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Abstract
It is known that the Frank-Wolfe (FW) algorithm,
which is affine covariant, enjoys faster conver-
gence rates than O (1/K) when the constraint
set is strongly convex. However, these results
rely on norm-dependent assumptions, usually in-
curring non-affine invariant bounds, in contra-
diction with FW’s affine covariant property. In
this work, we introduce new structural assump-
tions on the problem (such as the directional
smoothness) and derive an affine invariant, norm-
independent analysis of Frank-Wolfe. We show
that our rates are better than any other known
convergence rates of FW in this setting. Based on
our analysis, we propose an affine invariant back-
tracking line-search. Interestingly, we show that
typical backtracking line-searches using smooth-
ness of the objective function present similar per-
formances than its affine invariant counterpart,
despite using affine dependent norms in the step
size’s computation.

1. Introduction
Conditional Gradient algorithms, a.k.a. Frank-Wolfe (FW)
algorithms (Frank et al., 1956), form a class of first-order
methods solving optimization problems such as

min
x∈C

f(x), C convex and compact. (1)

FW algorithms decompose non-linear constrained prob-
lems into a series of linear problems on the original con-
straint set, i.e. linear minimization oracles (LMO). They
form a practical family of algorithms (Jaggi, 2013; Bo-
janowski et al., 2014; Alayrac et al., 2016; Seguin et al.,
2016; Peyre et al., 2017; Miech et al., 2018; Lacoste-Julien
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Algorithm 1 Frank-Wolfe Algorithm
Input: x0 ∈ C.

1: for k = 0, 1, . . . ,K do
2: vk ∈ argmax

v∈C
〈−∇f(xk), v − xk〉 B LMO

3: γk = argmin
γ∈[0,1]

f(xk + γ(vk − xk)) B Line-search

4: xk+1 = (1− γt)xk + γkvk B Convex update
5: end for

et al., 2015; Courty et al., 2016; Paty & Cuturi, 2019;
Luise et al., 2019; Combettes & Pokutta, 2021); however,
many open questions remain in designing such optimal al-
gorithmic schemes (e.g. (Braun et al., 2017; Kerdreux
et al., 2018; Braun et al., 2019; Combettes & Pokutta, 2020;
Carderera & Pokutta, 2020; Mortagy et al., 2020; Com-
bettes et al., 2020; Bomze et al., 2021)) and in their the-
oretical understanding.

Besides, with the appropriate line-search, the iterates of
the FW are affine covariant under the affine transformation
y = Bx+ b of problem (1),

min
y∈C̃=BC+b

f̃(y)
def
= f(B−1(y − b)), B invertible. (2)

Definition 1.1 (Affine covariance) An algorithm is affine
covariant when its iterates (xk) (resp. (yk)) for problem
(1) (resp. (2)) satisfy

yk = Bxk + b.

In other words, the behavior of Algorithm 1 is insensitive
to affine transformations or re-parametrization of the space.
This means that, ideally, the theoretical rate for an affine
covariant algorithm should be affine invariant.

The original Frank-Wolfe algorithm (Algorithm 1) gen-
erally enjoys a slow sublinear rate O(1/K) over general
compact convex sets and smooth convex functions (Jaggi,
2013). In that setting, (Clarkson, 2010; Jaggi, 2013) define
a modulus of smoothness that leads to affine invariant anal-
ysis of the Frank-Wolfe algorithm, matching with the affine
covariant behavior of the algorithm. Importantly, this anal-
ysis is better than any other known best norm-dependent
analysis. (By best norm-dependent analysis, we refer to
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the norm that minimizes the convergence rate of the theo-
retical analysis that depend on norms, see, e.g., (Lan, 2013,
3.13.)).

Definition 1.2 (norm-independence) A quantity is norm-
independent if it does not depend on the choice of a norm.

Counterexample. The condition number in optimization
– the ratio between the smoothness and the strong convex-
ity constants (Nesterov, 2013) – is norm-dependent. There-
fore, algorithms whose rate depends on this condition num-
ber may be faster if the choice of the norm makes the con-
dition number closer to 1.

Example. The curvature constantCf (Jaggi, 2013) is de-
fined by the ratio

Cf
def
= sup

x, v∈C
γ∈[0,1]

y=x+γ(v−x)

1

γ2

[
f(y)− f(x)− 〈y − x;∇f(x)〉

]
,

where C is a compact, convex set. Since this ratio does not
involve any norm, it is therefore norm-independent.

