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Abstract

We consider the bilinear bandit problem where
the learner chooses a pair of arms, each from two
different action spaces of dimension d1 and d2,
respectively. The learner then receives a reward
whose expectation is a bilinear function of the
two chosen arms with an unknown matrix param-
eter Θ∗ ∈ Rd1×d2 with rank r. Despite abundant
applications such as drug discovery, the optimal
regret rate is unknown for this problem, though
it was conjectured to be Õ(

√
d1d2(d1 + d2)rT )

by Jun et al. (2019) where Õ ignores polylogarith-
mic factors in T . In this paper, we make progress
towards closing the gap between the upper and
lower bound on the optimal regret. First, we reject
the conjecture above by proposing algorithms that
achieve the regret Õ(

√
d1d2(d1 + d2)T ) using

the fact that the action space dimensionO(d1+d2)
is significantly lower than the matrix parameter di-
mensionO(d1d2). Second, we additionally devise
an algorithm with better empirical performance
than previous algorithms.

1. Introduction
Recently, researchers have shown much attention in the ap-
plication of the bandit algorithms to the matching problem.
Imagine a newly starting marriage agency company. Since
they have less knowledge about how each factor of the cus-
tomer (e.g., wealth, height, education) makes synergy with
the opponent customer, they will want to try several match-
ings to learn the importance of each feature. However, they
will also not want to lose their ratings by poor matchings
caused by excessive exploration, so someday they should
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arrange couples based on their experiences to get better rat-
ings and rewards. Balancing exploration and exploitation is
the core framework of the bandit approach, and researchers
start to involve in this approach to construct a better rec-
ommendation system for the matching problem. Few good
examples are protein-drug pair approach (Luo et al., 2017),
dating market (Das & Kamenica, 2005), duel matching sys-
tem (Sui et al., 2018), and a cloth recommendation system.

However, research on this two-sided bandit problem has
not been done well for even the simplest form, the bilinear
model. While researchers have shown interest for a long
time in pure exploration perspectives such as the matrix
sensing and the matrix completion problem (Chi et al., 2019;
Keshavan et al., 2009), there have been only few studies on
the bilinear bandit problem.

We consider the stochastic bilinear bandit problem. Let
X ⊂ Rd1 and Z ⊂ Rd2 be the left and right action space,
respectively. For each round t, the agent chooses a pair of
actions xt ∈ X and zt ∈ Z and then receives a reward rt as
a noisy bilinear function:

rt = x>t Θ∗zt + ηt

where ηt ∈ R is a σ sub-Gaussian noise. The objective is to
maximize the cumulative rewards.

The lack of research on the bilinear bandit problem was
partly due to the belief that the bilinear model can be suffi-
ciently explained by the linear bandit model. The bilinear
term x>t Θ∗zt in the reward with action spaces of dimension
d1 and d2 can be re-written as 〈vec(xtz>t ), vec(Θ∗)〉 in the
sense of d1 × d2 dimensional linear bandit problem. More-
over, in the linear bandit field, several algorithms such as
LinUCB (Abbasi-Yadkori et al., 2011) have proven their
effectiveness. Naturally, specific studies aimed only for bi-
linear bandits are limited, and most of the existing studies
have been mainly conducted only in the setting of broader
structures (Johnson et al., 2016; Zimmert & Seldin, 2018),
or with more powerful or peculiar structures (Katariya et al.,
2017; Trinh et al., 2020; Kveton et al., 2017)

However, such naive linear bandit approaches for bilinear
bandits cannot fully utilize the characteristics of the hidden
parameter or action spaces, which leads to the limited re-
gret analysis. Jun et al. (2019) proves that when the hidden
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Table 1. Summary of bilinear bandit results where d =
max(d1, d2) and r = rank(Θ∗).

RESULTS REGRET UPPER BOUND

LINUCB (2011) Õ(
√
d21d

2
2T )

JUN (2019) Õ(
√
d1d2drT )

LU(2021) Õ(
√
d1d2drT )

ε-FALB (OURS) Õ(
√
d1d2dT )

parameter space has a low-rank structure, there exists an
algorithm with a better regret than the naive linear bandit
algorithm applications. After this, researchers have studied
the structure of hidden parameters, cf., Lu et al. (2021); Hao
et al. (2020); Kotlowski & Neu (2019). In contrast, existing
researches have not shown much interest in the geometry of
the action space. Most of the papers have only summarized
how to apply the hidden parameter structure and ignored the
fact that the action space has a much lower dimension than
the hidden parameter space. This paper achieves a better
regret result by focusing on the action space.

