latent space) that fail to preserve the
structure of the original data. Therefore, we regularize the
construction of such maps by enforcing the preservation
of local distance structures. The resulting algorithm aligns
datasets in an unsupervised manner and therefore enables
us to combine predictors across heterogeneous categories
without having to require any example correspondences.

In visual attribute ranking experiments with datasets that rep-
resent diverse task categories (human faces, birds, animals,
shoes, and outdoor scenes), we demonstrate that predic-
tor combination across heterogeneous task categories can
indeed significantly improve the performance of target pre-
dictors, providing a positive answer to the question posed at
the beginning of this section.

Related work. Our approach was inspired by the success
of MTL and TL approaches: While there are only limited
existing studies on explicitly combining predictors across
significantly different data categories (e.g. shoes and ani-
mals), in principle, most existing MTL approaches can be
applied to such cases (Meyerson & Miikkulainen, 2021;
2019; Rebuffi et al., 2017; Ammar et al., 2015; Mahmud
& Ray, 2008). Indeed, it is common to use deep neural
networks (DNNs) pre-trained on ImageNet (Deng et al.,
2009; Russakovsky et al., 2015) as initialization for task-
specific refinement, e.g. (Xian et al., 2019). Multi-task learn-
ing has also been applied to train predictors of multiple data

modalities (e.g. surface normal, segmentation, and salience
maps (Kokkinos, 2017)). Our approach can be considered
as an adaptation of these MTL approaches to PC problems
where access to the internals of references is restricted.

The crux of our approach is to match the target and reference
distributions such that the target data can be properly eval-
uated by the reference predictors. This problem has been
previously studied in the context of TL. For example, (Long
et al., 2015) updated the reference DNNs (called the source
in TL problems) in the way that the resulting activations
match those of the target. For matching the distributions,
the maximum mean discrepancy (MMD) (Gretton et al.,
2012) was used similarly to our approach (Sec. 2). Later,
(Long et al., 2015) improved this via the joint MMD that
helps model activations of multiple domain-specific DNN
layers (Long et al., 2017). (Wei et al., 2018) applied a simi-
lar strategy to determine the optimal source combinations
avoiding negative transfer.

Unlike traditional TL problems, in predictor combination,
the references cannot be updated as their forms are unknown.
Therefore, instead of adapting the reference predictors to the
target problem, we transfer the target data into a latent space
where the references can be directly applied. In this respect,
our latent space mapping approach makes an instance of do-
main adaptation where the MMD has been extensively used
in aligning different data distributions: (Pan et al., 2009)’s
transfer component analysis finds a subspace of the original
data spaces where the source and target distributions match.
(Saito et al., 2018) applied a similar idea to classification
problems by modeling the discrepancy between the class-
conditional distributions of the source and target domains.
An extensive empirical study of different algorithms can be
found in (Csurka et al., 2017).

Matching the probability distributions of the source (refer-
ence) and target data, e.g. using MMD, has been especially
successful when the corresponding data domains are inher-
ently related as in applying an object recognition system
trained on a specific environment and dataset to new envi-
ronments and data representations but with known object
types (Yan et al., 2017; Long et al., 2015). However, in our
PC scenario, the target and reference data might not have
such inherent relationships (e.g. animals vs. shoes) and in
such cases, directly altering the target to match the reference
distributions can destroy the structure present in the original
data. Our approach addresses this by explicitly retaining the
local structure of the original data distributions (Sec. 2.2.1).

Recent advances in image translation offer a new approach
to domain adaptation: Instead of matching the probability
distributions of features, one could directly translate raw
images to the target domain, as demonstrated by success-
ful transfer of e.g. photographs to paintings (Zhu et al.,
2017) and line drawings to photographs (Kim et al., 2017b).
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(Murez et al., 2018) further demonstrated that these tech-
niques can be used in adapting domains for classification
problems by incorporating classification loss into the cycle-
consistent translation framework. (Tzeng et al., 2017) exer-
cised a similar approach using traditional (non-cyclic) GAN-
type discriminators. In the experiments, we demonstrate that
while such techniques can actually be used in realizing PC
algorithms, our approach outperforms these alternatives as
they often struggle to faithfully translate images when the
source and target domains differ significantly.

2. Combining predictors over task categories
Problem definition. Suppose that we are given a pre-
dictor function f I : X f → Yf presented as an ini-
tial solution of a target task. The goal of predictor com-
bination (PC) is to improve f I based on the predictors
G = {gr : X r → Yr}Rr=1 of other tasks (referred to as
references).