Affine invariance and norm-independence are closely re-
lated, although they are quite different in nature. We dis-
cuss extensively their common points and differences in
Appendix A. However, since the FW algorithm is affine
invariant and norm-independent, its analysis should ideally
also satisfy such properties.

Many works have then sought to find structural assump-
tions and algorithmic modifications that accelerate this sub-
linear rate of O(1/K). The strong convexity of the set
(or more generally uniform convexity, see (Kerdreux et al.,
2021b;a)) is one of such structural assumptions which lead
to various accelerated convergence rates, like linear con-
vergence rates when the unconstrained optimum is outside
the constraint set (Levitin & Polyak, 1966; Demyanov &
Rubinov, 1970; Dunn, 1979; Rector-Brooks et al., 2019) or
sublinear ratesO(1/K2) when the function is also strongly
convex but without restrictions on the position of the opti-
mum (Garber & Hazan, 2015). However, to the best of our
knowledge, there exists no norm-independent affine invari-
ant analysis for these accelerated regimes.

In these “non affine invariant” analyses, structural assump-
tions like the L-smoothness (Definition 1.3) of f and the
α-strong convexity of C (Definition 1.4) lead to acceler-
ated convergence rate of the Frank-Wolfe algorithm, but
are typically conditioned on parameters L,α and others,
which depend on a particular choice of a norm. This is
surprising given that the Frank-Wolfe algorithm (under ap-
propriate line-search) does not depend on any norm choice.

Recall that the smoothness of a function and the strong con-
vexity of a set are defined as follows.

Definition 1.3 The function f is smooth over C if there ex-
ists a constant L > 0 such that, for any x , y ∈ C, we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2. (3)

Definition 1.4 A set C is α-strongly convex if, for any
(x, y) ∈ C, γ ∈ [0, 1] and ‖z‖ ≤ 1, we have

γx+ (1− γ)y +
α

2
γ(1− γ)‖x− y‖2z ∈ C. (4)

Obtaining practical accelerated affine invariant rates is
hard, as an affine invariant step size is required. Indeed,
some adaptive step sizes rely on theoretical affine invariant
quantities which are in general not accessible. Therefore,
by practical, we consider rates that can be achieved without
a deep knowledge of the problem structure and constants.

While the smoothness of a function is quite a standard as-
sumption, the strong convexity of a set is a rather strong
assumption. Nevertheless, strong convexity of sets are
common in machine learning applications. We can cite,
for instance, `p norms (common regularization in machine
learning problems or action set in online learning) (Bubeck
et al., 2018; Kerdreux et al., 2021c; Wang et al., 2021), ma-
trix Schatten norms (Braverman et al., 2020), and matrix
group norms (Kakade et al., 2012).

For instance, scheduled step sizes, e.g. γk = 2
k+2 , makes

the Frank-Wolfe algorithm practically affine covariant,
yet they do not capture the best accelerated convergence
regimes of Frank-Wolfe on strongly convex sets (note,
however, the recent proof of an accelerated asymptotic
O(1/T 2) rate of vanilla Frank-Wolfe for specific sched-
uled step sizes (Bach, 2020)). Exact line-search guarantees
a practically affine covariant algorithm while capturing ac-
celerated convergence regimes but significantly increases
the time to perform a single iteration. Finally, it is possible
to use backtracking line-search such as (Pedregosa et al.,
2020). Unfortunately, backtracking techniques rely on the
choice of a specific norm, thus breaking affine invariance
of the algorithm.

This raises naturally the following questions:

Can we derive norm-independent, affine invariant
rates for Frank-Wolfe on strongly convex sets?

Can we design an affine invariant backtracking
line-search for Frank-Wolfe algorithms?

This work provides a positive answer to these questions, by
proposing the following contributions.
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Related Work C Str. cvx. f x∗ Algo Step size Rate

Clarkson (2010) Simplex 7 Any FW Scheduled O(1/K)
Jaggi (2013) Convex 7 Any FW Scheduled O(1/K)
Lacoste-Julien & Jaggi (2013) Any 3 Interior FW Exact ls Linear
Jaggi & Lacoste-Julien (2015)
Gutman & Pena (2020) Polytope 3 Any Corr. FW Exact ls Linear

Our work Strongly cvx 7 ∇f(x?) 6= 0 FW Backtracking ls Linear
Strongly cvx 3 Any FW Backtracking ls O(1/K2)