Our contributions can be summarized as follows.

• We construct a new algorithm ε-FALB (Finite Armed
Linear Bandit) with an improved regret upper bound
of Õ(

√
d3T ) for the bilinear bandit problem, where

d = max(d1, d2). The key idea is to leverage the
low-rank nature of the action space rather than the
hidden parameter space. This rejects the conjectured
lower bound of Ω(

√
d3rT ) by Jun et al. (2019) where

r = rank(Θ∗). However, this algorithm requires dis-
cretization of the arm sets, which leads to impractical
time and space complexity of O(T d/2).

• Towards practical solutions, we construct a novel bi-
linear bandit algorithm called rO-UCB (rank-r Oracle
UCB) that enjoys a tractable time complexity. We show
that rO-UCB exhibit an excellent numerical perfor-
mance and significantly outperforms baseline methods
including ESTR (Jun et al., 2019), thanks to the lack
of forced exploration that ESTR must perform. The de-
sign of rO-UCB is based on our novel adaptive design
of confidence bound for low-rank matrices that can be
used beyond rank-one measurements, which can be of
independent interest.

We remark that both algorithms can be applied to the chang-
ing arm set environment whereas ESTR works only for the
fixed arm set due to its forced exploration phase, which
widens the applicability of bilinear bandits such as person-
alized recommendations based on contextual information.

The paper is structured as follows. Section 2 introduces
related works. In Section 3, we define the problem settings
and notations. Section 4 provides the main contribution of
our paper. Section 5 describes the practical algorithms that

overcomes the intractability of our main algorithm. We state
new conjecture on the regret lower bound in Section 6, and
discuss the future research directions in Section 7.

2. Related works
Bilinear bandit is a field that has received much attention
recently. Mainly, the rank-1 bilinear bandit problem is rela-
tively easy to analyze and has useful applications, so there
are several instance-dependent regret analyses for the rank-1
bilinear bandit problem. However, it is not easy to generalize
those studies to rank-r bilinear bandit since they depend pro-
foundly on the properties of the rank-1 matrix. For example,
Katariya et al. (2017) and Trinh et al. (2020) have dealt with
Bernoulli rank-1 bandit, all entries are positive, and only
canonical vectors are allowed for each side of actions. In
these cases, they exploited the property that the maximum
reward comes from multiplicating the maximum entry of
vector u and v. This tendency is difficult to transfer to the
rank-r case. Similarly, there is also a paper that analyzes the
rank-r case (Kveton et al., 2017). However, the objective of
the paper is finding the maximum entry of the hidden ma-
trix which is again only about the action set with canonical
vectors on both sides. Plus, they assumed strong hott topic
matrix assumption on the hidden matrix.

Jun et al. (2019) have introduced the bilinear low rank ban-
dit problem. They propose an algorithm ESTR (Explore
Subspace Then Refine) that performs subspace exploration
first to make a low-rank approximation of the hidden pa-
rameter, then performs the algorithm called LowOFUL,
which is a subspace-regularized version of the algorithm
OFUL (Abbasi-Yadkori et al., 2011) that exploits the learned
information about the low-rank subspaces. ESTR shows
Õ(
√
d3rT ) regret upper bound, which is meaningful since

it is the first algorithm better than the naive OFUL algo-
rithm regret O(d1d2

√
T ). As a follow-up study on this, Lu

et al. (2021) studied the extension of the bilinear bandit
problem. This paper uses the fact that one can also interpret
bilinear term x>Θz as 〈vec(xz>), vec(Θ)〉, and proves that
the ESTR could achieve almost the same regret bound for
generalized action set. They also suggested a lower bound
O(rd

√
T ) for the extended model, but as will be described

later, our paper shows a regret upper bound algorithm that is
lower than the lower bound presented here, indicating that
the setting here is too broad that this lower bound cannot
wholly explain the properties of the bilinear bandit. Both Jun
et al. (2019) and Lu et al. (2021) presented the conjecture
that the upper bound suggested in the Jun et al. (2019) paper
will be tight; however, we refute this argument in Section 4
by designing an algorithm with a lower regret bound.