The internal structures of the target and reference predictors
are unknown, and it is not known in advance, if there is
any reference in G that is relevant (i.e. useful in improving
f I ). Therefore, a PC algorithm has to 1) identify relevant
references in G and 2) use such references to construct an
improved version fO of f I without having to require access
to the forms of the references.

Existing PC algorithms addressed this challenge by taking
nonparametric approaches: All predictors are evaluated on
a single dataset X ⊂ X f , and the corresponding outputs
are used to assess the predictor relevance. This requires
that all predictors are defined on the same input space, i.e.
X f = X r for all 1 ≤ r ≤ R, and each instance inX should
be jointly evaluated by all predictors. However, when the
reference tasks are defined on different spaces or if their
data distributions are significantly different from the target
task, such a single dataset tying all tasks might not exist.

Algorithm overview. Our algorithm enables to combine
predictors of diverse task categories by explicitly aligning
the respective data domains and their distributions: We map
the target and reference data into a shared latent space where
the maximum mean discrepancy (MMD) (Gretton et al.,
2012) between the mapped distributions is minimized. To
ensure that the global structures of the original data are
preserved under these maps, they are regularized by maxi-
mizing the Hilbert-Schmidt independence criterion (HSIC)
of the original and the latent data distributions (Gretton et al.,
2005). Once data are aligned, the subsequent combination
process is carried out by employing (Kim et al., 2020)’s
joint predictability enhancement framework.

In this section, we first present a model space of predictors
that provides a unified view of previous PC approaches, and

based on that, develop a new model space and the corre-
sponding predictor combination algorithm.

2.1. Model space of predictors

Here, we denote a predictor (either a target f or a refer-
ence g) by h. For the i-th task, we assume that its input
space X i is equipped with a probability distribution Pi. For
simplicity of exposition, we will assume that the output
space of each task is R. However, extending our algorithm
to multi-dimensional outputs is straightforward.

Baseline model space. Existing PC approaches assume
that all predictors share the same input space: (X i,Pi) :=
(X ,P). Their model space is the Hilbert sphere M1, a
submanifold of L2 space provided with the inner product
〈hi, hj〉P :=

∫
hi(x)hj(x)P(x): For h ∈M1

〈h, 1(·)〉P = 0, 〈h, h〉P = 1 (1)

with 1(·) being a constant function of ones. As the predic-
tors inM1 are centered and normalized, their similarities
can be measured independently of the scales via the inner
product 〈·, ·〉P. Under this setting, existing PC algorithms
improve the initial predictor f I by applying iterative averag-
ing processes onM1: Given the predictor f t at step t, the
new solution f t+1 is obtained as the maximizer of

O1(f) = 〈f, f t〉2P + λ〈f,KG[f ]〉P, (2)

where λ ≥ 0 is a hyperparameter and KG[·] is a linear posi-
tive definite operator onM1 responsible for capturing the
reference relevance. Specific PC algorithms are instantiated
based on how KG[·] is defined: For example, the first PC
algorithms of (Kim et al., 2017a) and (Kim & Chang, 2019)
are obtained by

KG[f ] =
R∑
r=1

grwr〈f, gr〉

with wr = exp
(
−‖f

t−gr‖2
σ2
w

)
for a parameter σ2

w > 0,

rendering them into diffusion processes on M1 (Kim &
Chang, 2019).1 Here, the relevance (weight) wr of gr at
time t+ 1 is determined based on its similarity to f t. This
helps ignore outlier references as they tend to get assigned
smaller weights as diffusion progresses.

In the recent algorithm of (Kim et al., 2020), KG[f ] is con-
structed based on a Gaussian process (GP) estimator of the
target f based on the references inG as inputs. Adopting the
Bayesian framework, this method casts the identification of
relevant references into mathematically rigorous, automatic

1The original algorithm of (Kim et al., 2017a) was designed
for Bayesian predictors: {f, gi} are predictive distributions and
their inner product in O1 is derived based on the Kullback Leibler-
divergence. Our re-interpretation is obtained by taking only the
predictive means. This ignores the potentially useful predictive
uncertainties but offers a wider range of PC applications.
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relevance determination problem (Rasmussen & Williams,
2006). Our algorithm builds upon this as detailed in Sec. 2.2.