Table 1. Existing affine invariant analysis of Frank-Wolfe for smooth convex functions under different schemes.
Strong convexity. The strong convexity assumption is to be taken in a broad sense. In (Lacoste-Julien & Jaggi, 2013; Jaggi &
Lacoste-Julien, 2015), the authors consider “generalized geometric strong convexity” (see their Eq. 39), an affine invariant measure of
(generalized) strong convexity, while (Gutman & Pena, 2020) consider strongly convex functions relative to a pair (C, ω) where ω is a
distance-like function. In our work, we do not directly assume strong convexity, but the directional smoothness of the function (see later
Definition 4.1), whose constant is bounded if various assumptions are satisfied for problem (1) (Theorem 4.4).
Step size. By scheduled step sizes, we consider, for instance, the classical γk = 2

k+2
. We denote by exact-line search when the optimal

step size depends on an unknown affine invariant quantity, whose accessible upper-bounds are affine dependent (thus breaking the affine
invariance of FW).

Contributions. In this paper, 1) we conduct affine in-
variant analysis of the Frank-Wolfe Algorithm 1, when
the function f is smooth and the set C is strongly convex.
Our affine invariant conditioning is better than any norm-
dependent analysis. Additionally, we point out that there is
likely a positive gap between our constant and the optimal
norm-dependent bound, given that ours are not restricted
to a choice of same norms for different parameters in the
bound. In specific, we introduce new structural assump-
tions extending the class of problems for which such ac-
celerated regimes hold in the case of Frank-Wolfe, called
directionally smooth functions w.r.t. a specified direction δ.
Based on this definition, 2) we propose an affine invariant
backtracking line-search for finding the optimal step size,
which achieves the best of two worlds in theory and prac-
tice. Finally, 3) we show that existing backtracking line-
search methods, which use a specific norm, converges sur-
prisingly to the optimal norm-independent, affine invariant
step size. This implies that affine dependent and affine in-
variant backtracking techniques perform similarly.

Outline. In Section 2, we motivate the need for norm-
independent affine invariant analysis of Frank-Wolfe on
strongly convex sets. In Section 3 and 4, we introduce
the structural assumptions on the optimization problem that
we will consider for analysing Frank-Wolfe. In Section 5
we detail our affine invariant analysis of Frank-Wolfe on
strongly convex set. In Section 6 and 7 we provide a back-
tracking line-search that directly estimate the affine invari-
ant quantities we developed and we explain how it relates
with existing ones. We conclude in Section 8 with numeri-
cal experiments.

Related Work. Other linear convergence rates of Frank-
Wolfe algorithms exists with best affine invariant analy-

sis. For instance, corrective variants of Frank-Wolfe ex-
hibit (affine invariant) linear convergence rates when the
constraint set is a polytope (Lacoste-Julien & Jaggi, 2013;
Jaggi & Lacoste-Julien, 2015) and the objective function is
(generally) strongly convex. See Table 1 for a review of all
affine invariant analyses of Frank-Wolfe algorithms.

These affine invariant analyses emphasize that there is
no specific choice of norm to be made in Frank-Wolfe
algorithms as well as there is no need for affine pre-
conditionners. Frank-Wolfe algorithms are arguably free-
of-choice methods, i.e. little needs to be known on the
optimization problem’s structures to obtain the accelerated
regimes. This is in line with recent works showing that
the Frank-Wolfe methods exhibit accelerated adaptive be-
havior under a variety of structural constraints of (1) which
depend on inaccessible parameters (Kerdreux, 2020), e.g.
Hölderian Error Bounds on f (Kerdreux et al., 2019; Xu
& Yang, 2018; Rinaldi & Zeffiro, 2020) or local uniform
convexity of C (Kerdreux et al., 2021b).

Our affine invariant analyses introduce constants seeking to
characterize structural properties without a specific choice
of norm, even the best (inaccessible) one (see Appendix A
for an in-depth discussion). This has been the basis for
works extending the accelerated convergence analysis to
non-smooth or non-strongly convex functions (Pena, 2019;
Gutman & Pena, 2020), which then explore new structural
assumptions on f .

Gap between affine invariant and best-norm analysis.
We point out that, in general, affine invariance does not
imply optimality. For instance, even if designing norms
that produce affine invariant rates is possible (d’Aspremont
et al., 2018), this does not imply that such rates will match
the result of our norm-independent, affine invariant analy-
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sis. In this paper, we show that our affine invariant constant
is always better than norm-dependent ones, even after tak-
ing the best norm.

Furthermore, it is still an open question if there is a gap be-
tween affine invariant rates and the best-norm rate compris-
ing of norm-dependent parameters (such as smoothness,
strong convexity and the lower bound of gradient norms).
We believe this may be the case, since, the best-norm rate
implicitly impose the same norm on all the parameters in
the bound, while our affine invariant constant is free of such
constraints.

