On the Generalization Power of Overfitted 2-layer NTK models

A. Extra Notations

In addition to the notations that we have introduced in the main body of this paper, we need some extra notations that are
used in the following appendices. The distribution of the initial weights V[j] is denoted by the probability density A(-) on
RY, and the directions of the initial weights (i.e., the normalized initial weights %) follows the probability density

A(-) on 8?71, Let Ay (-) be the Lebesgue measure on R® where the dimension a can be, e.g., (d — 1) and (d — 2).
Let Bino(a, b) denote the binomial distribution, where a is the number of trials and b is the success probability. Let I.(-, -)

denote the regularized incomplete beta function (Dutka, 1981). Let B(-, -) denote the beta function (Chaudhry et al., 1997).
Specifically,

1
B(z,v) ::/ t* (1 —t)YLdt, (19)
0
=) tae
L(a,b) := Blab) (20)

Define a cap on a unit hyper-sphere S~ as the intersection of S¢~! with an open ball in R¢ centered at v, with radius 7,
ie.,

B, ={veS"!||v-wv.2<r}. 1)

Remark 4. For ease of exposition, we will sometimes neglect the subscript v, of By, and use B" instead, when the quantity
that we are estimating only depends on r but not v,.. For example, where we are interested in the area of B, _, it only depends
on 7 but not v,. Thus, we write Aq_1 (B") instead.

For any « € Re such that T v, = 0, define two halves of the cap B,f,* as

By* ={veB, |z'v>0}, B :={veB, |z"v<0}. (22)

Vs,

Define the set of directions of the initial weights V[j]’s as

) Volj]
Ava = {nvmnu

B. GD (gradient descent) Converges to Min />-Norm Solutions

We assume that the GD algorithm for minimizing the training MSE is given by
AVER, = AVEP — 3 > (HAVEP — y)HT (24)
i=1
where AVSD denotes the solution in the k-th GD iteration (AVgD = 0), and y; denotes the step size of the k-th iteration.
Lemma 6. If AV*2 exists and GD in Eq. (24) converges to zero-training loss (i.e., HAVSP = y), then AVSGP = AV*2,

Proof. Because AV{P = 0 and Eq. (24), we know that AV is in the row space of H for any k. Thus, we can let
AVSP = H”a where a € R"™. When GD converges to zero training loss, we have HAVSP = 4. Thus, we have
HH” a = y, which implies @ = (HH”)~'y. Therefore, we must have AVSP = H'q = HT'(HH") "'y = AV%, [

C. Assumptions and Justifications

Because fAV,Vo (ax) = a- fAV’VO (x) for any a € R, we can always do preprocessing to normalize the input x. For
simplicity, we focus on the simplest situation that the randomness for the inputs and the initial weights are uniform.
Nonetheless, methods and results of this paper can be readily generalized to other continuous random variable distributions,
which we leave for future work. We thus make the following Assumption 1.
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Assumption 1. The input T are uniformly distributed in S971. The initial weights V[j]’s are uniform in all directions. In
other words, j1(+) and \(-) are both unif(S?~1).

We study the overparameterized and overfitted setting, so in this paper we always assume p > n/d, i.e., the number of
parameters pd is larger than or equal to the number of training samples n. The situation of d = 1 is relatively trivial, so we
only consider the case d > 2. We then make Assumption 2.

Assumption 2. p > n/dandd > 2.
If the input is a continuous random vector, then for any ¢ # j, we have Pr{X; = X;} = 0 and Pr{X; = —-X;} =0

(because the probability that a continuous random variable equals to a given value is zero). Thus, Pr{X; || X;} = 0, and
Pr{X; }f X;} = 1. Similarly, we can show that Pr{V[k] }f V[l]} = 1. We thus make Assumption 3.

Assumption 3. X; [t X; for any i # j, and Vo [k| }f Voll] for any k # 1.

With these assumptions, the following lemma says that when p is large enough, with high probability H has full row-rank
(and thus AV exists).

Lemma 7. lim, 5r {rank(H) =n | X} =1.
0
Proof. See Appendix E. O

D. Some Useful Supporting Results

Here we collect some useful lemmas that are needed for proofs in other appendices, many of which are estimations of certain
quantities that we will use later.

D.1. Quantities related to the area of a cap on a hyper-sphere

The following lemma is introduced by (Li, 2011), which gives the area of a cap on a hyper-sphere with respect to the
colatitude angle.

Lemma 8. Let ¢ € [0, 7] denote the colatitude angle of the smaller cap on S91, then the area (in the measure of A\q_1)

of this hyper-spherical cap is
1 a1 d—11
—Ad— I — = .
2)‘61 1(8 ) sm2¢< 9 72>

The following lemma is another representation of the area of the cap with respect to the radius r (recall the definition of 5"
in Eq. (21) and Remark 4).
Lemma9. Ifr < \/2, then we have

1 _ d—1 1

Proof. Let ¢ denote the colatitude angle. By the law of cosines, we have
2

T
sp=1— —.
cos ¢ 3

2 2 2\ 2 r?
i =1- =1-(1-—=) = 1——.
sin” ¢ cos” ¢ ( 2) 7“( 4)

By Lemma 8, the result of this lemma thus follows. Notice that we require r < V/2 to make sure that ¢ €0, g], which is
required by Lemma 8. O

Thus, we have
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The area of a cap can be interpreted as the probability of the event that a uniformly-distributed random vector falls into that
cap. We have the following lemma.

Lemma 10. Suppose that a random vector b € S~ follows uniform distribution in all directions. Given any a € S9!
and for any c € (0,1), we have

d—11
Iir{|aTb| > c} =1I_. <2, 2) )

Proof. Notice that {b | a’b > c} is a hyper-spherical cap. Define its colatitude angle as ¢. We have cos ¢ = a’b = c.
Thus, we have sin? p=1-— 2. By Lemma 8, we then have

1 d—11
/\d—l ({b ’ aTb > C}) = 5)\d_1(5d71)11_c2 (2, 2) .

Further, by symmetry, we have

hacr (b 1a78] > ) =201 (8] @ > o) = daa (i (5 5).

Because b follows uniform distribution in all directions, we have

Ai—1 ({b] |a”b| > c}) d—11
T _ — Z
Fl")r{\a bl > c} = M (ST) =1 . ( 5 2) .

D.2. Estimation of certain norms

In this subsection, we will show ||hv, z||2 < |/p in Lemma 11. We also upper bound the norm of the product of two
matrices by the product of their norms in Lemma 12. At last, Lemma 13 states that if two vector differ a lot, then the sum of
their norm cannot be too small.

Lemma 11. ||hv, »|]2 < \/pforany z € S 1.

Proof. This follows because the input « is normalized. Specifically, by Eq. (1), we have

P
Ihvoalz = | Y | Lervopso) 27| < Vb (25)

j=1

Lemma 12. I[f C = AB, then ||C|l2 < ||A||2 - ||Bl|2- Here A, B, and C could be scalars, vectors, or matrices.

Proof. This lemma directly follows the definition of matrix norm. O

Remark 5. Note that the (¢5) matrix-norm (i.e., spectral norm) of a vector is exactly its {5 vector-norm (i.e., Euclidean
norm)’. Therefore, when applying Lemma 12, we do not need to worry about whether A, B, and C are matrices or vectors.

Lemma 13. For any vi, vy € R% we have

1
2 2 2
lv1llz + llvzllz 2 5 llvr = valf2.
"To see this, consider a (row or column) vector a. The matrix norm of a is
‘m‘ax |laz||2 (when a is a column vector),
z|=1

or ”Hﬁax |laz||2 (when a is a row vector).
x||2=1

In both cases, the value of the matrix-norm equals to 1/ a2, which is exactly the £2-norm (Euclidean norm) of a.
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Proof. Itis easy to prove that || - ||3 is convex. Thus, we have
loall3 + w213 = lloall + | = a3
v — vy ||
>2|[=~—=2|| (apply Jensen’s inequality on the convex function || - ||2)
2

1
= §||111 — vyf3.

O
D.3. Estimates of certain tail probabilities
The following is the (restated) Corollary 5 of (Goemans, 2015).
Lemma 14. If the random variable X follows Bino(a,b), then for all 0 < § < 1, we have
Pr{|X —ab| > dab} < 2¢~09°/3,
The following lemma is the (restated) Theorem 1.8 of (Hayes, 2005).
Lemma 15 (Azuma—Hoeffding inequality for random vectors). Let X1, Xs,--- , Xy be i.i.d. random vectors with zero
mean (of the same dimension) in a real Euclidean space such that || X;||2 < 1foralli =1,2,--- k. Then, for every a > 0,

k
>
=1

2 a
P > e ——_ ).

In the following lemma, we use Azuma—Hoeffding inequality to upper bound the deviation of the empirical mean value of a
bounded random vector from its expectation.

Lemma 16. Let X, Xo, -, Xy, be i.i.d. random vectors (of the same dimension) in a real Euclidean space such that
| X:lle < U foralli =1,2,--- k. Then, for any q € [1, c0),

k
1 11 2 vk
Pr{H(k ;ZlXi) —EXq|| > k2 2}<26 exp <_8Uz>

Proof. Because || X;||2 < U, we have E || X;||2 < U. By triangle inequality, we have || X; — E X, ||z < || X;]l2 + E || Xi]l2 <
2U, i.e.,

2

<1 (26)

X, —EX,
2 |,

We also have

X,-EX;,] EX,—EX;
E[l 1}: : L= Q27)

2U 2U

)

:PI’{ i(XZ_EX’L)

h X, —EX;
= Pr _— >
: 2U
i=1 2

<2 exp (

‘We then have

PRIl
2U

in Lemma 15).

k
02 ) (by Egs. (26)(27) and letting a =
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Figure 4. The arc CBF is ’“2—;9 of the perimeter of the circle O.

D.4. Calculation of certain integrals

The following lemma calculates the ratio between the intersection area of two hyper-hemispheres and the area of the whole
hyper-sphere.

Lemma 17.

7 — arccos(x” z)

27 (28)

/ l{zT'u>07 wTv>0}d;\(’U) =
Sd—1

(Recall that 5\( -) denotes the distribution of the normalized version of V[j] on S*1 and is assumed to be uniform in all
directions.)

Before we give the proof of Lemma 17, we give its geometric explanation.

Geometric explanation of Eq. (28): Indeed, since X is uniform on 8?1, the integral on the left-hand-side of Eq. (28)
represents the probability that a random point falls into the intersection of two hyper-hemispheres that are represented by
{ve 81| 2Ty >0} and {v € 8! | zTv > 0}, respectively. We can calculate that probability by

measure of a hyper-spherical lune with angle 7 — (z,x)  m — arccos(z? z)

= 29
measure of a unit hyper-sphere 27 ’ 29

where 6(-, -) denote the angle (in radians) between two vectors, which would lead to Eq. (28). To help readers understand
Eq. (29), we give examples for 2D and 3D in Fig. 4 and Fig. 5, respectively. In the 2D case depicted in Fig. 4, OA denotes

z, @ denotes z. Thus, the arc EAF denotes {v | zTv > 0}, and the arc CBD denotes {v|zlv > O} The intersection
of EAF and CBD i.e., the arc CBF represents {v | 27v > 0,zTv > 0}. Notlce that the angle of CBF equals m — 6,

where 6 denotes the angle between z and x. Therefore, ratio of the length of CBF to the perimeter of the circle equals

to ASSF = 9 . Similarly, in the 3D case depicted in Fig. 5, the spherical lune ICHF denotes the intersection of the

—
semi-sphere in the direction of OA and the semi-sphere in the direction of O@ We can see that the area of the spherical
lune ICHF is still proportional to the angle ZCOF. Thus, we still have the result that the area of the spherical lune ICHF is

”2—;9 of the area of the whole sphere. The proof below, on the other hand, applies to arbitrary dimensions.

Proof. Due to symmetry, we know that the integral of Eq. (28) only depends on the angle between x and z. Thus, without
loss of generality, we let

x=[x1x2 - 2y =[00---010T, 2=1[00--- 0 cosf sinb]”,
where
6 = arccos(z” z) € [0, 7). (30)
Thus, for any v = [v] v2 -+ vg]? that makes z7v > 0 and v > 0, it only needs to satisfy

[cos 6 sin 6] [”Zdl] >0, [10] [”Zdl} > 0. 31)
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Figure 5. The area of the spherical lune ICHF is "2—;0 of the area of the whole sphere.

We compute the spherical coordinates o, = [¢F p% --- ©% |17 where T, -+, 0% , € [0,7] and p%_

the convention that

x 41 = sin(pT) sin(py) - - - sin(pg_s) cos(¢_1),

g = sin(p7) sin(gy) - - sin(pg_o) sin(pg_1)-

Thus, we have ¢, = [7/2 7/2 --- 7/2 0]1. Similarly, the spherical coordinates for z is ¢, = [r/2 7/2
the spherical coordinates for v be ¢, = [p? 3 -+ ¢Y_,]T. Thus, Eq. (31) is equivalent to

sin(e}) sin(y) - - - sin(pl_,) (cosf cos(py_1) + sinfsin(py_y)) > 0,
sin(e}) sin(py) - - sin(pg_) cos(egz_,) > 0.