Model space of predictors of heterogeneous task cate-
gories. Our model spaceM consists of predictors each
associated with its own input space: hi : X i → R is individ-
ually normalized by the corresponding distribution Pi:

〈hi(x), 1(·)〉Pi = 0, 〈hi, hi〉Pi = 1 (3)

As there is no natural inner product operation defined onM,
existing PC algorithms (Eq. 2) cannot be directly applied.
Our next step is to add a structure that joins these bundles
and enable comparisons of different predictors.

First, we connect each pair of input data spaces
{(X i,Pi), (X j ,Pj)} based on a latent space Zij and the
corresponding smooth chart maps {qi : Zij → X i, qj :
Zij → X j} each having a smooth inverse. Section 2.2
will detail the construction of such chart maps. Using
these charts, the probability distributions PiZ and PjZ cor-
responding to Pi and Pj , respectively are induced on Zij :
PiZ(z) = [Pi ◦ qi](z) := Pi(qi(z)).

This enables to measure the distance between Pi and Pj ,
originally defined on different input spaces, indirectly using
the distance of PiZ and PjZ . Specifically, we use the maxi-
mum mean discrepancy (MMD), defined based on the kernel
mean embeddings of distributions on Zij , as such a distance
measure (Gretton et al., 2012): The kernel mean embedding
µiZ of PiZ into the reproducing kernel Hilbert space (RKHS)
HZ , corresponding to a kernel kZ(·, ·) : Zij ×Zij → R is
defined as

µiZ :=[EiZ ]z[kZ(z, ·)] =
∫
kZ(z, ·)dPiZ(z). (4)

When kZ(·, ·) is characteristic such as Gaussian kernels

kZ(z, z
′) = exp

(
−‖z− z′‖2

σ2
Z

)
with σ2

Z > 0, µiZ uniquely determines PiZ (Jitkrittum et al.,
2017). This makes the MMD, the squared distance inHZ , a
proper distance measure of distributions: MMD(PiZ ,P

j
Z) =

‖µiZ − µ
j
Z‖2HZ . With this structure, we can embed any pair

of predictors hi and hj (defined on X i and X j , respectively)
to a spaceMij of predictors on Zij where direct compar-
isons can be conducted: Our PC algorithm will construct
chart maps {qfr, qr} that minimize dMMD(PfrZ ,PrZ) such
that the dataset Xf originally sampled from (X f ,Pf ) can
be evaluated by the embedded version of gr (Sec. 2.2).2

Next, we add a measure of similarity between the origi-
nal target distribution Pf and the corresponding induced
distribution PfrZ to ensure that (qfr)−1 preserves the struc-
ture of the target space (X f ,Pf ). Specifically, we measure

2We use the symbol qfr for denoting a chart map from Zfr to
X f to signify that it depends on both (X r,Pr) and (X f ,Pf ).

the similarity between two random variables x ∈ X f and
z = (qfr)−1(x) ∈ Zfr using the Hilbert-Schmidt inde-
pendence criterion (HSIC), defined as the MMD between
the joint distribution of x and z and the corresponding
product of marginals (Gretton et al., 2005). To facilitate
this, we define an RKHS on X f corresponding to a kernel
kf : X f ×X f → R:

HSIC(x, z) = Exx′zz′ [k
f (x,x′)kZ(z, z

′)]

+ Exx′ [k
f (x,x′)]Ezz′ [kZ(z, z

′)]

− 2Exz

[
Ex′ [k

f (x,x′)]Ez′ [kZ(z, z
′)]
]
. (5)

Similarly to kZ , we use a Gaussian kernel for kf :

kf (x,x′) = exp

(
−‖x− x′‖2

(σf )2

)
with (σf )2 > 0. Finally, our similarity sHSIC is given by
scale-normalizing HSIC into [0, 1]:

sHSIC(Pf ,PfrZ ) =
HSIC(x, z)√

HSIC(x,x)
√

HSIC(z, z)
. (6)

Discussion. We constructed a separate latent space for each
predictor pair. An alternative is to construct a single latent
space shared by all predictors. In this setting, the chart
maps can be jointly constructed, potentially benefiting from
capturing the interdependence of all data spaces. However,
this will lead to significantly higher computational overhead
and further, it will make adding new references challenging
(as all chart maps need to be re-calculated).