To conclude, we highlight that characterizing the gap be-
tween affine invariant and best norm analysis is an inter-
esting and challenging problem in the literature. See Ap-
pendix A for more details and examples on this problem.

Notations. For a norm ‖ · ‖, we write ‖ · ‖? its dual norm.
Our ambient space is Rd.

2. Norm-Dependent Analysis of FW
It is known that when the function is smooth (Definition
1.3), the set is strongly-convex (Definition 1.4) and the gra-
dient is lower bounded ‖∇f(x)‖? ≥ c > 0 over the con-
straint set (i.e., the constraints are active), the Frank-Wolfe
algorithm 1 converges linearly (Levitin & Polyak, 1966;
Demyanov & Rubinov, 1970; Dunn, 1979), at rate (with
hk

def
= f(xk)− f?)

hk ≤
(

max

{
1

2
, 1− cα

4L

})k
h0. (5)

see (Garber & Hazan, 2015; Kerdreux et al., 2021b) for
more details, and we recall these results in Appendix B, in
respectively Lemma B.1 and Corollary B.2. Note that as-
suming the gradient to be lower bounded means the con-
straints are tight, i.e., the solution of the unconstrained
counterpart lies outside the set of constraints. However, the
constants L, α, and c depend on the choice of the norm for
the smoothness and the strong convexity. In contrast, the
Frank-Wolfe algorithm and iterates do not depend on such
a choice, due to its affine covariance. Therefore, the rate
of Algorithm 1 should be affine invariant. Unfortunately, it
is possible to show that the known theoretical analyses can
be arbitrarily bad in the case where the constants L, c, α
depend on “affine variant” norms.

Example 2.1 Consider the projection of x̄ : ‖x̄‖2 > 1,

minx f(x)
def
= 1

2‖x− x̄‖
2
2 such that ‖x‖22 ≤ 1.

In such case, we have that L = 1, α = 1 and c = ‖x̄‖2−1
(L, α and c are defined according to the `2 norm, see proof

in Appendix B.2). However, if we transform the problem
into miny f(By), the new constants become

L = σmax(B), α = σmin(B)
σmax(B) , c = σmax(B)(‖x̄‖2 − 1).

Comparing the rate (5) of the two problems, identical to the
eyes of the FW algorithm, we have that

f(xk)− f? ≤
(

1− ‖x̄‖2−1
4

)k (
f(x0)− f?

)
,

f(Byk)− f? ≤
(

1− ‖x̄‖2−1
4 κ−1(B)

)k (
f(x0)− f?

)
,

where κ(B) = σmax(B)
σmin(B) is the condition number of B.

This means we can artificially make a large theoretical
upper bound on the rate of convergence by using an ill-
conditioned transformation (i.e., κ(B) large). However,
the speed of convergence of FW iterates are not affected
by any linear transformation (dues to their affine covari-
ance), therefore the upper bound will not be representative
of the true rate of convergence of FW.
Remark. The constants, and therefore the rate, can be im-
proved if we change the norm ‖ · ‖2 into ‖ · ‖2,B−1 . How-
ever, it is usually very hard or impossible to guess what
norm will be the best for a specific problem. This is not a
problem for FW with exact line-search, as no norm is re-
quired. However, in the case of (Garber & Hazan, 2015),
the step size (or backtracking line-search) strategy uses L,
and therefore the rate depends directly on the choice of the
norm. Moreover, even if we choose the gauge of the Eu-
clidean ball to measure the function smoothness and the
set strong-convexity (becoming, in this case, invariant to
affine reparametrization of our problem, see Appendix A)),
we do not know how to guarantee it was the optimal choice
for this specific problem.

When the optimum is in the relative interior of any com-
pact set C, FW converges linearly when f is strongly con-
vex (Guélat & Marcotte, 1986; Lacoste-Julien & Jaggi,
2013). On the other hand, linear convergence on strongly
convex sets does not require strong convexity of f when
the solution of the unconstrained problem lies outside the
set (Demyanov & Rubinov, 1970). Our paper hence fo-
cuses on extending the analysis where the unconstrained
optimum is outside the constraint set (Demyanov & Rubi-
nov, 1970).

These two analysis cover most practical cases, but not the
situation where the unconstrained optimum is close to the
boundary of C. A recent analysis on strongly convex sets
of (Garber & Hazan, 2015) is not restrictive w.r.t. the po-
sition of the unconstrained optimum but conservative (con-
vergence rate of O(1/K2)). It is interesting as it not only
deals with the (previously unknown) situation where the
unconstrained optimum is on the boundary on C, but also
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when it is arbitrarily close to it, leading to poorly condi-
tioned linear convergence regimes. In Appendix E, we pro-
vide an affine invariant analysis of (Garber & Hazan, 2015).