Kotlowski & Neu (2019) has devised an algorithm that per-
formsO(

√
rd2T ) regret upper bound for a specific adversar-

ial symmetric bilinear bandit called bandit PCA. However,
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this study differs from the general bilinear bandit study
since their action set is smaller and specific. We will dis-
cuss in Section 5 and Section 6 about this algorithm and its
extension in details.

There are numerous bandit papers that consider structural as-
sumptions that bilinear bandits are subproblems. Low-rank
tensor bandit (Hao et al., 2020) extends the hidden param-
eter from a matrix to a tensor. Structured bandits (Johnson
et al., 2016; Yu et al., 2020) propose unified frameworks
for bandits with structure including bilinear bandits. Lastly,
factored bandit paper (Zimmert & Seldin, 2018) deals with
the bandit problem, whose action set is a Cartesian product
of atomic actions. While these studies allow more general
structures, they do not exploit the rank-1 structure of the
action space for the bilinear bandit case.

Finally, the linear bandit is indispensable to the bilinear
bandit discussion (Abbasi-Yadkori et al., 2011; Dani et al.,
2008; Lattimore & Szepesvári, 2020). As we mentioned in
the introduction, the bilinear bandit can be reinterpreted in
the form of the linear bandit as follows:
rt = x>t Θ∗zt + ηt = 〈vec(xtz>t ), vec(Θ∗)〉+ ηt (1)

where ηt is a sub-Gaussian noise. Consequently, any linear
bandit algorithms can be applied to bilinear bandit problems.
However, these algorithms do not exploit the rank structure
of the action nor the unknown parameter, leading to loose re-
gret bounds. For example, applying OFUL (Abbasi-Yadkori
et al., 2011) gives O(d1d2

√
T ). To exploit the geometry of

the action set of our problem, we get inspiration from finite
armed linear bandits (Auer, 2002; Chu et al., 2011). There
were a few linear bandit studies when the action set is a
subspace or its perturbation (Lale et al., 2019; Hamidi et al.,
2019), but the action set of the bilinear bandit interpreted as
(1) are generally not the subspace of Rd1d2 .

3. Problem definition
In this section we formally define the problem and notations.
Let X ⊂ Rd1 and Z ⊂ Rd2 be the left and right action
space, respectively. Without loss of generality, we assume
that all these actions have l2 norm bounded by 1.

Let d = max(d1, d2) for convenience, and Θ∗ ∈ Rd1×d2 be
the hidden parameter matrix. Let λi(Θ) be the i-th largest
singular value of Θ. Without loss of generality we assume
that λ1(Θ∗) ≤ 1 to bound the expected reward. We define
r = rank(Θ∗), which is not necessarily known to the agent.

For each round t, the agent chooses a pair of actions xt ∈ X
and zt ∈ Z then receives a reward rt as a noisy bilinear
function:

rt = x>t Θ∗zt + ηt

where ηt ∈ R is a σ sub-Gaussian noise conditioning on
(xs, zs)s≤t and (rs)s<t. The goal of this bandit problem is

to maximize the cumulative rewards, or equivalently, mini-
mize the following pseudo-regret:

RT =

T∑
t=1

(x>∗ Θ∗z∗ − x>t Θ∗zt)

where (x∗, z∗) is defined as arg maxx∈X ,z∈Z x
>Θ∗z, opti-

mal action pair in hindsight.

Notations Let Bd be the unit ball centered at the ori-
gin in Rd. For a positive definite matrix P ∈ Rd×d, the
weighted 2-norm of vector x ∈ Rd is ‖x‖P =

√
x>Px.

For any sequence of d-dimensional vector {at}, we denote
as:t = [as|as+1| · · · |at] ∈ Rd×(t−s+1) as the horizontally
concatenated matrix of this subsequence of vectors. Id rep-
resents the d× d identity matrix.