Because ¢}, - -+ ,¢Y_, € [0, 7] (by the convention of spherical coordinates), we have
sin(}) sin(py) - - sin(pg_») > 0.
Thus, for Eq. (32) and Eq. (33), we have

cos(0 — pg_1) >0, cos(pg_q) >0,

1 €0, 2m) with

m/20)T. Let

(32)
(33)
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ie, Yy € (—m/2, m/2)N (0 —7/2, 6 +7/2) (mod 27). We have

/Sdi1 1{va>O, ach>O}d5‘(’U)

e

d73(

Syn0-3, 0+3) Jo ~ Jo ST (p1) sin (92) -+ sin(pa—2) der dipa - dipa

2T [ sind™2 (1) sin? 3 (ip2) - - sin(pa—2) dipr dpa -+ dipa—y
_Jes -3, 005 A doa
f02ﬂ— A- d@dfl

(by defining A := / . / sin?=2(p1) sin? 3 (g) - - - sin(pg_2) dp1 ds)
0 0

_length of the interval (=%, 5)N (0 — %, 0+ %)

2
T—0
= (because 6 € [0, 7] by Eq. (30))

T — arccos CBTZ
:+ (by Eq. (30)).

i
PR

The result of this lemma thus follows. O

D.5. Limits of |CY5,|/p when p — oo
We introduce some notions given by (Wainwright, 2015).

Glivenko-Cantelli class. Let .7 be a class of integrable real-valued functions with domain X, and let X¥ = {X;,--- , X;.}
be a collection of i.i.d. samples from some distribution P over X'. Consider the random variable

[Px — Pll# := sup
fez

which measures the maximum deviation (over the class .%) between the sample average % Zle f (X;) and the population

average E[f] = E[f(X)]. We say that .# is a Glivenko-Cantelli class for P if ||P;, — IP|| & converges to zero in probability as
k — oo.

Polynomial discrimination. A class .# of functions with domain X" has polynomial discrimination of order v > 1 if for
each positive integer k and collection X¥ = {X;,--- | X} } of k points in X, the set .# (X ) has cardinality upper bounded
by

card(.Z (X)) < (k+1)".
The following lemma is shown in Page 108 of (Wainwright, 2015).
Lemma 18. Any bounded function class with polynomial discrimination is Glivenko-Cantelli.
For our case, we care about the following value.

ICYo| 7 — arccos(xT z)

1P
= |- 1 ; ; - E 1 by L 17).
p o pz {xTVy[j]>0,2T V[j]>0} ij\(.)[ {mTv>(),va>0}] (by Lemma 17)

j=1
In the language of Glivenko-Cantelli class, the function class %, consists of functions 15740, 274>0} that map v € Sd-1
to 0 or 1, where every € S%land z € 8§41 corresponds to a distinct function in .%,. According to Lemma 18, we need
to calculate the order of the polynomial discrimination for this .%,. Towards this end, we need the following lemma, which
can be derived from the quantity ),, ; in (Wendel, 1962) (which is the quantity ()4 5, in the following lemma).
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Lemma 19. Given vi,ve, - - ,v; € S%1 the number of different values (i.e., the cardinality) of the set
{(l{mTv1>0}, 1{ZTU2>0}, s ,l{mT,Uk>0}) | S Sdil} is at most Qd,k: where
oo [T i
BT 9k, ifk <d.

Intuitively, Lemma 19 states the number of different regions that & hyper-planes through the origin (i.e., the kernel of the
inner product with each v;) can cut S~ into, because all x in one region corresponds to the same value of the tuple
(1{aTv, 501 L{@Tws>0}s > L{wTwy, >0} ). For example, in the 2D case (i.e., d = 2), k diameters of a circle can at most
cut the whole circle into 2k (which equals to (2 ) parts. Notice that if some v;’s are parallel (thus some diameters are
overlapped), then the total number of different parts can only be smaller. That is why Lemma 19 states that the cardinality is
“at most” Qg k-

The following lemma shows that the cardinality in Lemma 19 is polynomial in k.
Lemma 20. Recall the definition Qg ), in Lemma 19. For any integer k > 1 and d > 2, we must have Qg < (k + 1)+,

d—1
Proof. When k > d, because (kzl) < (k—1)1'wheni < d—1,wehave Qi1 =2 > (kzl) < 2d(k+1)471 <
i=0
(k+ 1)dJrl (the last step uses £ > 1 and k > d). When k < d, because k > 1, we have Qg = 2k < (k+ 1)’C < (k+ 1)d.
In summary, for any integer & > 1 and d > 2, the result Qg < (kK + l)d+1 always holds. O

We can now calculate the order of the polynomial discrimination for the function class .%,. Because
card ({ (1{mT'v1>0,zT'v1>0}> 1{:tTv2>O,va2>O}a Tty 1{wT'uk>O,vakO}) ’ T e Sd_17 z € Sd_l})
<card ({ (l{mT'v1>O}’ 1{1:Tv2>0}7 ) 1{wTvk>0}) | T < Sdil})
- card ({ (1{zT'v1>0}7 l{zT'u2>0}a ) 1{vak>0}) | EAS Sdil}) )
by Lemma 19 and Lemma 20, we know that

card(Z, (XT)) < (Qax)? < (k +1)2@+0,

(Here XF means {Vo[1],---, Vo[k]}.)

Thus, %, has polynomial discrimination with order at most 2(d + 1). Notice that all functions in .%, is bounded because
their outputs can only be 0 or 1. Therefore, by Lemma 18 (i.e., any bounded function class with polynomial discrimination
is Glivenko-Cantelli), we know that .%, is Glivenko-Cantelli. In other words, we have shown the following lemma.

Lemma 21.
Yo 7 — arccos(x” z
sup | z’w| — ( ) KA 0, asp — oo. (34)
z,ze84-1 P 2T

E. Proof of Lemma 7 (H has full row-rank with high probability as p — o)

In this section, we prove Lemma 7, i.e., the matrix H has full row-rank with high probability when p — co. We first
introduce two useful lemmas as follows.

The following lemma states that, given X (that satisfies Assumption 3) and k& € {1,2,--- ,n}, there always exists a vector
v € S9! that is only orthogonal to one training input Xy, but not orthogonal to other training inputs X; for all i # k. An
intuitive explanation is that, because no training inputs are parallel (as stated in Assumption 3), the total set of vectors that
are orthogonal to at least two training inputs is too small. That gives us many options to pick such a vector v that is only
orthogonal to one input but not others.

Lemma 22. Forallk € {1,2,--- ,n} we have

Tii={veS" | v"X, =0,v"X; £0,foralli € {1,2,--- ,n}\ {k}} # @.
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C=X

e e AR

i o H i, X i, X : 2
Figure 6. Geometric interpretation of Bv‘m_’; and Bv’*,iyl on a sphere (i.e., S*).

Proof. We have

T = ST Nker(Xy) \ U ker(X;)
ie{1,2,.- ,n}\{k}
= 81 N ker(Xg) \ U (7 nker(Xy) nker(X,))
ie{1,2,-- ,;n}\{k}
Because
dim(S? ! Nker(Xy)) = d — 2,
dim(S Nker(Xy) Nker(X;)) = d — 3foralli € {1,2,--- ,n} \ {k} (because X; } Xj), (35)
we have

Aa—2(STENker(Xy)) = Ag_2(S?72) > 0,
Aa—2 (ST Nker(Xy,) Nker(X;)) = 0foralli e {1,2,--- ,n}\ {k}. (36)

(When d = 2, the set in Eq. (35) is not defined. Nonetheless, Eq. (36) still holds when d = 2.) Thus, we have

Aa—2(Tr) = A2 (ST! Nker(Xy)) — Aa—s U (87! Nker(Xy,) Nker(X;))
i€{1,2,--- n}\{k}
> Ao (ST Nker(Xy)) — > Aa—2 (847 Nker(Xy,) Nker(X;))
i€{1,2,--- ,n}\{k}
— )\d,Q(Sd_Q)
> 0.
Therefore, T;, # @. O

The following lemma plays an important role in answering whether H has full row-rank. Further, it is also closely related to
our estimation on the min eig(HH?') later in Appendix F.
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Lemma 23. Consider anyi € {1,2,--- ,n}. For any v, ; € S~ ! satisfying vziXi =0, we define

. T
;= min v, ;X . 37)
je{1,2, mi\{i) [o-.: %] (
If there exist k,l € {1,--- | p} such that

_Volk] Voll]

Toolills © B oo, © B (8
then we must have
H;[k] = H;[l], forall j € {1,2,--- ,n} \ {i}, 39)
H;[k] = X7, (40)
H,[]] = 0. 41

(Notice that Eq. (38) implies r; > 0.)

Remark 6. We first give an intuitive geometric interpretation of Lemma 23. In Fig. 6, the sphere centered at O denotes S,
the vector (ﬁ denotes X;, the vector OD denotes one of other X’s, the vector @ denotes v, ;, which is perpendlcular to
X; (i.e., XT v, ; = 0). The upper half of the cap E denotes B” . » the lower half of the cap E denotes BT’ . The great

circle L cuts the sphere into two semi-spheres. The semi- sphere in the direction of Cﬁ corresponds to all vectors v on
the sphere that have positive inner product with X; (i.e., v, X; > 0), and the semi-sphere in the opposite direction of (ﬁ
corresponds to all vectors v on the sphere that have negatlve inner product with X; (i.e., vTX; < 0). The great circle Lq
is similar to the great circle L., but is perpendicular to the direction OD (i.e., X;). By choosing the radius of the cap E
in Eq. (37), we can ensure that all great circles that are perpendicular to other X;’s do not pass the cap E. In other words,
for the two semi-spheres cut by the great circle perpendicular to X;, j # 4, the cap E must be contained in one of them.
Therefore, vectors on the upper half of the cap E and the vectors on the lower half of the cap E must have the same sign
when calculating the inner product with all X;’s, for all j # 1.

Now, let us consider the meaning of Eq. (38) in this geometric setup depicted in Fig. 6. The expression % BZ;*’L :

means that the direction of V[k] is in the upper half of the cap E. By the definition of H; = hv, x, in Eq. (1), we must

then have H;[k] = X7 Similarly, the expression H\\// [E]]H € B“’Xf means that the direction of V(] is in the lower half of
the cap E, and thus H;[!] = 0. Then, based on the discussions in the previous paragraph, we know that V[k] and V[I] has
the same activation pattern under ReLU for all X;’s that j # ¢, which implies that H;[k] = H[l]. These are precisely the

conclusions in Egs. (39)(40)(41).

Later in Appendix F, Lemma 23 plays an important role in estimating min,cs»—1 |[H” a||3. To see this, let a; denotes
the j-th element of a. By Eq. (39), we have Y-, 5 . ’n}\{i}((HTaj)[k;] — (H%a;)[l]) = 0. By Eq. (40) and Eq. (41),
we have (H” a;)[k] — (H”a;)[l] = X;. Combining them together, we have (H a)[k] — (H T a)[l] = a;X;. As long as a;
is not zero, then regardless values of other elements in a, we always obtain that H” a is a non-zero vector. This implies
|[H”al|2 > 0, which will be useful for estimating min eig(HH”') /p in Appendix F.

Proof. By the definition of r;, we have

lvl; X;| —r; >0, forall j € {1,2,---,n}\ {i}. (42)
Forany j € {1,2,--- ,n} \ {i} and any v € Bf;* s since [[v — v, 4|2 < 7y, we have
(v X ;) (v = ((v Vs j) Xj + UziX]‘) ('U*T,in)
= (v, X5)" + (v1X) (v = v.)TX)
> (01;X5)? = [ X - [(v = vi0) "X
> (v X5)? = [l X] - v = vuill, X1,
> (v7,X;)* = v X - ri (by Eq. (21))

= ol X |(jv] ;X =)
>0 (by Eq. (42)).
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Thus, for any vy € By ., vo € By ., j € {1,2,--- ,n}\ {i}, we have (v{ X;)(v],X;) > 0 and (vj X;)(v],X;) > 0.
It implies that

sign(vipXj) = sign(vzixj) = sign(v;FXj). (43)
By Eqg. (38), we know that both Vo [k] and Vo[/] are in By .. Applying Eq. (43), we have
sign(X7Vo[k]) = sign(X] V[l]), forall j € {1,2,---,n}\ {i}.
Thus, by Eq. (1), we have
H; k] = 1{XJ,TVO[1<]>0}X]‘T = 1{ijv0[l]>0}XjT = H;[l], forall j € {1,2,--- ,n}\ {i}.
By Eq. (22), we have
XTVo[k] >0, XTV,l] < 0.
Thus, by Eq. (1), we have

Hilk] = Lixrvops-0 X =X, Hill] = Lixrv, g0 X; = 0.

Now, we are ready to prove Lemma 7.

Proof. We prove by contradiction. Suppose on the contrary that with some nonzero probability, the design matrix is not full

row-rank as p — oo. Note that when the design matrix is not full row-rank, there exists a set of indices Z C {1,--- ,n}
such that
> bH; =0, b; # 0 foralli € T. (44)
i€l

The proof will be finished by two steps: 1) find an event .7 that happens almost surely when p — oo; 2) prove this event J
contradicts Eq. (44).

Step 1:
Consider each i € {1,2,--- ,n}. By Lemma 22, we know that there exists a v, ; € S~ such that
vl X; =0, v],X; #0, forall j € {1,2,-- ,n}\ {i}. (45)
Define
T = je{l,Q{g@{ln}\{i} vl X;| > 0. (46)
Forall: = 1,2,--- ,n, we define several events as follows.

i, X i X

Tir = {Av, N B £ 0},
Ji_ = {AV0 OB:,*?(— 7 Q} ’

J =T
i=1

(Recall the geometric interpretation in Remark 6. The events 7; 4+ and J; — mean that there exists Vo[5]/||Vo[s]||2 in the
upper half and the lower half of the cap E, respectively. The event J; = J; + N J;,— means that there exist Vo[j]/||Vo[j]ll2
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in both halves of the cap E. Finally, the event 7 occurs when 7; occurs for all 7, although the vector V[5]/||Vo[7]||2 that
falls into the two halves may differ across <. As we will show later, whenever the event 7 occurs, the matrix H will have the
full row-rank, which is why we are interesting in the probability of the event 7.)