3. Scaling Inequalities on Strongly Convex
Sets

All proofs of Frank-Wolfe methods on strongly convex sets
leverage the same property. The scaling inequality cru-
cially relates the Frank-Wolfe gap with ‖xt − vt‖2, see
e.g. (Kerdreux et al., 2021b, Lemma 2.1.). The scaling in-
equality is an equivalent characterization of strong convex-
ity of C (Goncharov & Ivanov, 2017, Theorem 2.1.), but
we recall here only the implication that we will need, see
(Kerdreux et al., 2021a) for a review of useful properties
of uniformly convex sets in machine learning. Importantly,
the scaling inequalities motivate the new structural assump-
tions we present in Section 4 and Appendix E.

Lemma 3.1 (Norm Scaling Inequality) Assume C is α-
strongly convex w.r.t. a norm ‖ · ‖. Then for any x ∈ C,
φ ∈ Rd\{0}, and vφ ∈ argmaxv∈C〈φ, v〉, we have φ ∈
NC(vφ) (normal cone) and

〈φ, vφ − x〉 ≥ α
2 ‖φ‖?‖vφ − x‖

2. (6)

In particular for any iterate xk of Frank-Wolfe and its
Frank-Wolfe vertex vk (Line 1 in Algorithm 1), we have

〈−∇f(xk); vk − xk〉 ≥ α
2 ‖∇f(xk)‖?‖vk − xk‖2.

Proof. We start with vφ = argmaxv∈C〈φ; v〉. Then, we
use the definition of strong convexity of a set,

γx+(1−γ)vφ+ α
2 γ(1−γ)‖x−vφ‖2z ∈ C ∀z : ‖z‖ ≤ 1.

Then, by optimality of vφ on C,

〈φ; vφ〉 ≥ 〈φ; γx+ (1− γ)vφ + α
2 γ(1− γ)‖x− vφ‖2z〉

After simplification,

〈φ; vφ − x〉 ≥ α
2 (1− γ)‖x− vφ‖2〈φ; z〉.

With γ → 0, and after maximizing over z, we obtain by
definition of ‖ · ‖?,

〈φ; vφ − x〉 ≥ α
2 ‖x− vφ‖

2‖φ‖?,

which holds in particular when φ = −∇f(x).

These scaling inequalities can take other forms as in the
following corollary.

Corollary 3.2 Assume C is α-strongly convex w.r.t. ‖ · ‖.
Consider (d1, d2) ∈ Rd s.t. min{‖d1‖?, ‖d2‖?} > c > 0
and let (x1, x2) ∈ ∂C, s.t. di ∈ NC(xi) for i = 1, 2. Then

‖x1 − x2‖ ≤ ‖d1 − d2‖?/(αc).

Proof. By applying successively Lemma 3.1, we obtain

〈d1;x1 − x2〉 ≥ α/2‖d1‖?‖x1 − x2‖2

〈d2;x2 − x1〉 ≥ α/2‖d2‖?‖x1 − x2‖2.

We then obtain 〈d1 − d2;x1 − x2〉 ≥ αc‖x1 − x2‖2.
Finally, by definition of the dual norm, we conclude that
αc‖x1 − x2‖ ≤ ‖d1 − d2‖?.

This Corollary provides new insights on (Lan, 2013, Algo-
rithm 4). Indeed, it implies that when the set C is strongly
convex and infx∈C‖∇f(x)‖? > c > 0, then the strong
condition on the Linear Minimization Oracle (Lan, 2013,
Equation (4.4.)) is satisfied with ρ = 1 and hence PA-
CndG (Lan, 2013, Algorithm 4) converges in O(1/K2)
(Lan, 2013, Corollary 1).

PA-CndG is a Frank-Wolfe type algorithm with the obliv-
ious step-sizes 2

k+2 , hence affine co-variant. Note, how-
ever, that the O(1/K2) accelerated convergence rate is
achieved under the same structural assumption that ensures
linear convergence of Frank-Wolfe in (Levitin & Polyak,
1966), which on the other hand, require exact line-search
or problem-dependent step-sizes.

4. Directional Smoothness
Analyses of Frank-Wolfe algorithm on strongly convex sets
show that, when f is convex and smooth, and the uncon-
strained minima of f are outside of C, there is linear con-
vergence. We hence propose a novel condition that min-
gles the smoothness of f with the strong convexity of C
when moving in a specific direction δ. We are interested in
particular with the FW direction and we will see later that
this assumption guarantees a linear convergence rate in this
case. We call this condition the directional smoothness.