HSIC was originally conceived as a test of statistical de-
pendence between random variables x and z (Gretton et al.,
2005). However, in our case, qfr is a function, and as such
x = qfr(z) and z have a deterministic dependence, mak-
ing interpretation of HSIC as a statistical dependence test
difficult. Instead, it can be interpreted as a similarity mea-
sure for the structures of the respective domains: sHSIC has
the maximum value of 1 when the pairwise similarities
captured by kf (x,x′) are exactly preserved by (qfr)−1:
kf (x,x′) = kZ(q

fr(x), qfr(x′)) for all x,x′ ∈ X f . As
Gaussian kernels are localized (i.e. kf (x,x′) ∼ 0 when
‖x − x′‖ is large), our similarity measure sHSIC evaluates
the global similarity via combining local structures.

2.2. Predictor combination algorithm

With the latent spaces {Zfr} and chart maps {qfr, qr}Rr=1

aligning the probability distributions {PfrZ ,PrZ}Rr=1, we can
evaluate the similarity of f and gr based on their embed-
dings in {Mfr}:

〈fZ , grZ〉Pfr
Z

= 〈f, (qf)−1 ◦grZ〉Pf

= 〈(qr)−1 ◦fZ , gr〉Pr , (7)

where fZ := f ◦ qfr and grZ := gr ◦ qr. Now replacing
〈·, ·〉P in Eq. 2 with 〈·, ·〉Pf , we obtain a new algorithm that
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combines predictors across heterogeneous domains:
O(f) = 〈f, f t〉2Pf + λ〈f,K(qf )−1[GZ ][f ]〉Pf , (8)

where (qf )−1[GZ ] = {(qf )−1 ◦ grZ}Rr=1. Note that the first
equality in Eq. 7 enables us to transfer the reference evalua-
tions (each lying in the respective spaces) to the target space
X f to facilitate the evaluation of the second term in O.

2.2.1. MMD-HSIC ALIGNMENT OF CHART MAPS

Crucial to the success of our PC approach is the construction
of (inverse) chart maps Q = {(qfr)−1, (qr)−1}Rr=1: Our
goal is to evaluate the target data Xf originally presented
in (X f ,Pf ), based on the references {gr}. As gr is defined
on its own domain X r and is tailored for the corresponding
distribution Pr, the chart (qfr)−1 needs to map Xf (and
equivalently, its distribution Pf ) to match PrZ such that it
can be faithfully evaluated by grZ = gr ◦ qr.

A simple approach to build such maps is to minimize the
MMD between PfrZ and PrZ :

EMMD((qfr)−1, (qr)−1) = MMD(PfrZ ,P
r
Z). (9)

However, directly minimizing EMMD without imposing any
constraints can lead to arbitrary complex chart maps (qfr)−1

and (qi)−1 that align the output distributions well in Zfr
but fail to transfer the structure of the respective input do-
mains. In this case, the evaluation of the reference grZ on the
mapped input (qfr)−1(Xf ) is unlikely to provide useful
information for improving the target predictor.

We address this by first explicitly representing (qfr)−1 as a
kernel combination parameterized by Afr ∈ Rdim(Zfr)×B :

[(qfr)−1(·)]n =

B∑
j=1

[Afr]n,jk
f (bfj , ·), (10)

where kf is the Gaussian kernel used in defining the HSIC
(Eq. 5): Using Gaussian kernels regularizes chart learning
as in this case, qf is inherently smooth (Schölkopf & Smola,
2002). The selection of the basis set {bfj }Bj=1 ⊂ X f will
be discussed shortly. Further, we match the local structure
of (X f ,Pf ) and (Zfr,PfrZ ) by enhancing their HSIC

OHSIC((qfr)−1) = sHSIC(Pf ,PfrZ ). (11)
Figure 1 illustrates the effectiveness of regularizing the chart
map learning process using the HSIC.

While the chart map (qi)−1 for the reference gi can be
similarly constructed, we set it as an identity map making
Zfr the same as X r. This reduces the overall computational
complexity of the chart learning process. Our PC framework
(Eq. 8) still applies thanks to the second equality of Eq. 7.

Finally, fixing qr as identity, our chart (qfr)−1 (equivalently,
Afr) is constructed as the minimizer of the energy
Echart(Afr) = EMMD(qfr, qr)− λHSICOHSIC(qfr) (12)

with a regularization parameter λHSIC.
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Figure 1. Chart construction examples: (top left) Target data Xf

sampled from a Gaussian distribution Pf . Data points are color-
coded based on their Mahalanobis distances to the mean of Pf .
(top right) Reference data X1 ⊂ X 1 = Zf1 sampled from P1.
(bottom) Xf transferred to X 1 (overlaid on X1; gray dots) by
minimizing only the MMD (left; Eq. 9) and minimizing a combi-
nation of MMD and HSIC (right; Eq. 12): Using the MMD led
to a slightly better alignment with P1. However, it failed to pre-
serve the local distance structure of Xf as indicated by the mixed
colors of the transferred data. Combining the MMD and HSIC
provided a good trade-off between the reference alignment and the
preservation of the original data structure.