Those definitions implies that

Jf = if+U$f_foralli:1,2,~~',n, 47)
Jo=U7 (48)
Thus, we have
Prl7) =1 - Prl7]
>1-— Z Pr [J£] (by Eq. (48) and the union bound). 49)
i=1

For a fixed i, recall that by Eq. (46), we have r; > 0. Because BZ{:_ and Bz)f_ are two halves of B Lo we have

e X, 1 .
A1 (B i) = Aao1 (B X ) = Shaa(By ). (50)
2

Vx,is
Therefore, we have

Pr[j“] < Pr[ L+ Pr[jC ] (by Eq. (47) and the union bound)

(A BTN () AN
- Ad-1(841) Ad-1(5771)

(all V[é]’s are independent and Assumption 1)

. )‘d 1(B'u*7) ?
) (1 2M—1(£“)> (by Eq. (50)).

Notice that r; is determined only by X, and is independent of V and p. Therefore, we have

lim Pr[Jf] = (51

p—ro0 V()
Plugging Eq. (51) into Eq. (49), we have

lim Pr[J] =1 (because n is finite).
p—oo Vo

Step 2:

To complete the proof, it remains to show that the event J contradicts Eq. (44). Towards this end, we assume the event J
happens. By Eq. (44) we can pick one ¢ € Z. Further, by the definition of 7, there exists 7; such that Ay, N nBrx L FD

Vi ,is

and Av, N B” i = &. In other words, there must exist k,! € {1,--- , p} such that
_Volk] L, Vol _
e Bl EBU“ ‘.
[IVolk]llz ~ o=+ [[Vo[lllla ~ 7"

By Lemma 23, we have

H][k] :H]m7 fOI'aH] S {1727 771}\{7,}, (52)
H;[k] =X], H[l]=0. (53)
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We now show that H restricted to the columns corresponding to k£ and [ cannot be linearly dependent. Specifically, we have

> biH;[k] = b;H;[k]+ > bH;[k] (as we have picked i € 7)
jer JEI\{i}

= b;H;[k] — b;H,[I] + > _ b;H;[I] (by Eq. (52))

JET
=b:;X] + ) b;H,[I] (by Eq. (53))
JET
#* Z b;H,[] (because b; # 0).
JET

This contradicts the assumption Eq. (44) that
> b H K =) bH [l =
JET JjET

The result thus follows. O

F. Proof of Proposition 4 (the upper bound of the variance)

The following lemma shows the relationship between the variance term and min eig (HHT) /-
Lemma 24.

BT (HHT) 1 < P12
' min eig(HHT)

Proof. We have

T - 1 _ _ [€ll2
|HT(HHT) ], = |/(HT (HHT)~1e) HT (HHT)~le = /T (HHT)~le < —

Thus, we have
|hv, . H (HH") '€l
=||hv, «H" (HH”)"'€||2 (/2-norm of a number equals to its absolute value)
<|lhvy.zllz - [HT (HHT) €|y (by Lemma 12)

VDllell2
min eig(HHT)

(by Lemma 11 and Eq. (54)).

The following lemma shows our estimation on min eig (HHT) /-

Lemma 25. Foranyn > 2, m € {1 fn"} d<ni ifp> 6Jm(n,d)In (4n1+%), we must have

min eig (HHT) 1 2
XI,D\r/O { P = I (1, d)n}

Proposition 4 directly follows from Lemma 25 and Lemma 24.

In rest of this section, we will show how to prove Lemma 25. The following lemma shows that, to estimate
min eig (HHT) /p, it is equivalent to estimate minges--1 [|H” a3 /p.

8We can see that the key part during the proof of Proposition 4 is to estimate min eig (HHT) /p. Lemma 25 shows a lower bound
of min eig (HHT) /p which is almost Q(n' ~2%) when p is large. However, our estimation of this value may be loose. We will show a

upper bound which is O(n_ﬁ) (see Appendix G).
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Lemma 26.

min eig (HH”) = min | |H  al|3.
acsS"—

Proof. Do the singular value decomposition (SVD) of H? as HT = UXW7, where
e RUPX™ = diag(21, 8, -+, B).
By properties of singular values, we have

min |H al2= min X2
acSn—1 i€{1,2,---,n}

We also have
HH” = wx'uTuzw?’
= WXTSWT (because UTU = 1)
= Wdiag(¥?,%2,... 22 )W'.

This equation is indeed the eigenvalue decomposition of HH”', which implies that its eigenvalues are X2, 32 ... 2.
Thus, we have
mineig(HH") = min ¥?= min |H"al3.
i€{1,2,-,n} acsn—1

Therefore, to finish the proof of Proposition 4, it only remains to estimate mingeg»—1 ||H” a|3.

By Lemma 7 and its proof in Appendix E, we have already shown that H”a is not likely to be zero (i.e.
mingegn—1 [[H a3 > 0) when p — co. Here, we basically use the similar method as in Appendix E, but with more
precise quantification.

Recall the definitions in Eqgs. (21)(22)(23). Forany ¢ € {1,2,--- ,n}, we choose one
Vi € Sd-1 independently of X;, j # 4, such that ’UZ:iXi =0. (55)

(Note that here, unlike in Eq. (45), we do not require vzin # 0 for all j # . This is important as we would like X ; to be
independent of v, ; for all j # i.) Further, for any 0 < ry < 1, we define

i, = min { | Av, N B4, [Av, N BR X} (56)
Then, we define
ri = min v*Tixj , 567
JE{L2, mI\{i} T
7= min 7. (58)
ie{1,2,---,n}

(Note that here r; or # may be zero. Later we will show that they can be lower bounded with high probability.) Define

Dy = Aa—1(B7)

= S )

Similar to Remark 6, these definitions have their geometric interpretation in Fig. 6. The value cf;o denotes the number of

distinct pairs ( H\\/]o U[ES]HZ , H\\/,o 0[%]H2 )9 such that ”\\,’O O[Ef]’]”z is in the upper half of the cap E, and % is in the lower half of

the cap E. The quantities rg, r;, and 7 can all be used as the radius of the cap E. The ratio Dx is proportional to the area of
the cap E with radius # (or equivalently, the probability that the normalized V[j] falls in the cap E).

The following lemma gives an estimation on ||H” a||%/p when X is given. We put its proof in Appendix F.1.

“Here, “distinct” means that any normalized version of V[j] can appear at most in one pair.
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Lemma 27. Given X, we have

Pr {I[H"a|? > pDx, foralla € "'} > 1 — dne~"PPx/5,
0

Notice that Dx only depends on X and it may even be zero if 7 is zero. However, after we introduce the randomness of X,
we can show that 7 is lower bounded with high probability. We can then obtain the following lemma. We put its proof in
Appendix F.2.

Define

22
Ca = pa1 13 ©0

1y’
2
1 d—11

D(n,d, (5) = ﬁj 52 (1 52 ) (2, 2) . (61)

nicZ \ " anic?

Lemma 28. Foranyd € (0, 2], we have

XP‘r/ {IH"a||3 > pD(n,d,d), foralla € S" '} > 1— 4nemPD(.d0)/6 _ g,
» VO

Notice that Lemma 28 is already very close to Lemma 25, and we put the final steps of the proof of Lemma 25 in
Appendix F.3.

F.1. Proof of Lemma 27
Proof. Define events as follows.
J = {|H"a|]3 > pDx, foralla € S"" '},
Ji = {there existsa € S" ! thati € argmax |a |, and |[H  al3 < pDX} ,
je{l.2,n}
Ki = {ci, < anDx}7 fori=1,2,---,n.
Those definitions directly imply that

J = (62)
=1

Step 1: prove J; C K;

To show J; C K;, we only need to prove that J; implies ;. To that end, it suffices to show |H” al|3 > % for the vector
a defined in J;. Because i € argmax_, |a;| and ||lal|z = 1, we have

1
i > —=. 63
la;| > NG (63)
By Eq. (56), we can construct ci pairs (kj;,1;) forj =1,2,-- -, cfn (all ;s are different and all /;’s are different), such
that
Volk;] re X Vollj] re X

—_— Bv K s — c Bv i
[Volkilllz ~ o™ ([ Vo[l — >

Thus, we have
(H"a)[k;] — (H"a)[l;] = ax (Hi[k;] — Hy[1;])
k=1
=a; (Hilk;] —H[l,) + > an (Hglk;] — Hg[l))

ke{1,2,-- ,n}\{i}
=a;X,; (by Lemma 23).
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We then have

1
|(HT ) )13 + | (M @)[L3]13 = 5 llai X3 by Lemma 13)
1
> o (by Eq. (63)).
n
Further, we have
.
H" a5 = Z I(H"a)[j]]3 > Z (B a)[k;]]5 + [(H" a)[I;]]15 = 5. (64)

2n
j=1

Clearly, if the event J; occurs, then |[Hal|3 < pDx. Combining with Eq. (64), we then have c; < 2npDx. In other words,
the event /C; must occur. Hence, we have shown that 7; C ;.

Step 2: estimate the probability of /C;

Forall j € {1,2,---,p}, because V|[;] is uniformly distributed in all directions, for any fixed 0 < ry < 1, we have
Volj . Adg—1(Bo
pr Volil_ e B |t = STl i ;’)1 :
[IVoljlllz ~ 2Xa-1(8971)
Thus, | Ay, N 822’1 | follows the distribution Bino (p, #E?j%) given ¢ and X. By Lemma 14 (with § = %), we have
0. X pAa-1(By) | . pAa-1(By)
P N B 71” <2 ——— ) 65
V(E {|AV0 Ve i | < g1 (S41) L > 48Xp 481 (ST 1) (65)
Similarly, we have
pAa-1(By) | . PAa—1(By)
P TO’_ 7‘ <2 - ) 66
Ve {A"° ne g (S| = 2P Tag (84T (66)

By plugging Eq. (65) and Eq. (66) into Eq. (56) and applying the union bound, we have

: pAa-1(ByY) | . pAa-1(B;)
i < _— x|
o {CTO S D (84 ‘ e SN

By letting g = 7 and by Eq. (59), we thus have
. 1

Pr {clr < 2npr‘ z} < 4dexp <—npr> ,

Vo ‘ 6
ie.,

1 )
\lir[lCi] < 4exp <6npDX) , foralli =1,2,--- n. (67)
0

Step3: estimate the probability of 7
We have

Pr [T < Z Pr [J:] (by Eq. (62) and the union bound)
< Z Pr i) (by J; C IC; proven in Step 1)

1
<4nexp (—anDx) (by Eq. (67)).
Thus, we have
1
Brl) =1 £rlg*] = 1 - dnexp (- goDx

The result of this lemma thus follows. O
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F.2. Proof of Lemma 28

Based on Lemma 27, it remains to estimate 7, which will then allow us to bound Dx. Towards this end, we need a few
. d—1 1 d—1 1

lemmas to estimate B (41, 1) and I, (52, 3).

Lemma 29. For any x € R, we must have x + 1 < e”.

Proof. Consider a function g(z) = e” — 2 — 1. It remains to show that g(z) > 0 for all . We have ¢'(z) = e* — 1. In
other words, ¢’(xz) < 0 when z < 0, and ¢’(z) > 0 when = > 0. Thus, g(z) is monotone decreasing when < 0, and is
monotone increasing when x > 0. Hence, we know that g(x) achieves its minimum value at z = 0, i.e., g(x) > g(0) =0
for any x. The conclusion of this lemma thus follows. O

Lemma 30. For any d > 5, we have

Proof. By letting x = —-— in Lemma 29, we have

d—4
d-3 1 1
Lo < -
d—4 d—4+1—eXp<d—4>’

i.e.,

d—4 1
> ).
d—3—CXp< d—4> (68)

Thus, we have

Vv

®

»

il
/|\
&‘&

(N

1w
S~

> exp(—2) (because exp(-) is monotone increasing and d > 5).

Lemma 31. For any d > 5, we must have

Proof. Because 1 — ;% ~ 0.46 < 0.6, we have

%
_
|
|

Y
I
~~
o
@
Ie)
oo
=
[72]
)
QU
Y
o
N

walw
IN
|

e
-
|

SIS
S8
I
w
I
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Lemma 32.