Definition 4.1 The function f is directionally smooth with
direction function δ : C → Rd if there exists a constant
Lf,δ > 0 s.t. ∀x ∈ C and h > 0 with x+ hδ(x) ∈ C,

f
(
x+ hδ(x)

)
≤f(x)− h〈−∇f(x), δ(x)〉 (7)

+
Lf,δh2

2
〈−∇f(x), δ(x)〉.

The rationale of Definition 4.1 is to replace the norm in
the usual smoothness condition (Definition 1.3) by a scalar
product between the direction and the negative gradient, in
order to get an affine invariant quantity for the FW direction
(see Proposition 4.3 below).

Assuming δ(x) is a descent direction, i.e.,
〈−∇f(x), δ(x)〉 > 0, we can obtain a minimization
algorithm for f , by minimizing (7) over h,

xk+1 = xk + hoptδ(xk), hopt = min{hmax ; L−1
f,δ}.
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Example 4.2 (Gradient descent on smooth functions) The
gradient algorithm uses δ(x) = −∇f(x). In such case, the
function is directionally smooth with constant L,

f(xk+1) ≤ f(xk)− h‖∇f(x)‖22 + Lh2

2 ‖∇f(x)‖22
= f(x) + h

(
Lh
2 − 1

)
‖∇f(x)‖22.

The best h is given by hopt = 1
L , which is also the optimal

one (Nesterov, 2013).

The advantage of directional smoothness is its affine invari-
ance in the case where δ(x) is the FW step.

Proposition 4.3 (Affine Invariance of Lf,δ) If δ(x) is

affine covariant (e.g. the FW direction δ(x)
def
= v(x) − x),

then Lf,δ in (7) is invariant to an affine transformation of
the constraint set (proof in Appendix B.3).

The next theorem shows that, in the case of the FW al-
gorithm, the directional smoothness constant is bounded if
the function is smooth and the set is strongly convex for
any norm ‖ · ‖.

Theorem 4.4 (Directional Smoothness of FW) Consider
the function f , smooth w.r.t. the norm ‖ · ‖, with constant
L‖·‖, and the set C, strongly convex with constant α‖·‖.
Let δ(x) = v(x)− x, v(x) being the FW vertex

v(x)
def
= argmin

v∈C
〈∇f(x), v〉. (8)

Then, if ‖∇f(x)‖? > c‖·‖ for all x ∈ C and some c‖·‖ > 0,
the function f(x) is directionally smooth w.r.t. to δ, with

Lf,δ ≤ 2
L‖·‖

c‖·‖α‖·‖
. (9)

Proof. See Appendix B.4 for the proof.

5. Affine Invariant Linear Rates
With the directional smoothness constant Lf.δ (affine in-
variant when δ is the FW direction), Theorem 5.1 shows
an affine invariant linear rate of convergence of FW, gen-
eralizing existing convergence results of Frank-Wolfe on
strongly convex sets (Levitin & Polyak, 1966; Demyanov
& Rubinov, 1970; Dunn, 1979).

Theorem 5.1 (Affine Invariant Linear Rates) Assume f
is a convex function and directionally smooth with direc-
tion function δ with constant Lf,δ . Then, the FW Algorithm
1 with step size

hopt = min
{

1, 1
Lf,δ

}
, with δ = v(x)− x,

or with line-search, where v(x) is the FW vertex (8), con-
verges linearly, at rate

f(xk)− f? ≤ max
{

1
2 , 1− 1

2Lf,δ

}
(f(xk−1)− f?) .

Proof. We start with the directional smoothness assump-
tion. For 0 < h ≤ 1,

f
(
xk+1

)
≤f(xk) +

(
h− Lf,δh

2

2

)
〈∇f(xk), δ(xk)〉

After minimization, we have two possibilities: hopt = 1
Lf,δ

or hopt = 1. In the first case, we obtain

f
(
xk+1

)
≤ f(xk) + 1

2Lf,δ 〈∇f(xk), δ(xk)〉

Notice that the scalar product in the right-hand-side is the
negative dual gap of Frank-Wolfe, that satisfies

〈∇f(xk), v(x)− x〉 ≤ − (f(xk)− f?) ,

which gives the desired result. The second case follows
immediately.

This provides an affine invariant analysis of the linear con-
vergence regimes of FW on strongly convex sets.

The next corollary shows that the directional constant in
Theorem 5.1 is bounded by (9) w.r.t. the norm ‖ · ‖ that
gives the best ratio.