2.2.2. SAMPLE-BASED APPROXIMATIONS

In practice, MMD and HSIC in Eq. 12 cannot be directly
evaluated as they require integration with respect to un-
known probability distributions {Pf ,Pr}. Also, it is infea-
sible to directly optimize the target function f which is an
infinite-dimensional object. As such, we take sample based
approximations (Gretton et al., 2005; Jitkrittum et al., 2017).

For given target and reference datasetsXf = {xf1 , . . . ,x
f
N}

and Xr = {xr1, . . . ,xrM} sampled from Pf and Pr, respec-
tively, the sample Xf -based HSIC estimate is

ÔHSIC = trace[KfCKZC], (13)

[Kf ]m,n = kf (xfm,x
f
n),

[KZ ]n,m = kZ((q
fr)−1(xfn), (q

fr)−1(xfm)),

where C = I − 1
N 11> and 1 = [1, . . . , 1]>. As qr is

identity, kZ is defined on X r × X r. The corresponding
approximate MMD is given as

ÊMMD(qfr, qi) = − 2

NM

N∑
n=1

M∑
m=1

[K′′Z ]n,m (14)

+
1

M2

M∑
m,n=1

[KZ ]n,m +
1

N2

N∑
m,n=1

[K′Z ]n,m,

where [K′′Z ]n,m = kZ((q
fr)−1(xfn),x

r
m) and [K′Z ]n,m =

kZ(x
r
n,x

r
m).
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Efficient approximations. The computational complexi-
ties of ÊMMD and ÔHSIC evaluations areO(MN+M2+N2)
and O(N2), respectively which are prohibitive for large-
scale problems. We obtain computationally affordable ap-
proximations by adopting finite-rank approximations of the
kernel functions kZ and kf : For given basis sets {bfj }Bj=1 ⊂
X f and {brj}Bj=1 ⊂ X r, the approximate kernels k̂f and
k̂Z are defined as

k̂f (x,x′) = (kfx)
>(Kf

BB)
−1kfx′ , (15)

k̂Z(z, z
′) = [kZ ]

>
z ([KZ ]BB)

−1[kZ ]z′ ,

kfx = [kf (x,bf1 ), . . . , k
f (x,bfB)]

>,

[kZ ]z = [kZ(z,b
r
1), . . . , kZ(z,b

r
B)]
>

with [Kf
BB ]ij = kf (bfi ,b

f
j ) and [[KZ ]BB ]ij =

kZ(b
r
i ,b

r
j). The basis sets {bfj } and {brj} are obtained

as the cluster centers of Xf and Xr, respectively using k-
means clustering with k = B. We fix the kernel rank B
at 500. Now, substituting Eq. 15 into Eqs. 13 and 14, and
subsequently to Eq. 12, we obtain the final energy for chart
map learning:

Êchart(Afr) = ÊMMD(qfr, qr)− λHSICÔHSIC(qfr), (16)

which can be minimized using the standard conjugate gradi-
ent method. A single evaluation of the gradient∇Afr [Êchart]
takes linear time with respect to the numbers of data points
N and M : O(N ×M × dim(X r)).

f -approximation. Similarly to previous PC ap-
proaches (Kim & Chang, 2019; Kim et al., 2020), we
approximate predictors {f I , gr}Rr=1 based on their evalua-
tions on the test set Xf and improve the sample evaluation
of f I : f I = [f I(xf1 ), . . . , f

I(xfN )]>. The sample ref-
erence gr is defined based on the chart map (qfr)−1:
gr = [gr((qfr)−1(xf1 )), . . . , g

r((qfr)−1(xfN ))]>. The
resulting discretization of Eq. 8 is presented as

Ô(f) = f>f t + λf>QGf (17)

with a positive definite matrix QG: Adopting (Kim et al.,
2020)’s framework, we define it such that f>QGf becomes
the accuracy of predicting f using G = [g1, . . . ,gR] as
input features based on Gaussian process (GP) regression.