Further, if d > 5, we have

(5l ]
2 72 \/&’ d—3|
Proof. When d = 2, we have B (%1, 1) = 7. When d = 3, we have B (%%, 1) = 2. When d = 4, we have

2
B (%5, 1) ~ 1.57. Itis easy to verify that the statement of the lemma holds for d =
case of d > 5. We first prove the lower bound. For any m € (0, 1), we have

d—1 1 Vs
B(Y—=, = :/ £ (1—t) 2 dt
2 72 0

1 i _
2/ 57 (1 — t)"2dt (because t = (1 —)~2 > 0)

m

2, 3, and 4. It remains to validate the

=

!
>m e / (1—t)"2dt

m

(because 2" is monotone increasing with respect to ¢ when d > 5)
d—3 !
=m 2 [—-2V1—-1t
m
=m T - 2v/1—m.

we thus have

d—1 1 1\ 1
- 2> - . .
5(53) 2 () i

Then, applying Lemma 30, we have

By lettingm =1 — ﬁ,

Thus, by Lemma 31, we have

Now we prove the upper bound. For any m € (0, 1), we have

d—1 1 boas 1
Bl——, 2 )=[ t= (1-t"2dt
< 2 ’ 2> A ’ ( ) ’
m d—3 1 1 d—3 1
:/ tT(l—t)_fdt—i—/ (-t hat
0 m

g/ £ (1 —m)2dt+ [ (1—t) 2dt

0 m

2 d—1 1
Zﬁm2 (l—m) 2 4+2v1—m

2

<

d—l(l_m)_% +2v1 — m (because m < 1 and d > 5).
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By lettingm =1 — ﬁ we thus have

B d—171 §2\/d—3+ 2
2 72 d—1 d—3
4
< .
d-3

Notice that \/;_73 = 24/2 < 7. The result of this lemma thus follows.

Lemma 33. Recall Cy is defined in Eq. (60). If d < n* and § < 1, then

Proof. We have

52 2 52 d—1
11— ——0 >(1- ——5
(-5e) =2 (-m)

>1— M (by Bernoulli’s inequality (1 + z)® > 1 + ax)
= 4n*C?3 y auatity -

d—1) (B (¢t 1L 2
- _( ) (B(5 5)) (by 6 < 1 and Eq. (60))

4nt - 8

(d—1)x?
>1 3971 (by Lemma 32)

d =2
>1— — .
21 nt 32

1
25 (because n*>dand 1 < 4).

Lemma 34. Foranyd € (0, %}, we must have n%‘d < %

Proof. Because Eq. (60), 6 < %, and n > 1, this lemma directly follows by Lemma 32.

Lemma 35. For any x € [0, 1], we must have

7 <d1 1> Cy a1
and
L (‘34 3) Ca
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Proof. we have

I, ((1217;> *f B(Ei t)) o

1
)
Cd a—3 _1
= t 2 (1 —t)"2dt (by Eq. (60
273 ), (1-1) (by Eq. (60))
[ Cq [* a3 Cy /xu
e|—=L | tTdt, —2 [ t=Tat
12v/2 Jo 2V2V/1 =z Jo

(because (1 —t)"/2 {1, ! ])

_ G e Ca as1]
Ved-1)"  Vad-Ovi—z

Thus, we have

which implies

Lemma 36. For any x € [%, 1) and for any d € {2,3,- -}, we have

I (d—l)l) 21_2 2(1— 1)
2 2 d—1

We also have

; (d—l 1)_f0xtd21_1(1—t)—5dt_1 [P (1 —t) 2t
22 B (% 3) B(Fh3)

Thus, it remains to show that

1 -
/ t%(l— )_%dt§2x/2(1—x), and (69)

[ (1 —t) 2t

=2. 70
(1—z)—0t V1—=x (70)
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First, we prove Eq. (69). Case 1: d = 2. We have

1 e 1
/t%(l—t)—ﬁdt
z1
:/ (1—t)"3dt

1 1
ST / (1- t)*%dt (because £~ % is monotone decreasing in [, 1))
z x

m\»a

1—2x

=2
T

1
<24/2(1 — z) (because = > 5).

Case 2: d > 3. Then t% is monotone increasing in [z, 1]. Thus, we have

/1td25"(1 — 1) Edt < /1(1 —t)7rdt=2vT -7 < 22(1 - ).

To conclude, for all d € {2,3,--- }, Eq. (69) holds.
Second, we prove Eq. (70). We have

f (1 — )2t . min{1, z“=° f 3dt max{l, 2“7 fxl )"z2d
Vi—2z V1 V1
= [Qmin{l, x%}, 2max{1, x%i}] .
Since lim,_,; “Z° = 1, Eq. (70) thus follows. O

Now we are ready to prove Lemma 28.

Recall v, ; defined in Eq. (55). For any b € ( , f} we have, for x independent of v, ; and with distribution f,

d—1 1
Pr {|v*Tzzc| > b} =11_p <2, 2) (because Lemma 10)
T~ ’

2/2(1— (1- %))

>1-— — (by Lemma 36)
B (% 3)
=1 — Cyb (by the definition of Cy in Eq. (60)). (71)

Since each of the X;, j # 1, is independent of v, ;, we have

Pr{ min |’U*Tin| > b}
X |jef1,2,-,np\{i}

n—1
= ( Pr {|v],z| > b}) (because each X, j # i, is i.i.d. and independent of v. ;)
T ’

> (1—Cqb)""" (by Eq. (71))
>1— (n — 1)Cy4b (by Bernoulli’s inequality)
21 - nCdb

Or, equivalently,

Pr{ min vl . X;| < b} < nCyb. (72)
X ie{1,2,-- ,n}\{i} ’



On the Generalization Power of Overfitted 2-layer NTK models

Recall the definition of r; and 7 in Eqs. (57)(58). Thus, we then have

Pr <7< 0
X,Vo TLQCd
o
< .
<n XP\r, ) {Tz pTo } (by Eq. (58) and the union bound)

1)
=n I;r {ri < nQC’d} (because r is independent of V)

1)

=nf ! T X,| < ——= b (by Eq. (57

"X {J‘E{l,zr,r-l}{ln}\{i} |v*ﬂ il < n2cd} (by Eq. (57))
5 5 )

<n-nCy- (by letting b = 20, in Eq. (72) and b < — because of Lemma 34)

&

=5. (73)

By Lemma 9 and Eq. (61), we have

_s 1 d—11
Na—1(B™%a) = EAd_l(Sd’l)I )< > = 8nX\g_1(S" 1 D(n,d,d).

2 72

n4C2 ( 41L402
Thus, we have

_5
)\d_l(Bn2cd)

D(n,d,d) = —8n)\d71(8d71).

(74)

By Eq. (59) and Eq. (74), we have

Dx > D(n,d,d), when 7 >

Notice that 7 only depends on X and is independent of V. By Lemma 27, for any X that makes 7 > n2 &, We must have
\F;r {|H"a||3 > pD(n,d,d), foralla € "'} > 1 — Ane~ PP (d,0)/6,
0

In other words,

‘P/r {HTaH% > pD(n,d,d), foralla € S"~' | any given X such that 7 >
0

> 1 — 4pe—PD(1n,d,5)/6
n“Cq) —

‘We thus have

0
TLQCd

P\r, {|HTa||§ > pD(n,d,d), foralla € S ' | 7 >
» VO

} > 1 — dne~"PP(:d:0)/6 (75)

Thus, we have
P Ha|? > pD for all n-l
X\;g{” a3 > pD(n,d,é), foralla € "'}
)
> Pr {#>——, and |[H"a|2 > pD(n,d,d), foralla € S"*
’IZQCd

X Vo |
1) 0
r > . r >
"= n2C’d} X?"}o {T B n2Cd}

>(1 — dne PP d9)/6Y(1 _ §) (by Eq. (73) and Eq. (75))
>1 — dpe "PP(d0)/6 _ 5

= Pr {||HTa||§ > pD(n,d,?), foralla € S"!
X, Vo

The result of this lemma thus follows.
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F.3. Proof of Lemma 25

Based on Lemma 238, it only remains to estimate D(n, d, §). We start with a lemma.
Lemma 37. If§ < 1and d < n*, we must have

D(n d 5) > 271'5d75‘5d70'5dn72d+15d71.

For any given § > 0 and d, we must have

d,
oy D00,d0) s 1,<B(d_1 1)) legdl,

n—oo p2d-l 2 72 -1

Proof. We start from

1 (B 5)" "

(d-1Ci?  (d-1(2v2)T
1

5 (by Eq. (60))

> by L 32
== 1y 11 (2\[)d72(y emma 32)

Thus, we have

D(n,d,§) > L Ca o 1- o2 = (by Eq. (61) and Lemma 35)
~16n V2(d —1) \n*C3 4ntC? Yy =4

B 1 1 ) 62 2 6d 1
= 16\/5 (d _ 1)03_2 4n4C§ n2d—1
1 d—1

d
>——(8d)” 2 ——— (by Lemma 33 and Eq. (77
_32\/5( )2 —5q=r (by q. (77))
—9—1.5d—5.5 §—0.5d,, ~2d+1 5d—1

2d—1

For any given d and § > 0, we have

D(n,d,?) 1 d—11

lim —7—— = lim ——-—1 ——, =) (byEq. (61
i T p2d—1 W 16n2d—2 22‘5 (1_471542CL2{> ( 5 ,2) (by Eq. (61))
a1 —1 1
(52 (1_L)) 3 I 52 (1,L> (Tag)

— lim n4C§ 4n4C§ ) nic2 1nic?

n—00 16n2d—2 52 52 dz;l

(n“Cﬁ (1 - 4n4C§>)

a1
L lim ﬁ 1— o i L
16 nooo Cg 4n4C’§

1 5 2\ I—f%(l——f ) (552)
. nic mic
lim ( (1 — )) . 11m = a F=

T 16 n00 \ C2 4niC?

1 g1 Cy
160“f( 1)

d—1 1\\“? 1
_9—1.5d-1.5 <B ( 5 2)> m(Sdfl (by Eq. (60)).

(by Lemma 35)

(76)

(77)
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Now we are ready to finish our proof of Lemma 25.

We have

1
>
T 91.5d+5.5J0.5dp2d— 1, <=2 (by Eq. (76))

1

T 15155 0.5y (2 2 )(d-1) )

1
T dn (by Eq. (9)).

D(n,d,0)

—_1
=

n

Thus, when p > 6.J,,(n,d) In (4n1+%n), we have

1 — dne-—mPPd5)/6 _ -2
S—_1_ /n
N
Then, we have
Inn T\ ™ 1 T 1 2 2
me|l, x| = (5) sn= vzl = <> =<2
In% 2 2 wnTow T

By Lemma 26 and Lemma 28, the conclusion of Lemma 25 thus follows.

G. Upper bound of min eig (HHT) /p

By Lemma 26, to get an upper bound of min eig (HH™') /p, it is equivalent to get an upper bound of mingcs--1 [|[H al|3/p.
To that end, we only need to construct a vector @ and calculate the value of |[H” a||2/p, which automatically becomes an
upper bound mingc g1 |[H  a||3/p.

The following lemma shows that, for given X, if two input training data X, and X}, are close to each other, then
mingcsn—1 |[H al|3/p is unlikely to be large.

Lemma 38. If there exist X; and X, such that i # k and 6 := arccos(XT Xy,), then

. 3p62  3pb P po
[ m Hlag|?2> 2 22 L <9 (——)4—2 —— .
vE {aeslfl | Iz 2 8 ar [ =597y P\ 12

Intuitively, Lemma 38 is true because, when X; and X, are similar, H; and Hy, (the i-th and k-th row of H, respectively)
will also likely be similar, i.e., || H; — Hy||2 is not likely to be large. Thus, we can construct a such that H” a is proportional
to H; — Hy,, which will lead to the result of Lemma 38. We put the proof of Lemma 38 in Appendix G.1.

The next step is to estimate such difference between X; and X}, (or equivalently, the angle 6 between them). We have the
following lemma.

Lemma 39. When n > w(d — 1), there must exist two different X;’s such that the angle between them is at most

o=m ((d - 1)B(E 1)) ~ noT.

2 72

Lemma 39 is intuitive because S?~! has limited area. When there are many X;’s on S%1, there must exist at least two
X;’s that are relatively close. We put the proof of Lemma 39 in Appendix G.2.

Finally, we have the following lemma.
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Lemma 40. Whenn > w(d — 1), we have

T
Pr { min eig(HH')

RT -1 1. \&7" _ 2o
< — :7) n d-t
Vo.X p 8 ( 2>
3 -11
2((d-1)B(——, =
3 (- )
_1
p) P d—1 1.\ _ 1
>1— N g - — —_— = -1 |,
>1 2exp( o4 2exp< lzw((d 1)B( 5 ,2) n- a1
Proof. This lemma directly follows by combining Lemma 26, Lemma 38, and Lemma 39. O

By Lemma 40, we can conclude that when p is much larger than nﬁ, %HHT) = O(n*ﬁ) with high probability.

G.1. Proof of Lemma 38

We first prove a useful lemma.

Lemma 41. For any ¢ € [0, 27, we must have sin ¢ < @. For any ¢ € [0,7/2], we must have ¢ < 7 sin .

Proof. To prove the first part of the lemma, note that

d(p — sin p)

iy =1—-cosp > 0.

Thus, the function (¢ — sin ¢) is monotone increasing with respect to ¢ € [0, 2x]. Thus, we have

. o — Q1 :0,
WGH[IOIEW](QD sinp) = (¢ Sm%")’@:o

In other words, we have sin ¢ < ¢ for any ¢ € [0, 27].
To prove the second part of the lemma, note that when ¢ € [0, 7/2], we have

d*(p — § singp)

B) Sln(p .

Thus, the function ¢ — 7 sin ¢ is convex with respect to ¢ € [0, 7/2]. Because the maximum of a convex function must be
attained at the endpoint of the domain interval, we have

(p = 5 sing) (p — 5 sing) =0

max — —sinp) = max — —singp) = 0.

0el0,7/2] 14 2 v pe{0,m/2} 14 2 4

Thus, we have ¢ < 7 sin ¢ for any ¢ € [0, 7/2]. O

Now we are ready to prove Lemma 38.