Corollary 5.2 Write Ω the set of norms in Rd. Then, the
rate of convergence using directional smoothness is at least
better than the previously known, norm-dependent rate,

1− 1

2Lf,δ
≤ 1− 1

4 min‖·‖∈Ω
L‖·‖

c‖·‖α‖·‖

,

where L‖·‖ is the smoothness constant of the func-
tion f , α‖·‖ the strong convexity of the set C and
infx∈C‖∇f(x)‖? = c‖·‖ > 0.

Proof. The proof is immediate by noticing that the FW
algorithm do not use ‖ · ‖, therefore we can choose the best
‖ · ‖ in Theorem 4.4.

In Appendix E, we provide an affine invariant analysis
without restriction on the position of the optimum, i.e. the
O(1/K2) analysis in (Garber & Hazan, 2015). We de-
fine (Definition E.1) a similar property to the directional
smoothness that additionally accounts for the strong con-
vexity of f . We choose to present the affine invariant analy-
sis for the linear convergence in the main body of the paper
as it is the one most significant in practice.
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6. Affine Invariant Backtracking
In previous sections, we proposed new constants to bound
the rate of convergence of FW. The significant advantage
of these constants is that, like FW, they are independent of
any norm. However, the optimal step size of FW needs the
knowledge of these constants.

We propose in this section an affine invariant backtracking
technique (Algorithm 2), based on directional smoothness.
By construction, the technique finds automatically an esti-
mate of the directional smoothness that satisfies

Lk < 2Lf,δ, k ≥ log2

(
L0

Lf,δ

)
,

at the cost of one additional function evaluation per itera-
tion. It is known that such backtracking technique is, in
the worst case, two times slower than FW with the optimal,
affine invariant stepsize.

Algorithm 2 Affine invariant backtracking
Input: FW vertex vk, point xk, directional smoothness es-

timate Lk, function f .
1: L ← Lk. Define the optimal step size and next iterate

in the function of the directional Lipchitz constant:

γ?(L)
def
= min{ 1

L , 1},

x(L)
def
= (1− γ?(L))xk + γ?(L)vk.

2: Create the model of f between xk and x(L) based on
equation (7),

m(L)
def
= f(xk)+γ?(L) (1− γ?(L)) 〈∇f(xk), vk−xk〉

3: Set the current estimate L̃ def
= Lk

2 .
4: while f(x(L̃)) > m(L̃) (Sufficient decrease not met

because L̃ is too small) do
5: Double the estimate : L̃ ← 2 · L̃.
6: end while

Output: Estimate Lk+1 = L̃, iterate xk+1 = x(L̃)

7. Why Backtracking FW with Norms is so
Efficient?

The step size strategy in Frank-Wolfe usually drives its
practical efficiency. Sometimes, setting the step size op-
timally w.r.t. the theoretical analysis may be suboptimal in
practice. Recently, Pedregosa et al. (2020) analyze the rate
of the Frank-Wolfe algorithm for smooth function, using
backtracking line search, described in Algorithm 3, Ap-
pendix D.

Algorithm 3 in Appendix D is adaptive to the local smooth-
ness constant, and ensures Lk+1 < 2Lf , Lf being the

smoothness constant of the function in the `2 norm. Pe-
dregosa et al. (2020) observed that the estimate of the Lip-
chitz constant is often significantly smaller than the theoret-
ical one; they wrote: “We compared the average Lipschitz
estimate Lt and the L, the gradient’s Lipschitz constant.
We found that across all datasets the former was more than
an order of magnitude smaller, highlighting the need to use
a local estimate of the Lipschitz constant to use a large step
size.”

With our analysis, however, we can explain why the esti-
mate of the smoothness constant is much better than the
theoretical one. The answer is simple:

Despite using a non-affine invariant bound, the step size
resulting from the estimation of the Lipchitz constant via

the backtracking line-search is at worst four times smaller
than the theoretical affine invariant stepsize.

Proposition 7.1 Let f be directionally smooth, and let
L(x) =

Lf,δ〈∇f(x), δ(x)〉
‖δ(x)‖22

. Assume L(x) locally approxi-
mately constant, i.e., there exists kmin, kmax such that, for
Lloc = maxi L(xi),

Lloc

2
< L(xk) ≤ Lloc, k ∈ [kmin, kmax].

In this case, the norm-dependent backtracking line-search
Algorithm 3 finds

Lk < 2Lloc, k =

⌈
kmin + log2

Lkmin

Lloc

⌉
, . . . , kmax,

and its step size (γ?)k satisfies

min

{
1,

1

4Lf,δ

}
≤ (γ?)k.