In our model space, all predictors are centered and normal-
ized (Eq. 3). As this is not the case in practice, we explicitly
normalize them. Incorporating this into Ô in Eq. 17 we
obtain a Rayleigh quotient for a hyperparameter λGP > 0:

Ô(f) = f>C(f t(f t)> + λS)Cf

f>Cf
, (18)

S =2H(H + λGPI)−1

− (H + λGPI)−1HH(H + λGPI)−1.

The matrix H consists of anisotropic Gaussian kernel evalu-

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

Figure 2. Diagonal values of Σ estimated for OSR dataset: Maxi-
mizing the marginal likelihood can yield highly skewed distribu-
tion of Σ values focusing only on few references (top). Adding the
entropy regularizer (Eq. 20) leads to a more balanced selection of
references (bottom). x-axis represents the reference index.

ations of the references:

[H]i,j = exp
(
−(G[i,:] −G[j,:])Σ(G[i,:] −G[j,:])

>) ,
(19)

where G[i,:] is the i-th row of G and Σ is a diagonal matrix
of non-negative entries. The maximum of Ô is attained at
the eigenvector corresponding to the largest eigenvalue of
f t(f t)> + λS. Similarly to the case of kernel approxima-
tions in the HSIC and MMD evaluations (Eq. 15), H is
approximated based on a low-rank factorization, leading
to a computationally efficient algorithm to find the desired
eigenvector: Readers are referred to the accompanying sup-
plemental material for details of the H approximation and
the derivation of Ô (Eq. 18) fromO (Eq. 8). We fix the rank
of this approximation at 300 following (Kim et al., 2020).

Identification of relevant tasks. The magnitudes of the
entries in Σ (Eq. 19) represent the relevance of references:
For large [Σ]r,r, the corresponding reference gr makes sig-
nificant contributions to kernel evaluations H and thereby
has a large impact on predicting f .

(Kim et al., 2020) determined Σ by maximizing the
marginal likelihood p(f |G,Σ) under the GP prior. This en-
abled to automatically identify relevant references in (Kim
et al., 2020). However, unlike their application scenario,
our algorithm uses a much larger number of references and
further, our references are designed for tasks that differ sig-
nificantly from the target. In this case, directly maximizing
the marginal likelihood tends to select only few spurious
references ignoring less significantly related (to the target),
but still potentially useful references (Fig. 2). Therefore, we
regularize the estimation of Σ using a balancing term: Our
algorithm maximizes

OML = p(f |G,Σ) + λEnt
R∑
r=1

[Σ̃]r,r log([Σ̃]r,r) (20)

with [Σ̃]r,r = [Σ]r,r/
∑
j [Σ]j,j . The second term ofOML is

the negative entropy when the diagonal terms of Σ̃ are inter-
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preted as a probability distribution, and it encourages even
reference contributions. Figure 2 demonstrates the effective-
ness of this regularizer. In our preliminary experiments on
OSR dataset (see Sec. 3), adding this regularizer improved
the average accuracy of the final predictors by around 5.4%
with negligible additional computational overhead.

Hyperparameters. The hyperparameters of our algo-
rithm include the kernel parameters (σf )2 and σ2

Z for kf

(Eq. 5) and kZ (Eq. 4), respectively, regularization parame-
ter λHSIC for chart map estimation (Eq. 12), entropy regular-
izer λEnt (Eq. 20), GP parameter λGP (Eq. 18), combination
parameter λ (Eq. 17), and the number of iterations T of the
averaging process (Eq. 17): (σf )2 is decided as the square
of the average distances of data points in Xf to its mean.
σ2
Z is determined similarly based on Xr. λHSIC is decided at

a small value of 10−8 while λEnt is fixed at 100 which guar-
antees that no value of Σ is 50 times larger than the mean
values of the diagonal entries of Σ on PubFig dataset (See
Sec. 3). The remaining parameters λGP, λ, and T are shared
by (Kim et al., 2020)’s algorithm and they are tuned based
on validation sets following their experimental protocol.

3. Experiments
To assess the effectiveness of our approach, we performed
experiments on five datasets in visual attributes ranking:
For a target visual attribute, our goal is to learn a rank-
ing function f such that f(xi) > f(xj) if image xi has
a stronger attribute presence than xj . The initial predic-
tor f I was constructed based on training rank pairs S =
{[xi(p),xj(p)]}Pp=1 where [xi,xj ] ∈ S indicates that the at-
tribute is stronger in xi than xj , and the rank loss (Chapelle
& Keerthi, 2010):

l([xi,xj ]) = max (0, 1− (f(xi)− f(xj)))2 .