Proof. Through the proof, we fix X; and Xy, and only consider the randomness of V5. Because 8 is the angle between X;
and X}, and because of Assumption 1, we have

0

||)(Z — Xk||2 =2sin 5
0

<2 3 (by Lemma 41)

=0. (78)
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Leta = \iﬁ(ei — ey), where e, denotes the g-th standard basis vector, ¢ = 1,2, - - - , n. Then, we have
7 w2 LT T2
|H all3 §||Hz - H [l
1
=3 > Hl{XTVO[ >0y Xi — 1{XTV0[J]>0}XkH (by Eq. (1))
j=1
1
=5~ (Lixrvopio. xrvoprso X = Xel + Lixrvapoxrvain <o) © Xl = X3 = 1
j=1

(1{XTvom>o XIVoli1>010 + LX) (XT Vo) <0}> (by Eq. (78))

IN IN
w‘tl% | -
'M's ﬂM%

Lixrvolii>0) T 5 D HXIVali (KT Voli})<0)-
1 j=1

<
I

Since X; is fixed and the direction of V[j] is uniformly distributed, we have Pry,{X7V([j] > 0} = 1 and

PrXI Vol (X Volj]) < 0} =2 Pr{X{Vo[j] > 0, X{Volj] < 0}
=2 Pr{XTVO[ ] >0, —XIVy[j] > 0}

=2 /SLF1 LixTy>0, —X{v>0}d;\("7)

m—(m—0)

=2- (by Lemma 17)

Thus, based on the randomness of V5, when X are given, we have

- 1
Z 1{XTV0[]]>O} ~ BInO <p, 2) 5

j=1

- 0
Z (XTVoli)(XFVoli))<0} ™ Bino (p ﬂ_) .

By letting § = 3, @ = p, b = 1 in Lemma 14, we then have
z 3p P

3p0 o
Pra D L(xrvolih Xt valih <oy = 5 ¢ < 2exp (—1%) :
j=1

(79)

(80)

81)
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Thus, we have

3p6%  3ph
{HT (R

8 1
3pf?  3ph
=B Z Lixrvoii>or T 5 Z Lxrvolinxfvolid<oy = —g~ T 7=
0 =1 j 1 ™
(by Eq. (79))
p
3p 3pb
<Pro g 2 Terveisor > o ¢ YU 20 Vo (xEvel<oy = 5

[

j=1

4 J
3 £ 3p0
=P ZI{XTVO >0y > (o H&XTvolin(XEVolih<o} 2 5=
]:

(by the union bound)
p pd
<2exp ~o1 + 2exp T (by Eq. (80) and Eq. (81)).
The result of Lemma 38 thus follows. O

G.2. Proof of Lemma 39

We first prove a useful lemma. Recall the definition of Cy in Eq. (60).
Lemma 42. We have

2v/2(d — 1) . [d—l w(d—l)}
nCy nvd’ n '

Proof. By Lemma 32 and Eq. (60), we have
2v2 2d

Thus, we have

2v/2(d — 1) . [d—l w(d—l)]

nCy nvd'
O
Now we are ready to proof Lemma 39.
Proof. Recall the definition of # in Lemma 39. Draw n caps on S¢~! centered at X;, Xo, - -, X,, with the colatitude
angle ¢ where
CEy
0 7w [2v2(d-1)\"
p=-=— 2V2Ad—1) (by Eq. (60)). (82)
2 2 nCy

By Lemma 42 and n > 7(d — 1), we have ¢ € [0, 7/2]. Thus, by Lemma 41, we have

sinp > 2£ <2\/§w_1)> - . (83)
T nCy
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By Lemma 8, the area of each cap is

1 i d—1 1
A—2Ad71(5 )Isin2<p< 5 ,2>~

Applying Lemma 35 and Eq. (83), we thus have

1 _ Cq . -1 1 _
A> N\, Sd 1y Ma 2 T — )\, Sd 1.
2 ST it ) = (st

In other words, we have

Ad—1 ( Sd- 1)
1 <n
By the pigeonhole principle, we know there exist at least two different caps that overlap, i.e., the angle between them is at
most 2¢. The result of this lemma thus follows by Eq. (82). O

H. Proof of Proposition 5

We follow the sketch of proof in Section 5. Recall the definition of the pseudo ground-truth function f\g,0 in Definition 2,
and the corresponding AV* € R that

AV = [ty ), o € (12,00 ) (34)

We first show that the pseudo ground-truth can be written in a linear form.
Lemma 43. hv, . AV* = [ (x) forall x € S~

Proof. Forall x € S !, we have

p
hv, «AV* = Zhvo,m[g’mv*[j}

j=1

p
z
Z {2TVo[j]>0} T /Sdll{vao[j]>0}Z§](]9)dM(z) (by Eq. (1) and Eq. (84))

P
g(z
B / > Lervops0; mTl{zTVo[J’bo}z(i)dM(z)
L=t p
= [ = ) eyea o)
Sd-
{J, (z) (by Deﬁnltlon 2).

O

Let P := H'(HH”) 'H. Since P? = P and P = P, we know that P is an orthogonal projection to the row-space of
H. Next, we give an expression for the test error. Note that even though Proposition 4 assumes no noise, below we state a
more general version below with noise (which will be useful later).

Lemma 44. If the ground-truth is f(x) = hv, o AV* for all x, then we have
(@) — f(x) = hvy (P —1)AV* + hy, . HT (HH?) Y€, for all .
Proof. Because f(x) = hv, AV™*, we have y = HAV™* + €. Thus, we have

AV = HT (HHT) 'y (by Eq. (3))
=H'HH")"Y(HAV* +¢).
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Further, we have
AV2 — AV* = (HT(HH")'H - 1) AV* + H'(HH") e
=P -1)AV* + H'(HH") 'e.
Finally, using Eq. (4), we have
(@) = f(x) = hvy e AV? — by, o AV* = by, o(P — T)AV* + hy, ., H" (HH") €.
O

When there is no noise, Lemma 44 reduces to f*(x) — f(x) = hv, (P — I)AV*. As we described in Section 5,
(P — I)AV* has the interpretation of the distance from AV* to the row-space of H. We then have the following.

Lemma 45. Forall a € R"™, we have

|hv,2(P = DAVT| < \/p||AV" — Hal;.

Proof. Recall that P = HT (HH”)~'H. Thus, we have
PH?” = H'(HHT)'HHT = HT. (85)
We then have

|(P — DAV* | = [[PAV* — AV*|
= |P(H"a + AV* —H%a) - AV*|,
= |PH”a + P(AV* — H”a) — AV*|,
= |H"a + P(AV* — H”a) — AV*||; (by Eq. (85))
— (P~ D(AV* — HTa)[
< ||AV* — H” a5 (because P is an orthogonal projection).

Therefore, we have

hvoe(P = DAV = |hy, (P - DAV,
<||hvy,zl2 - |(P —I)AV*| (by Lemma 12)
<{p|AV* — Ha|» (by Lemma 11).

O
Now we are ready to prove Proposition 5.
Proof. Because there is no noise, we have € = 0. Thus, by Lemma 44, we have
Je(@) = f(2) = hv, «(P ~D)AV". (86)
We then have, for all a € R",
pr{|/"(@) - f(@)| = 72073}
=Pr{|hvye (P~ DAV'| > 03073}
<pr {\/;EHHTa — AV*||y > n*%(lfé)} (by Lemma 45). (87)
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It only remains to find the vector a. Define K; € R fori =1,2,--- ,n as

) 9(X;) .
KZ[]] = 1{X?V0[j]>0}XZT7 J = 1,2, y P-

By Eq. (84), forall j = 1,2,--- | p, we have

E [Ki[jl] = AV7[j]. (88)

i

Because | X;|l2 = 1, we have

, 19llo0
Kiljllz = —=—.
1Kl < =

Thus, we have

i.e.,
VPIKill2 < [l9lloo- (89)

n. Notice that a is

We now construct the vector a. Define a € R"™ whose ¢-th element is a; =
well-defined because ||g||oc < 00. Then, forall j € {1,2,---,p}, we have

(H a)[j] = Z H! [j]a;

9(X5)

=2 Lixpvol>oy X =
=1

1 — _
= Z K],
=1
ie.,
T 1
H'aq = - Z K;. (90)
Thus, by Eq. (89) and Lemma 16 (with X; = \/pK;, U = ||g|o0, and k = n), we have

(:z i}g) ~EK,| > n—i(l—i)} < 2e%exp <%> .

8[lgl3
Further, by Eq. (90) and Eq. (88), we have

{7

2

P HTa — AV* ||y > n (170 L < 92 __vn ) 91
VIR — V7 220D} <2t (g oy

Plugging Eq. (91) into Eq. (87), we thus have

I;’(r{‘fb(w) — f(z)| > n—%(l—é)} < 2€2 exp (—8“;\/@%) .
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I. Proof of Theorem 1

We first prove a useful lemma.

Lemma 46. If ||g||1 < oo, then for any x, we must have

+ m— arccos(zT z)

/;471 /Sd?1 mTzl{va>O, mTv>0}g(Z)d,u(Z)d5\(’v) = Ld,l xT ZTQ(Z’)d/}J(z)

Proof. This follows from Fubini’s Theorem and by a change of order of the integral. Specifically, because ||g||; < oo, we
have

/ l9(2)ldu(z) < oo.
Sd—l

Thus, we have

[ @A) < o
Sd—1y Sd—1

Because |27 21,7450, x7p>0y| <1 when € S~ ! and z € S?~!, we have

[ e e @ A < [ lgleldu)Aw) < o
Sd—1xSd—1 Sd—1xSd—1
Thus, by Fubini’s theorem, we can exchange the sequence of integral, i.e., we have
[ ] a5 rnn sresnyg(2)du(z)dA )
Sd—1 Sd—1

= [ L T e e g(2)dhw)du(z)

Sd—1
:/Sd—l </3d1 Lzroso, mTv>0}d/~\(’0)) x” zg(z)dp(z)
r m— arccos(zT z)
- x z2—g(2)du(Z) (by Lemma 17).
Sd—1 T

The following proposition characterizes generalization performance when € = 0, i.e., the bias term in Eq. (18).
Proposition 47. Assume no noise (¢ = 0), a ground truth f = f, € F* where ||g|lcc < 00, n > 2, m € {1 ln—g}
2

’ In

d<n* andp > 6J,,(n,d)In (4n1+$). Then, for any q € [1, o) and for almost every x € S*~1, we must have

Pr {1/ (@) — f(@)| >n 2(-3)

Vo,X

(1+\/T> )
<2 (o (~gybpe ) *exp( )

“XP< Sn\n/an))* 2f

Proof. We split the whole proof into 5 steps as follows.

Step 1: use pseudo ground-truth as a “intermediary”
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Recall Definition 2 where we define the pseudo ground-truth f\g,o. We then define the output of the pseudo ground-truth for
training input as

F{ (X)) = [f,(X0) 3, (X2) - [, (X))

The rest of the proof will use the pseudo ground-truth as a “intermediary” to connect the ground-truth f and the model
output f*2. Specifically, we have

f(x) = hy, s AV
= hv, .H'(HH")~'F(X) (by Eq. (17) and € = 0)
= hv, H (HH")"'FY, (X) 4+ hv, .H (HH")™" (F{, (X) - F(X)). (92)
Thus, we have
/(@) — f ()|
= |£(@) £, (@) + 5, (@) - f(@)
=|hv,.H (HH")"'FY, (X) - f{ (@) + hv, H" (HH") ™! (F{, (X) - F(X))
+fv, (@) = f()| (by Eq. (92))
< |hv,H (HH")"'FY, (X) = f{, ()] + |hv, .H (HH") "' (F{, (X) - F(X))|

term A term B
+ |, (@) = ()] (93)
S S —

term C

In Eq. (93), we can see that the term A corresponds to the test error of the pseudo ground-truth, the term B corresponds to
the impact of the difference between the pseudo ground-truth and the real ground-truth in the training data, and the term C
corresponds to the impact of the difference between pseudo ground-truth and real ground-truth in the test data. Using the
terminology of bias-variance decomposition, we refer to term A as the “pseudo bias” and term B as the “pseudo variance”.

Step 2: estimate term A

We have

Pr {term A> nié(k%)} = / Pr {termA > nié(k%) ‘ VO} dA(Vy)
Vo Vo€eRdr X

< / 2¢2 exp (—*@) d\(V) (by Proposition 5)
Vo ERdr 8|gllZ,

o (g
2 e"p( 8|g||zo>' oY

Step 3: estimate term C
Forall j =1,2,--- ,p, define

Kjw = ‘/‘5‘1171 wTZ1{zTV0[j]>O, wTVg[j]>O}g(z)dM(z)'

We now show that K7 is bounded and with mean equal to f,, where fy = [g4- sz%f(mTz)g(z)du(z) defined by
Definition 1. Specifically, we have

K]w = E (/Sdl :I;Tzl{va>07 wTU>0}g(z)d/’L(z)>

E -
Vo vV~

= [ L T e erusag(2)du(z)dA o)

5 m— arccos(zT z)
=/ .= zTg(z)d,u(z) (by Lemma 46)
s

=f,(x) (by Definition 1). 95)
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From Definition 2, we have

Yo
[y, () :/ :cTz@g(z)d,u(z) (by Definition 2)
Sd-1 p

1 P
) > /Sd 2T 212 (1150, a7Vo (515049 (2)di(2) (by Eq. (6))
Jj=1 -t

1
==Y KT (96)
p 4
j=1
Because V[j]’s are i.i.d., K#’s are also i.i.d.. Thus, we have
E R, (@) = fo(). 97)

Further, for any j € {1,2,--- ,p}, we have

o = ; ccause ;1S a scalar
K?||y =|K?| (because K is a scalar)

/srz_l wTZl{vao[j]>0, TV, [j]>0}g(z)dﬂ(z)

S/S[H |2 21 rv, (150, 27V )01 9(2) | dp(2)
< [ T2 v srveiso]| - 9(2)] i)

<[ la@ldu(z)
=l ©8)

Thus, by Lemma 16, we have

P
Pr 1ZKm - EK; Zp_%(l_%) < 2e?exp <\q/]32> .
&) v Sllal?