Proof. See Appendix B.5 for the full proof.
Proof sketch. The constant Lloc can be seen as the local
Lipchitz constant. Indeed, if we write the upper bound
given by the directional smoothness, we have

f(x) + h〈∇f(x), δ(x)〉+
h2

2
Lf,δ〈∇f(xk), δ(xk)〉

= f(x) + h〈∇f(x), δ(x)〉+ L(x)
h2

2
‖δ(x)‖22,

where the right-hand-side corresponds to the definition of
smoothness (3) at y = x + δ(x) with a variable constant
L(x). The parameter L(x) can thus be seen as a ”local
Lipchitz constant”. If L(x) remains approximately con-
stant, the backtracking line-search will eventually finds an
estimation Lk ≤ 2Lloc. Therefore, with the norm-depend
backtracking line-search, the step size will be at worst 4
times smaller than the one of the affine invariant fixed-step
strategy.
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Therefore, the optimal step size from the backtracking line-
search with the `2 norm is exactly the optimal affine invari-
ant step size of our affine invariant analysis from Theorem
5.1.

In conclusion, even if we use non-affine invariant norms to
find the smoothness constant, surprisingly, the backtrack-
ing procedure finds the optimal, affine invariant step size.

8. Illustrative Experiments
Quadratic / logistic regression. We consider the con-
strained quadratic and logistic regression problem,

min
x∈C

1

n

n∑
i=1

l(aTi x, yi), (10)

where l is the quadratic or the logistic loss. Here we adopt
the `2-ball, defined as

C = {x : ‖x‖2 ≤ R}, R > 0.

Specifically, we compare our affine invariant backtracking
method in Algorithm 2 against the naive FW Algorithm 1
with step size 1/L (Demyanov & Rubinov, 1970) and
back-tracking FW (Pedregosa et al., 2020) on the Made-
lon dataset (Guyon et al., 2007). The results are shown in
Figure 2. In detail, we set R such that the unconstrained
optimum x∗ satisfies ‖x∗‖2 = 1.1R, and the initial iter-
ate x0 = 0. As predicted by our theory, the affine invariant
algorithm performs well at the beginning, but after a few it-
erations the two backtracking techniques behave similarly.

Projection. We solve here the projection problem de-
scribed in Example 2.1, for two cases of B: One that cor-
responds to the original problem, i.e. B = I , the sec-
ond one where B is an ill-conditioned matrix (with the
condition number κ(B) = 106). The vector x0 is ran-
dom in the `2 ball, and x̄ = 1d · (1.1/

√
d). We report

the results in Figure 1. We compare the standard FW al-
gorithm for smooth functions with step size 1/L, the FW
with backtracking line-search (Algorithm 3) and FW with
affine invariant backtracking technique (Algorithm 2). If
the problem is well-conditioned (κ(B) = 1), all methods
perform similarly. This is not the case, however, for the
ill-conditioned setting, where the FW with no adaptive step
size converges extremely slowly compared to the two other
methods. We also see that the affine invariant backtrack-
ing converges quicker than the standard backtracking. This
is explained by the fact that the latter takes a longer time
to find the right constant Lk, while Lk remains untouched
after an affine transformation.

9. Conclusion
In this paper, our theoretical convergence results on
strongly convex sets complete the series of accelerated
affine invariant analyses of Frank-Wolfe algorithms. To ob-
tain these, we formulate a new structural assumption, the
directional smoothness, which we will explore more sys-
tematically in future works. Also, we present a new affine
invariant backtracking line-search method based on direc-
tional smoothness. Within our framework of analysis, we
provide a new explanation for the reasons behind the ef-
ficiency of the existing backtracking line search, and we
show theoretically and experimentally they also find affine
invariant step sizes.
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Figure 1. Comparison of FW variants on the projection problem. Left: B = I , Right: κ(B) = 106. The top row is the gap fk − f∗, and
the bottom row corresponds to the estimation of the directional-smoothness constant Lk or the smoothness constant Lk, where the black
line report the maximum value of Lk. The reason why adaptive FW methods are slower in the left figure is because, in the worst case,
the number of iterations to reach a certain precision can be up to four times larger than the worst-case bound on non-adaptive methods.
We clearly see that the directional smoothness parameter Lf,δ is affine invariant, as its estimate is maxk Lk = 32 in both scenarios.
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Figure 2. Classification problem on Madelon dataset, with (Top) Quadratic loss and (Bottom) Logistic loss.
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