We initially constructed DNN rankers, and linear and non-
linear rank SVMs (Chapelle & Keerthi, 2010; Parikh &
Grauman, 2011), and selected SVMs which consistently
achieved the highest accuracy.

Datasets and settings. The Animals with Attributes 2
dataset (AWA2) consists of 37,322 images of 85 attributes
and 50 classes (Xian et al., 2019). The goal is to estimate
rankings on each of the target attributes where the labels are
provided as class-wise comparisons, i.e. all images in a class
has a stronger or weaker presence of certain attributes than
other classes. The Caltech-UCSD Birds dataset (CUB) pro-
vides 312 attributes labeled based on 200 bird classes (Wah
et al., 2011). Each image in these datasets is represented
by features extracted using ResNet101 pre-trained on Ima-
geNet. The Public Figure Faces (PubFig) and Shoes datasets
respectively contain 772 images of eight people (classes)
with 11 attributes, and 14,658 images of 10 shoe attributes

Table 1. Results of statistical significance tests of our method com-
pared to the baseline initial targets (f I ), and the PC algorithms that
use the identity chart maps (Id), image translation (IT), and (only)
MMD, based on a t–test with α = 0.95. For each method, we show
the numbers of target attributes where our algorithm is statistically
significantly better (first column) and worse (second column).

Dataset f I Id IT MMD # targets

AWA2 55 0 41 0 53 0 48 0 80

CUB 23 0 24 0 22 0 20 0 40

PubFig (ResNet) 9 0 8 0 7 0 5 0 11

PubFig 9 0 N/A N/A 8 0 11

Shoes (ResNet) 9 0 10 0 5 0 4 0 10

Shoes 8 0 N/A N/A 7 0 10

OSR (ResNet) 6 0 6 0 5 0 3 0 6

OSR 6 0 N/A N/A 2 0 6

Total (%) 71.84 0 60.54 0 62.59 0 55.75 0 174

and 10 categories. For these datasets, images are represented
as GIST features and color histograms provided by (Ko-
vashka et al., 2012). The Outdoor Scene Recognition (OSR)
dataset provides six attributes from eight scene categories.
We use GIST features from (Parikh & Grauman, 2011).

For each dataset, the initial predictor f0 of each target at-
tribute was constructed based on 300 labels and it was im-
proved by combining it with the references predictors con-
structed for the other datasets. All datasets are different in
their image categories: PubFig, OSR, Shoes, AWA2, and
CUB, respectively contain images of human faces, outdoor
scenes, shoes, animals, and birds, and we are not aware
of any instance-level connection among these datasets. To
ensure that sufficient numbers of training and testing labels
are presented for the experiments, we selected 80 and 40
attributes from AWA2 and CUB, respectively.

The accuracies of the initial predictors on PubFig, Shoes,
and OSR can be significantly improved when advanced
ResNet features are used instead of the classical GIST and
color histogram features. We also performed experiments
with these features to evaluate the performance of our PC
algorithm when the initial predictors have higher accuracy.

We evaluated the accuracy of ranking results using 100 times
Kendall’s τ coefficients measuring the percentage difference
of correctly and incorrectly estimated pairs. For each dataset,
experiments were repeated 10 times with different training
and test set combinations and the results were averaged.

Baselines. We are not aware of any existing algorithm
that can be applied to the scenario of combining predictors
across heterogeneous task categories. Therefore, our exper-
iments focused on assessing alternative algorithm design
possibilities using different chart map learning strategies
(Sec. 2.2.1): We compare with 1) baseline initial predictors
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Figure 3. Average accuracy improvements (from the initial predictors f I ) of different PC algorithms that use 1) the identity chart maps
(Id); 2) image translation networks (IT); 3) MMD; 4) a combination of MMD and HSIC (Ours). The error bars represent twice the standard
deviations. The absolute accuracy values of all predictors are provided in the supplemental document.

f I ; and PC algorithms that use 2) identity chart maps, i.e.
evaluating the references directly on the target data (Id);
3) image translation (IT) via cycle-consistent translation
networks (Zhu et al., 2017) as image-level domain adapta-
tion; 4) only MMD as commonly used in existing domain
adaptation work (Pan et al., 2009; Saito et al., 2018; Long
et al., 2015; 2017) (obtained by removing the HSIC energy
in our chart map learning scheme; Eq. 16). It should be
note that Id is applicable only when the target and reference
domains coincide (but with possibly different probability
distributions), hence it cannot be applied to improving pre-
dictors of PubFig, OSR, and Shoes as they are constructed
on classical features whereas the references use advanced
ResNet features. While IT can be applied independently of
the feature representations, our experiments with IT also fo-
cused on combining ResNet feature-based predictors as we
do not have the exact same code that were used in extracting
features for PubFig, OSR, and Shoes (Parikh & Grauman,
2011; Kovashka et al., 2012).