2

Further, by Eq. (96) and Eq. (95), we have

pr {14, @ - 1@ 2y 10D} < oo (- 8 ).

Because f = f,, we have

pr{10, @)~ S@] 220D} < 2o ().

-~ 8llgll?

Because f\g,0 does not change with X, we thus have

Pr {term C > p_%(l_%)} < 2e? exp (8||4\2i2) . 99)
05 1

Step 4: estimate term B

Our idea is to treat F%O (X) — F(X) as a special form of noise, and then apply Proposition 4. We first bound the magnitude
of this special noise. For j = 1,2,--- | p, we define

. X X Xn
K; = [K K - K]
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Then, we have

1K;ll2 =

2 < /nllgll1 (by Eq. (98)).

n

X
>l
=1

Similar to how we get Eq. (99) in Step 3, we have

g _ > —3(1=3) 1 £ 9.2 P
VF:B({HFVO(X) FX)||, > p~ 3079} < 2¢exp ST ) (100)
Thus, we have

1 1
> -3(1-%)
VIjrX {term B> +\/Jn(n,d)np }

= Pr ftem B> VTG @iy 1074, 1, () - P02 201

+ Pr{em B2 VTG 070, B, (X) - PO, <00

1

< ProdlFg, 0 - Fx)|, 2 p 200}

P {term B > /Ty, d)n [ ¥4, (X) — F(X), }

|

a 2
<2¢? exp (— vP 2) + ——= (by Eq. (100) and Proposition 4). (101)
8n|lgl? Vn

Step 5: estimate | f*>(x) — f(x)|

~3(1-1) -3(1-%)
{termA >n 2V Tg }+v|z,rx {termB >V Im(n,d)np=2\" "4 }
i

We have
R 1 1 1 Im ’d
Pr {|f‘fz<w> _f@) =00 4 m}
Vo, X 7
1 1 1 i ,d
! {termA +tem B tem € 20 #0178 + W} (by Eq. (93))
05 4p
< P\r/0 {{termA > n‘i(l—a)} U { term B > Jm(njd)np—§(1_5)}
u { term C' > p—%(l—%)}}
< Pr
X, Vo

+ Pr {term C> p_%(l_ )} (by the union bound)
Vo,X

<2¢* (e (o) +o (~ie) = (sl ) ) *
=T\ ) TP ez TP sl /n
(by Egs. (94)(99)(101)).

The last step exactly gives the conclusion of this proposition.

Theorem 1 thus follows by Proposition 4, Proposition 47, Eq. (18), and the union bound.

J. Proof of Proposition 2 (lower bound for ground-truth functions outside F*2)

We first show what fﬁg looks like. Define H* € R™*™ where its (4, j)-th element is

7 — arccos(X7 Xj;)
2m

HS = X[X;
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Notice that

Vv
Cx!x,

HHT 1<
( ) = - Z XzTXj1{X?V0[k]>O,XJTVU[k]>O} =X/ X;
p i P4

By Lemma 21, we have that (HTHT) ~converges in probability to (H>); ; as p — oo uniformly in , j. In other words,

i,
HHT
max ( ) — (H™),; 50, asp — oo. (102)
" P /i
Let {e; | 1 <i < n} denote the standard basis in R™. Fori = 1,2,--- , n, define
gip = npe] (HH) 'y, (103)

which is a number. Further, define

[gl,p 92.p - gn,p]T = np(HHT)ily'
Further, define the number

Ji,co = neZT(HOO)fly,

and

[gl,oo 92,00 " gn,oo]T = n(Hoo)ily-
Notice that (H>)~! exists because of Eq. (102) and Lemma 7.
By Eq. (102), we have

max |gip — 9i,ocol LA 0, as p — oo. (104)
i€{1,2, ,n}

For any given X, we define f22(-) : S% '+ R as

5 1< 7 — arccos(x? X;)
“(x) = = X, i oo 105
fe(@) = ; z' X; . Gi,0 (105)

By the definition of the Dirac delta function d,(-) with peak position at a, we can write % () as an integral

~0 o+ 7 —arccos(zTz) 1
2 () = T arccos\® 2) 1N o s (2)du(z).
fow = [ a7 GRS i ()i

Notice that g; o, only depends on the training data and does not change with p (and thus is finite). Therefore, we have
f2 € F’. It remains to show why f*2 converges to %2 in probability. The following lemma shows what f*2 looks like.
Cx. cr

R n Oml % n
Lemmad8. f(z) = 1>, wTXingi,p = Jsa- sz%% > izt 9ip0x, (2)dp(2).

Proof. Forany € S9!, we have
f2(z) = hv, . AV*"
= hv, s H' (HH") "y (by Eq. (3))

n
=hv,. y Hiel (HH") 'y

=1

1 n
= — hv,H] gi, (by Eq. (103))
np i=1

1 e~
= LYY e Kl pxrvigioo, ervigio i
i=1 j=1
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By Eq. (6), we thus have

£l 1 ¢ T ‘C;(/?,m
fz(m)zazm X; S i (106)
i=1
By the definition of the Dirac delta function, we have
() = L TX.M.:/ T E2el 2N g ox, (2)dp(2).
fr@ = 3 aT X gy = | @ e Y g0k, (2)duz)

i=1 i=1

O

. . . 2 P
Now we are ready to prove the statement of Proposition 2, i.e., uniformly over all x € S?~1, f%(x) = f2(x) asp —
(notice that we have already shown that f%2 € F*2). To be more specific, we restate that uniform convergence as the
following lemma.

Lemma 49. Forany given X, sup |f®(x) — f2(x)| B 0asp— o
reSi-t

Proof. For any ¢ > 0, define two events:

J1 = sup
x,z€S4-1

T = { max }|gi,p —gi,oo| < C}

i€{1,2,--,n

2@ T — arccos(x” z
[ (z72)

.

p 2w

By Lemma 21, there exists a threshold py such that for any p > py,

Prlh] >1-¢.
By Eq. (104), there exists a threshold p; such that for any p > p,
Pr[2] >1-¢.
Thus, by the union bound, when p > max{pg, p1 }, we have
PriiNnge] >1-2C. (107)

When 71 N J2 happens, we have
sup | £ (@) — f2(x)|

reSd—1
1 — |C)\(,9 | 7 — arccos(xTX;
- Za:TXi ( pm Gip — ( l)gi,oo
i—1

= sup

resSd-1 T 2T

(by Lemma 48 and Eq. (105))

CV? — TY.
= sd 1su?12 } <|>;}m|gi’p = arcc;;f(w 2 ioo || (because |27 X;| < 1)
zeSi—1ie{l,2,--,n
- sup |C)\£Oa:| T arccos(zX;) droot (G — a0 )ﬁ
zeSe-1i€{1,2,.--,n} p 2T 2,00 1,p i,00 D
< sup |C)\£Om| T arccos(z’X;) N I PP )L
T zeSdi-1ie{1,2, n} p 21 %00 %P 1,00 D
X — arccos(xTX;
<¢- (max |9i,00| + 1) (because J1 N J2 happens, X, € [0,1], and ™ 27r( ) € [0.05).
K

Because max; |g; oo| is fixed when X is given, ¢ - (max; |¢; 00| + 1) can be arbitrarily small as long as ¢ is small enough.
The conclusion of this lemma thus follows by Eq. (107). O
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If the ground-truth function f ¢ FE2 (or equivalently, D(f, F¢2) > 0), then the MSE of ffg (with respect to the ground-truth
function f) is at least D(f, F2) (because fﬁg € F*). Therefore, we have proved Proposition 2. Below we state an even
stronger result than part (ii) of Proposition 2, i.e., it captures not only the MSE of ffg, but also that of JH2 for sufficiently
large p.

Lemma 50. For any given X and ¢ > 0, there exists a threshold py such that for all p > po, Pr{~/MSE > D(f, F*2)—(} >
1-¢.

Proof. By Lemma 49, for any ¢ > 0, there must exist a threshold pg such that for all p > py,

Pr{ sup f42<w>f£s<w>|<<}>1<.

reSi—1

When sup |f%(z) — f2(z)| < ¢, we have
reSi-t

D(f", f2) # L (@ = @) e <

Because /2 € F’2, we have D(f%2, f) > D(f, F’). Thus, by the triangle inequality, we have D(f, f2) > D(f, f%2) —
D(f*, f%) > D(f, F*2) — (. Putting these together, we have

Pr{D(f. /) > D(f. F) ~ ¢} > 1-¢.

Notice that MSE = (D(f, f%2))2. The result of this lemma thus follows. O

K. Details for Section 4 (hyper-spherical harmonics decomposition on S 1)
K.1. Convolution on S¢~!

First, we introduce the definition of the convolution on S?~ 1. In (Dokmanic & Petrinovic, 2009), the convolution on S%~!
is defined as follows.

h® fol@) = /S o 1SS @),

where S is a d x d orthogonal matrix that denotes a rotation in S9! chosen from the set SO(d) of all rotations. In the
following, we will show Eq. (13). To that end, we have

g ® h(x) :/ g(Se)h(S™'x)dS. (108)
SO(d)

Now, we replace Se by z. Thus, we have
Se=2z — e=8"12 = (S7'x)fe=(S"'2)TS7'2 = (S7'x)Te=2"(S7!)TS 2

Because S is an orthonormal matrix, we have ST = S~!. Therefore, we have (S’lzc)Te = 27z, Thus, by Eq. (14), we
have
7 — arccos((S~1x)Te) o m — arccos(z! )

h(S™'x) = (S 'x)Te 5 =T E—— (109)

By plugging Eq. (109) into Eq. (108), we have

o m — arccos(zT )

goh() = [ glza” s D ),

Eq. (13) thus follows.

The following lemma shows the intrinsic symmetry of such a convolution.
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Lemma 51. Let S € R¥*? denotes any rotation in R%. If f(x) € F*2, then f(Sx) € F*.

Proof. Because f(x) € F*2, we can find g such that
T

7 — arccos(z! z
fw)= [ oI 2 ),
Sd—1 s
Thus, we have
7 — arccos((Sx)T z)

fsw) = [ (S22 T B s

7T — arccos wT TZ
- [, 76" @ 82D o()au(z)

27
_ T(QT
:/ xT(STz)ﬂ arccos(x* (S z))g(SSTz)du(z)
Sd—1 2
(because S is a rotation, we have SST = I)
_ T
:/ mTzMg(Sz)du(Sz) (replace STz by z)
Sd—1 2w
o+ m— arccos(zT z) .
= ' z—— 2 ¢g(Sz)du(z) (by Assumption 1)
Sd—1 2w
The result of this lemma thus follows. O

K.2. Hyper-spherical harmonics

We follow the the conventions of hyper-spherical harmonics in (Dokmanic & Petrinovic, 2009). We express € =
[€1 T2 -+ x4) € S9! in a set of hyper-spherical polar coordinates as follows.

o1 =sinfy_1sinfy_o---sinfysin by,

To =sinfy 1sinfy_o---sinfs cosby,

T3 =sinfy_1sinfy_o---cosbsy,

g1 =sinfy_1cosby_o,
xrg = cosby_1.
Notice that 6; € [0, 27) and 05,65, ;041 € [0,7). Let £ = [0 63 --- O4_1]. In such coordinates, hyper-spherical
harmonics are given by (Dokmanic & Petrinovic, 2009)

a=3

ElK(g) = AlK X H Ckifki::kwl (cosby—;—1) sin®i+1 Qd,i,leijkdfzel, (110)
i=0
where the normalization factor is
43 i d—i—2
A= |2 T 2265 v+i-i-1 (ki — kip1)!(d — i + 2k; — 2)T2 (=22 4 kiﬂ),
(%) i Vrl(k; + ki1 +d—i—2)

and Cﬁ(t) are the Gegenbauer polynomials of degree d. These Gegenbauer polynomials can be defined as the coefficients
of o™ in the power-series expansion of the following function,

(1—2ta+a®) = CMt)a'.
1=0

Further, the Gegenbauer polynomials can be computed by a three-term recursive relation,
(i +2)CP 5 (1) = 2(\ +i + 1)tCA (1) — (A + 1) C (1), (111)
with C3(t) = 1 and C} (t) = 2\t
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K.3. Calculate =% (¢) where K = 0
Recall that K = (k1, ko, - -+ , kq—2) and [ = k. By plugging K = 0 into Eq. (110), we have

=5(8) = Al x C (cos 0a_1)- (112)
The following lemma gives an explicit form of Gegenbauer polynomials.
Lemma 52.
A o r Li—k+A) i—2k
CMt) = (-1) (2t)* =%, (113)

TO)k!(i — 2k)]

Proof. We use mathematical induction. We already know that C'(t) = 1 and C}\(t) = 2)t, which both satisfy Eq. (113).
Suppose that C}(t) and C\ ; (t) satisfy Eq. (113), i.e.,

i—k+X)

T(i |
A _ _\E_ N\ T A i—2k
=2 0( VoG —ae 20T
eay r (i—k+At1)
k B i—2k+1
ot Z MNk!(i — 2k + 1)! (2t) '

k=

It remains to show that C’j‘+2 (t) also satisfy Eq. (113). By Eq. (111), it suffices to show that

152 .
) T —k+A+2 2kt
(+2) > (" r(A()k!(i ST 2))! (20

k=0
2(\ & )k FZ—k+>\+ 1) i—2k+1
+z+1tkzo k'(z—2k+1).(2t)
N Uiy R
(2)\—|—z)k 0(—1) m(m . (114)

To that end, it suffices to show that the coefficients of (2t)i*2k+2 are the same for both sides of Eq. (114), for k =
0,1,---, [ “2]. For the first step, we verify the coefficients of (2¢)"2**2 for k =1,--- , [“£1]. We have

coefficients of (2t)*~2**2 on the right-hand-side of Eq. (114)
. Ii—k+X+1) _ Ii—k+X+1)
= 1D(=1)* k—1
A+ i+ DD oG =2k 1 Tk D=2k £ 2)
g TG—k+A+1)
TOKI(i — 2k + 2)!
s TG—k+A+1)
T(AN)K!(i — 2k + 2)!
g Tli—k+X+1)
C(A)E!N(E — 2k + 2)!
g TG—k+A+1)
TONKI(i — 2k + 2)!
s TG—k+A+2)
L(A)k!(i — 2k + 2)!
—coefficients of (2¢t)""2**2 on the left-hand-side of Eq. (114).

— 2 +19)(—

=(-1) (A+i4+1)(GE—2k+2)+ 2N+ 0)k)

=(-1) (A+i+1D)(E+2)+ @A+ i)k —2k(A+i+1))

=(-1) (A+i+1)(i+2) — k(i +2))

=(-1)

A—k+i+1)(i+2)

=i+ 2)(—1)
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For the second step, we verify the coefficient of (2¢):=2k%2 for k = 0, i.e., the coefficient of (2t)**2. We have

coefficients of (2t)"™2 on the right-hand-side of Eq. (114)
I'(i+A+1)
LA+ 1)!
L D(i+2+N)
= 2 R —
N ONI ]
—coefficients of (2t)"2 on the left-hand-side of Eq. (114).

=(A+i+1)

For the third step, we verify the coefficient of (2t)"~2*+2 for k = |42 ] = | | + 1. We consider two cases: 1) i is even,
and 2) 7 is odd. When ¢ is even, we have L%J +1= % +1,1i.e.,i— 2k 4+ 2 = 0. Thus, we have
coefficients of (2t)° on the right-hand-side of Eq. (114)

(T (L+))
=—2A+i)(-1)7 2=

T (5)!
=(i+2)(~=1)ztt2 7

( =1 L(\) (4 +1)!

—coefficients of (2¢)° on the left-hand-side of Eq. (114).

When i is odd, we have k = [ 4] + 1 = 51 = [ 241 | and this case has already been verified in the first step.

In conclusion, the coefficients of (2t)"2¥*2 are the same for both sides of Eq. (114), for k = 0,1,- -, [“52]. Thus, by
mathematical induction, the result of this lemma thus follows. O

Applying Lemma 52 in Eq. (112), we have

)'(20059,1_1)1_2"’. (115)

Eo(&) = Ap,
5(1)(5) = A(l)(d —2)cosbl4-1,
d

K.4. Proof of Proposition 3
Recall that

_ T
_ T arccos(z’ e)

h(x) o

, e:=1[00---01T eR™%
Notice that 27 e = cos 04_1. Thus, we have

7 — arccos(cos f4_1)
2m

h(x) = cosf4_1 .
The arccos function has a Taylor Series Expansion:

i (20)! %!
= 2%(i)2 20 + 1

arccos(a) =

0l
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which converges when —1 < a < 1. Thus, we have

1 1 < (20)! cos®t260, 4
h(x) = = cosf4— — . . 116
() 7 Cosba1+ o ; 22 2i+1 (116)

By comparing terms of even and odd power of cos §4_; in Eq. (115) and Eq. (116), we immediately see that h(x) / = (z)
when [ = 1, and h(z) L =} (x) when ! = 3,5,7, - -. It remains to examine whether h(z) L Z}(z) or h(z) L =4 ()
1€{0,1,2,4,6,--}. We first introduce the following lemma.

Lemma 53. Let a and b be two non-negative integers. Define the function

Qab)i= [ cos' (0 Eh(dn(a).
Sd—1
We must have

>0, ifm < k,

: (117)
=0, ifm > k.

Q(2k,2m) {

Proof. We have

Qek0) = [

cos?¥(04_1)ZS (&) du(x) = Ag/ cos® (04_1)du(z) > 0.
Sd—1

Sd—1
Thus, to finish the proof, we only need to consider the case of m > 1 in Eq. (117). We then prove by mathematical induction
on the first parameter of Q(-, -), i.e., k in Eq. (117). When m > 0, we have

Q.2m) = [ S (©aute) = 5 [ SO ©duta) =0

Sd—l
(by the orthogonality of the basis).

Thus, Eq. (117) holds for all m when k = 0. Suppose that Eq. (117) holds when k£ = . To complete the mathematical
induction, it only remains to show that Eq. (117) also holds for all m when k = ¢ 4+ 1. By Eq. (111) and Eq. (112), for any [,
we have

(1 +2)ALH 42 (d—2+1)AL™ -

cos(0a—1)Z"" (§) = (d+ 20 A0 &+ (d+ 2 AL Eo(8)-
Thus, we have
Qla+11l+1)=q1-Qa,l+2)+qz2 Qa,l), (118)
where
s (1+2)A5™ e (d—2+DAg"™
T (d+20) AL ’ (d+20) A}

It is obvious that g; ; > 0 and ¢; » > 0. Applying Eq. (118) multiple times, we have

Q2 +2,2m) = qam-1.1- Q2 +1,2m + 1) + qam_1.2 - Q(2i + 1,2m — 1), (119)
Q(2i + 1,2m + 1) = qam,1 - Q(2i,2m + 2) + qam 2 - Q(2i,2m), (120)
Q(2i +1,2m — 1) = qam—2.1 - Q(2i,2m) + Gam—2.2 - Q(2i,2m — 2). (121)

(Notice that we have already let m > 1, so all ¢. 1,¢. 2, Q(-, -) in those equations are well-defined.) By plugging Eq. (120)
and Eq. (121) into Eq. (119), we have

Q(2i 4 2,2m) =gom,1q2m—-1,1Q(2i,2m + 2) + (¢2m—1,102m.,2 + @2m—1,202m—2,1)Q(2i,2m)
+ Gam—1,2¢2m—2,2Q(2i,2m — 2). (122)
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To prove that Eq. (117) holds when k = i + 1 for all m, we consider two cases, Case 1: m < ¢+ 1, and Case 2: m > ¢ + 1.
Notice that by the induction hypothesis, we already know that Eq. (117) holds when k& = i for all m.

Case 1. When m < i+ 1, we have m — 1 < 4. Thus, by the induction hypothesis for k = i, we have Q(2i,2m — 2) > 0
(by m — 1 < 1), which implies that the third term of the right-hand-side of Eq. (122) is positive. Further, by the induction
hypothesis for & = i, we also know that Q(2¢,2m + 2) > 0 and Q(2i,2m) > 0 (regardless of the value of m), which
means that the first and the second term of Eq. (122) is non-negative. Thus, by considering all three terms in Eq. (122)
together, we have Q(2¢ + 2,2m) > 0 when m < i+ 1.

Case 2. Whenm > i+ 1, we have m + 1 > 4, m > ¢, and m — 1 > i. Thus, by the induction hypothesis for k = 7, we
have Q(2i,2m + 2) = Q(24,2m) = Q(2i,2m — 2) = 0. Therefore, by Eq. (122), we have Q(2i 4+ 2,2m) = 0.

In summary, Eq. (117) holds when k = i + 1 for all m. The mathematical induction is completed and the result of this
lemma follows. O

By Lemma 53, for all £ > 0, we have
0 cogit2 041 ok
/Sd 1 27T Z 221 'L' 27/ + 1 ':‘0 (g)dﬂ(ﬂf)
I o (200 1 pivs, ok
o B+ /s cos™ " 0a1 =" (§)dp(x)
i=0

>0.

Thus, by Eq. (116), we know that h(x) £ Z4(z) forall [ € {0,2,4,---}.

K.5. A special case: when d = 2

When d = 2, S4! denotes a unit circle. Therefore, every x corresponds to an angle ¢ € [—m, = such
that ¢ = [cosp sinp|?. In this situation, the hyper-spherical harmonics are the well-known Fourier series, i.e.,
1, cos(6), sin(f), cos(20), sin(260), - - - . Thus, we can explicitly calculate all Fourier coefficients of h more easily.

Similarly to Appendix K.1, we first write down the convolution for d = 2, which is also in a simpler form. For any function
fq € F!2 we have

o) = o [T oo~ g0y

27 Jp 2

_ 1 m— 0] cos g(0 + ) df (replace 0 by 0 — )
2 J_. 27

fr— i T |9| COSG g(sﬁ - 0) d0 (replace 0 by _0).
2r J_. 27

Define h(0) := = |9\ cos f. We then have

1
= h
fo(9) = 5-h(e) ® g(p),
where ® denotes (continuous) circular convolution. Let ¢, (k), cx (k) and ¢4 (k) (where k = --- ,—1,0,1,---) denote the

(complex) Fourier series coefficients for f,(), h(¢), and g(¢), correspondingly. Specifically, we have

o0 oo o0

fo(@)= 37 er, (e, h(e)= 37 enh)e™, glp)= D cok)e™.

k=—o00 k=—o0 k=—o0

Thus, we have

cs, (k) = cn(k)cg(k). (123)
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Now we calculate ¢y, (k), i.e., the Fourier decomposition of h(-). We have

1 (" - :
en(k) = 5= ”TW cos @ e %0 g
T . 27

1 ™ i(k+1)6 —i(k—1)0
[ ()
i J_ . 0 2

1
872

us

Tr 16| (e—i(k+1)0+e—i(k—1)0) d9+8i/ (e—i(k+1)9+e_i(k_1)9) do.
—T i

—T

. -1
/xe”d;v =e™ (cw 5 ), Ve # 0.
c

1 » 1
87r2/ 0] (e20 + +1)do+ 5

It is easy to verify that

Thus, we have

1 0 . Q .
— (7% - / Oe= 2040 + 96129(19) + =
87T 0

1 [, —i27 1
—7r2<”+4 _4)+4
1
1

8
1
8

1

=3
Similarly, we have
1
Ch(—l) = g
Now we consider the situation of n # +1. We have

0 . 0
/ 10— (410 gg — _=ilk+1)0 —i(k+1)0 -1

1 1— ik + D7 q1)n
—(k+1)2 ’

S (k+1)2 (k+1)2

1 1+i(k+ 1)7Te—i(k+1)7r
(k+1)2 (k+1)2 '

/W Bl 0410 g = itheno ZHEF 1O~ 1
0 —(k+1)2

Notice that e~ #{k+D7 = g—ilk+1)2moi(k+1)m — i(k+1)7 Therefore, we have

™ ) 2 .
—1(k+1)0 _ 1(k+1)m
[0l g = s (w07

Similarly, we have

7" . 2 )
—i(k—1)0 i(k—1)m
/_,r‘e'e( )C”:W(e( 1),

In summary, we have
’ k=41
cn(k) = {_471{2 (ﬁ + ﬁ) (ei(lﬁ-l)ﬂ -1), otherwise
k=41

= 2 ((k+11)2 + (k—11)7> y k=0,£2,44, .-
, k= 43,45, -

o]

ool
= o

O N
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By Eq. (123), we thus have

s¢q(k), k=1
cr, (k) = ﬁ(ﬁﬂLﬁ) cg(k),  k=0,£2,44,.
0, k=43,45---
In other words, when d = 2, functions in F*2 can only contain frequencies 0, #, 26,46, 66, - - -, and cannot contain other
frequencies 360,560,760, - - -.
K.6. Details of Remark 2
As we discussed in Remark 2, a ReL.U activation function with bias that operates on & € R?~!, ||Z||3 = % can be

equivalently viewed as one without bias that operates on € S?~1, but with the last element of x fixed at 1/ Vd. Note
that by fixing the last element of & € S¢~! at a constant %, we essentially consider ground-truth functions with a much

smaller domain D := {:1: = {1/5\3/3} | & e R 2]} = %} C 81, Correspondingly, define a vector @ € R4~ and

ap € Rsuch thata = [fo] € R9. We claim that for any @ € R? and for all non-negative integer [, a ground-truth function
f(z) = (zTa)!,x € D must be learnable. In other words, all polynomials can be learned in the constrained domain D.
Towards this end, recall that we have already shown that polynomials (of € S?~1) to the power of [ = 0,1,2,4,6, - - - are
learnable. Thus, it suffices to prove that polynomials of € D to the power of [ = 3,5,7, - -+ can be represented by a finite
sum of those to the power of | = 0,1,2,4,6, ---. The idea is to utilize the fact that the binomial expansion of (7 a -+ %)l

contains (£7a)* for all k = 0,1,2,3,---,1. Here we give an example for writing (z” a)? as a linear combination of

learnable components. Other values of [ = 5,7,9, - - can be proved in a similar way. Notice that

(#"a)® =— ((@"a+1)* — (2"a)* —6(2"a)”> — 4(2"a)?> — 1) (by the binomial expansion of (z"a + 1)*)

() () )
Thus, forall @ = |, %3] and @ = [ & ], we have

(@"a)? = <5;Ta + “0>3

g e N

Vd
=(@"a)’+3 (\%) (@7a)* +3 ‘2)2 (&7a) + (‘“;)3
—~aar 43 (98) («[5]) s () (=7 (6] + ()

) 5 ) CCR - ()
() ) Bl) - ()= e

which is a sum of 5 learnable components (corresponding to the polynomials with power of 4, 4, 2, 1, and 0, respectively).