In the supplemental, we also compare with 1) a parametric
adaptation of (Kim et al., 2020)’s PC algorithm and 2) and
(Mejjati et al., 2018)’s nonparametric MTL algorithm: All
PC algorithms considered here outperform these adaptations,
demonstrating that existing PC and MTL algorithms cannot
be straightforwardly extended to combining heterogeneous
task predictors.

Results. Figure 3 and Table 1 summarize the results. In
Fig. 3, we show the results of up to 10 different target at-
tributes per dataset corresponding to the best (five) and worst
(five) improvements from the baseline initial predictors f I

achieved by our algorithm (Ours). The complete results are
provided in the accompanying supplemental which show a
similar tendency.

While not all attributes showed marked improvements, all
four PC algorithms (Id, IT, MMD, Ours) frequently achieved
significant performance gain over f I ’s, confirming the utility
and possibility of predictor combination across heteroge-
neous task categories. Apart from one dataset (AWA2) where
Id ranked second best (after Ours), IT and MMD outper-
formed Id demonstrating that when the target and reference
domains are significantly different, aligning the target data
with the distributions of references can help extract useful
information from the references.

As demonstrated in Fig. 1, using MMD only in chart map
learning can fail to preserve the local structure of the original
target data. By explicitly addressing this with the additional
HSIC regularizer, our final algorithm (Ours) showed further
significant improvements. While in principle, image transla-
tion has the capability of matching images across different
domains (e.g. matching aerial photographs to maps (Zhu
et al., 2017)), we observed that training such translation
networks is challenging when the two domains differ sub-
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stantially as in our PC scenario (see supplemental document
for example translation results). As a result, IT recorded
only a comparable level of performance to MMD. Further,
our preliminary experiments suggested that the IT train-
ing process is prone to mode collapse, making the transfer
networks generate identical images, requiring human in-
tervention, e.g. to restart with a new initialization or stop
before mode collapse starts.

Overall, Ours statistically significantly improved f I , Id, IT,
and MMD for 71.84%, 60.54%, 62.59%, and 55.75% of the
total target attributes, respectively as shown in Table 1. Im-
portantly, Ours did not significantly degraded performance
in any of the total 174 target attributes.

4. Conclusions
Existing predictor combination (PC) approaches require all
predictors to be jointly evaluated on a shared dataset. This
limits their application domain to combining predictors in
a single task category. We presented a new algorithm that
overcomes this limitation and enables PC across heteroge-
neous task categories. Our algorithm maps the input data of
the target task into a latent space where the reference pre-
dictors can be directly evaluated. To facilitate this process,
we proposed a new data alignment scheme that combines
the maximum mean discrepancy and Hilbert-Schmidt inde-
pendence criterion. With experiments on five datasets that
represent diverse task categories, we demonstrated that pre-
dictor combination across heterogeneous task categories
(e.g. to combine predictors of shoe and animal attributes)
can indeed significantly improve the initial predictors.

Limitations and future work. Our final algorithm as
well as its variations IT and MMD requires knowledge of
reference domains in the form of example inputs. While
this should not be a severe limitation for most visual under-
standing problems since often, obtaining images (but not
the corresponding labels) of specific task categories is not
difficult. However, when the reference predictors are trained
on proprietary or confidential data, our approach might not
be directly applicable. Also, as our algorithm builds upon
(Kim et al., 2020)’s predictor combination framework, it
inherits some of its limitations: Our algorithm assesses the
relevance of a reference based on how effective it is in pre-
dicting the target: We use Bayesian relevance determination
with an additional entropy-based regularizer for this task.
However, it is possible that our method is misled by spuri-
ous correlations: A simple failure case is when a copy of the
initial target f I is included in the reference set. In this case,
our algorithm will identify this feature as the most relevant
reference, but it might not help improve the target.

Future work should explore 1) the possibility of combining
image translation with our MMD and HSIC-based chart

map learning approach (as they are complementary) and 2)
the application of our approach to combine predictors across
different data modalities, e.g. images, sound, and text data.
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