L. Discussion when ¢ is a -function (||g|/.. = 00)

We now discuss what happens to the conclusion of Theorem 1 if g contains a §-function, in which case ||g||cc = co. In
Eq. (10) of Theorem 1, only Term 1 and Term 4 (come from Proposition 5) will be affected when ||g||oc = co. That is
because only Proposition 5 requires ||g||o < oo during the proof of Theorem 1. To accommodate the situation when
¢ contains a d-function (||g||c = 00), we need a new version of Proposition 5. In other words, we need to know the
performance of the overfitted NTK solution in learning the pseudo ground-truth when ||g||oc = oo.

Without loss of generality, we consider the situation that g = d,. We have the following proposition.
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Figure 7. The curves of the model error || (P — I)AV™ || for learning the pseudo ground-truth f{, with respect to n for different g and
different d, where p = 20000, and € = 0. Every curve is the average of 10 random simulation runs.

Proposition 54. If the ground-truth function is f = f\g,o in Definition 2 with g = 8, and € = 0, for any * € S and
q € (1, o), we have

A w2 d— Hce) 1 g1
X,Péo{ff2<w>—f<w>|s< i+2> <<d_1>3<21,;>) O 0 q>}

1
1 d*l 1 =1 1 1
21— exp (=) ~2exp <‘zi <<d‘ ”B<272>) n—m“-v) :

when

n> ((d — 1)3(%, ;)) qj, ie. ((d - 1)B(E, ;)> n~ -9 < 1. (125)

(Estimates ofB(%, %) can be found in Lemma 32.)

(1

1 (-1
Proposition 54 implies that when n is large and p is much larger than n= 2(d-1) q), the test error between the pseudo

ground-truth and learned result decreases with n at the speed O(niﬁ(k%)). Further, if we let ¢ be large, then the
decreasing speed with n is almost O(niﬁ ). When d > 3, this speed is slower than O(n~2) described in Proposition 5
(i.e., Term 1 in Eq. (10) of Theorem 1). When d = 2, the decreasing speed with respect to n is O(n~ %) for both Proposition 5
and Proposition 54. Nonetheless, Proposition 54 implies that the ground-truth functions f, € F “2 is still learnable even
when ¢ is a d-function (i.e., ||g||cc = 00), but the test error potentially suffers a slower convergence speed with respect to n
when d is large.

In Fig. 7, we plot the curves of the model error ||(P — I)AV*||, for learning the pseudo ground-truth f5; with respect to n
when g = J,, (two blue curves) and when g is constant (two red curves). We plot both the case when d = 2 (two solid
curves) and the case when d = 10 (two dashed curves). By Lemma 44, the model error ||(P — I)AV*||3 can represent the
generalization performance for learning the pseudo ground-truth f\g,0 when there is no noise. In Fig. 7, we can see that those
two curves corresponding to d = 10 have different slopes and the other two curves corresponding to d = 2 have a similar
slope, which confirms our prediction in the earlier paragraph (i.e., when d = 2 the test error will decay at the same speed
regardless of whether g contains a §-function or not, but when d > 2 the test error will decay more slowly when g contains a
o-function).

L.1. Proof of Proposition 54

‘We first show two useful lemmas.
Lemma 55. Forany q € (1,00), ifb € [n~ (=9 1], then

Q=

(1-0)" <exp (—n

).
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Proof. By Lemma 29, we have
e~? >1-b
— e 1> (1-b)t

) > (1—b)""/b

-

- exp(
— exp (_ni) > (1 —b)" because b € [n~ 1=/ 1],
O

Lemma 56. Consider ©1 € S where ¢ = arccos(z{ zo). For any 0 € [p, 7|, there must exist x3 € S such that
arccos(xd z) = 0 and

cVo ccVo cYo__ccYo (126)

—x1,20 —x2,20) T1,—=20 xT2,—20"

We will explain the intuition of Lemma 56 in Remark 8 right after we use the lemma. We put the proof of Lemma 56 in
Section L.2.

Now we are ready to prove Proposition 54. Recall AV* defined in Eq. (84). By Eq. (1) and g = 6., we have

AV* — (hvo,zo)T
p
Define
i* = argmin ||X; — zo/|2,
i€{1,2,-- ,n}

0* = arccos(X% zp).
Thus, we have
X+ — 2zo|l2 =V/2 — 2 cos 8* (by the law of cosines)
=2sin % (by the half angle identity)
<6* (by Lemma 41). (127)

(Graphically, Eq. (127) means that a chord is not longer than the corresponding arc.)

As we discussed in the proof sketch of Proposition 5, we now construct the vector a such that H” a is close to AV*. Define
a € R™ whose i-th element is

o 1/p, if i = i*
‘0, ifie{1,2,---,n}\{i*}

Thus, we have H"a = (hv, x,. )7 /p. Therefore, we have

[H a — AV*|3 fZH (H"a)[j] - AV*[j]|3
j=1
1 P
2
= > ( (XL Vol1>0.27 Volil>03 [ Xix = Zoll2 + Lyxr, vo[j]><z$vo[j]><0}>
j=1
1 Vo
<3 (P = 203+ 1C¥% . 2|+ IXE ) by B (6)
1

5 (- (07 +1CY%, IHCV*,_zOl) (by Eq. (127)).

i* 4,20

p
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Thus, we have

cYs +lcxe
JilHa - AV, < w*)“ HEL O

cYs +leYe
g\/wé* + €5zl F1OKE 2 (because 6% < 7). (128)
p

—
Remark 7. We give a geometric interpretation of Eq. (128) when d = 2 by Fig. 4, where OA denotes z, @ denotes X;«.

Then, |CV% . =l T (43 _ ., | corresponds to the number of Vo [j]’s whose direction is in the arc CE or the arc FD, and 6"
corresponds to the angle ZAOB. Intuitively, when n increases, X+ and zg get closer, so 8* becomes smaller. At the same

time, both the arc CE and the arc FD become shorter. Consequently, the value of Eq. (128) decreases as n increases. In the
rest of the proof, we will quantitatively estimate the above relationship.

Recall Cy in Eq. (60). Define

. 2\/§(d—1) = -l T
0= (Cd) n i) € [0, 5} (by Eq. (125)). (129)

For any ¢ € (1, 00), we define two events:

CY% . Ll
jl — {| 7X,Lv*,zo| | Xi*,7z0| < % ’
P 27

If both 77 and J> happen, by Eq. (128), we must then have

VBl Ha — AV*||; < <\/237T +7T> N

@D
_ ( 3+7T2> <2\/§(Cd1)> T3
472 7

Thus, by Lemma 44 and Lemma 45, if f = f\g,0 and both J; and J5 happen, then for any x € S d=1 we must have

20 3 m 2v2(d—1)\ """ — s (1-1)
|f (w)—f(w)§< 1t 2) (Cd n” 2D . (130)

It then only remains to estimate the probability of 73 N Ja.
Step 1: Estimate the probability of 7/; conditional on /5.

When 7, happens, we have 0* < 6. By Lemma 56, we can find € S¢~! such that the angle between x and z is exactly

6 and
CV% e F1CX5 CVe sl +1C2
| X | | Xi*, zo‘ < | m,zol | T, zo|. (131)

b B b

i* 5,20

Remark 8. We give a geometric interpretation of Eq. (131) (i.e., Lemma 56) when d = 2 by Fig. 4. Recall in Remark 7 that,

if we take OA as zo and OB as X, then |CY% |+ [Cx°. _ ., | corresponds to the number of V[j]’s whose direction is

i* 5,20
~ ~ —
in the arc CE or the arc FD. If we fix OA (i.e., zy) and increase the angle ZAOB (corresponding to 6*), then both the arc

€E and the arc F,]\D will become longer. In other words, if we replace X; by @ such that the angle 8* (between zy and X;)

increases to the angle 6 (between z( and x), then CY?Q* 20 - CYQ’ZD and C;(/f 2 - C,X(LZO, and thus Eq. (131) follows.
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We next estimate the probability that the right-hand-side of Eq. (131) is greater than %. By Eq. (6), we have

cYo . l+lcye .l 1

p
—x,20 5 T,—20 = ;9 Z 1{7mTV0[j]>07ng0[j]>0 OR wTVo[j]>0,fng0[j}<0} . (132)
j=1

Term A

Notice that the angle between —x and zg is m — 6, and the angle between  and —z is also 7 — §. By Lemma 17 and

Assumption 1, we know that the Term A in Eq. (132) follows Bernoulli distribution with the probability 2 - %’:9) = %.
By letting 0 = 1/2,a =p,b = % in Lemma 14, we have
0 pb po
prd|ieve jpieve (-7 s 20 oo (20
pr{|c¥sal + 0¥ - 2| > 224 <20 (-1
By Eq. (131), we then have
CY8 <ol + 1€ 2| 36 po
Pr[Je <P 20 2l s T L9 .
V(:[jl | J] = vg{ P ~ 2r | P 127
Step 2: Estimate the probability of 75.
By Lemma 8 and Assumption 1, for any ¢ € {1,2,--- ,n} and because 6 € [0,7/2], we have
1 d—11
P s(XT =1--1I, - =
Xr{arccos( L z0) >0} 5 Lsin? 0 ( 5 2)
<1- _ CGa a1y (by Lemma 35).
2v/2(d — 1)
Note that since Prx {arccos(X7 zg) > 6} > 0, we must have
C
—— _sintlo<1. (133)
2v/2(d — 1)
Further, because all X;’s are i.i.d. fori € {1,2,--- ,n}, we have
Pr{0* > 0} = Pr{ min  arccos(XTzy) > 9} < <1 G sin?~! 9)" (134)
X X (i€{1,2,,n} ¢ - 2v/2(d — 1) '

By Eq. (129) and Lemma 41, we then have

1

d—1
sin ) > (Ni(d - D) n-TT(1=5)
> c.
ie.,

_ Ca a1/,

2v/2(d — 1)

Thus, by Eq. (133), Eq. (134), and Lemma 55, we have

F)_’(r[jzc] = F)’(r {6 > 6} < exp (—n%) .
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Combining the results of Step 1 and Step 2, we thus have

Pr [ hnd] = Pl’ [J1 | Jo] - P\rfo[jQ]
= \P,r[jl | J2] - F)’(r[jz] (because of V and X are independent)

> (1 —2exp (—f’jﬁ)) (1 —exp (—n%))
() (2]

,Vo

1

2 da—1
—1—exp (—n%) —2exp |~ ( \[(Cd )> n~710=9) | (by Eq. (130)).
By Egq. (60), the conclusion of Proposition 54 thus follows.
L.2. Proof of Lemma 56
Proof. When 1 = zg, the conclusion of this lemma trivially holds because Cfm1 20 C;’l °_ 2, = @ (because — V]

and z; VO[ j] cannot be both positive or negative at the same time when 1 = zy.). It remains to consider x; # zo. Define

ry — (iL',{ZQ)ZO

21 — (2] 20)20]l2

20, L =

Thus, we have zg, 1 zo=0and |z 1|2 =1,ie., zo and 2z | are orthonormal basis vectors on the 2D plane £ spanned by

a1 and zg. Thus, we can represent & as
Ty =cosp-zo+sing-zp € L.
For any 6 € [p, 7], we construct &2 as

o :=cosf-zg+sinb-zy € L.

In order to show CY;I 2 C CY;;Q z,» W€ only need to prove any j € CY;I 2, Must in CY;Q =,- Forany Vql[j], j =
1,2, ,p, define the angle 6; € [0, 2] as the angle between z, and V[;]’s projected component v; on L', i.e.,

v; =cosb; - zg+sinb; - 29 € L.

By the proof of Lemma 17, we know that j € C¥9 _ if and only ifo; e (-5, 3)N(m+¢o— 5,7+ ¢+ 5) (mod 27).

—1,20 2
Similarly, j € CY;2 =, ifandonlyif 0; € (=5, 5)N (7 +60 — 5,7+ 60+ 5) (mod 2). Because ¢ € [0, 7] and 6 € [, 7],
we have

T T s ™ T T
-z -z yc(-%,2 _Z 2
(5 )NE+e—mte+5)S(=5.5)N(r+0 7r+9+ )(mod )

v v . o
Z 25,2+ Therefore, we conclude that CZ5 . € CZ5 . . Using a similar

- 6;12 0,fo- The result of this lemma thus follows. O

Thus, whenever j € cY we must have j € cY

_m1z7

method, we can also show that C;’l 0’720

'"Note that such an angle ; is well defined as long as V5] is not perpendlcular to L. The reason that we do not need to worry about
those j’s such that Vg [j ] L L is as follows. When Vo[]] L £, we then have 1 Vo [j] = @3 Vo[j] = 2 Vo[j] = 0. Thus, those j’s do
not belong to any set C_, cYo cYo or CYo in Eq. (126).

*ml Zp’ T—®2,20° T®1,—20’ x2,—20