4. Main algorithm

Algorithm 1 ε-FALB

Input: β, Alg : finite armed linear bandit algorithm, ε :
distance for the covering sets, T : number of pulls
Construct ε-covering set Xε and Zε
Initialize A = {vec(xz>) : x ∈ Xε, z ∈ Zε}.
Perform Alg with action set A, time horizon T , and con-
fidence bound constant β

In this section, we describe a new approach ε-FALB(finite
armed linear bandit) that guarantees Õ(

√
d3T ) regret for

general action spaces, even applicable to the changing action
spaces. Here, we focus on using the geometry of the action
space without any knowledge of the rank r. Our framework
first constructs ε-covering sets Xε and Zε. Then we run a
finite armed linear bandit algorithm as described in Algo-
rithm 1. Such a discretization of action spaces is folklore in
the community; e.g., Beygelzimer et al. (2011, Theorem 5).

To our best knowledge, the best regret for the bilinear bandit
setting was Õ(

√
d3rT ) by Jun et al. (2019). The correspond-

ing lower bound is not tight yet, but the authors claimed that
the regret lower bound might be Õ(

√
d3rT ) as well from a

signal to noise ratio analysis. However, the reason why rank
r should be in the regret term was not entirely clear.

To achieve the improved regret bound by applying the finite
armed linear bandit algorithm in bilinear setting, it is key
to control the number of discretized points of action spaces.
The ε-covering produces a discretization of the cardinality
of exp(Õ(d)) and it is enough to obtain the desired regret
upper bound.

In Section 4.1, we review the linear bandit algorithms to con-
vey why we choose finite armed linear bandit algorithms for
our algorithm. Section 4.2 describes how we exploited the
action space geometry through ε-covering set construction.
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Section 4.3 tells the necessary modification for the finite
armed linear bandit, and Section 4.4 is for the main regret
analysis. Section 4.5 is about the extension of our algorithm
to the matrix action space case.

4.1. Reason for choosing finite armed linear bandit
algorithms

Only for this subsection, let us assume a simple linear bandit
model defined as follows. At every round, the agent selects
action xt from action set A ⊂ Rd, and receives a noisy
reward rt = x>t θ∗+ηt. Here, θ∗ ∈ Rd is a hidden parameter
that the agent does not know, and ηt is σ sub-Gaussian noise.
In this problem, Vt =

∑t
s=1 xtx

>
t and V̄t = Vt + λId

for some positive regularizing constant λ > 0, and θ̂t =
V̄ −1
t x1:tr

>
1:t is the Regularized Least Square estimator.

For each fixed action, the upper confidence bound of the
expected reward is well known.

Theorem 4.1. (Valko et al. (2014, Lemma 7), Chu et al.
(2011, Lemma 1)) For each fixed x ∈ Rd, the following
inequality holds with probability 1− δ:

〈x, θ̂t − θ∗〉 ≤ ‖x‖V̄ −1
t
O

(√
log

1

δ

)
+
√
λ‖θ∗‖ (2)

The inequality above is one of the most trusted inequalities
that can give a confidence bound for each point x, which is
derived using Chernoff bound. The main difference between
finite armed bandits and linear bandit with a broad action set
depends on whether or not Eq. (2) can be applied directly to
each action.

In the linear bandit with a broad action set, it is hard to
expect all actions to satisfy Eq. (2) simultaneously by the
union bound argument because there are too many actions.
Instead, most of existing approaches utilize the fact that
θ∗ and θ̂ are close in terms of l2 distance, and Cauchy’s
inequality: 〈x, θ̂ − θ∗〉 ≤ ‖x‖V̄ −1

t
‖θ̂ − θ∗‖V̄t . However,

Cauchy’s inequality is generally not tight, which leads to
the additional dimension dependency of the regret bound.
We deferred the detailed discussion in the Appendix A.

On the other hand, in the finite armed linear bandit case,
Eq. (2) is used to construct a high probability confidence
bound. Since the number of action is finite, a simple union
bound argument can decide the appropriate failure rate δ to
satisfy the equation Eq. (2) for all actions as follows:

Theorem 4.2. (Auer, 2002; Valko et al., 2014) For a fixed
set A with |A| = K, The following inequality holds with
probability 1− δ: For all x ∈ A

〈x, θ̂t − θ∗〉 ≤ ‖x‖V̄ −1
t
O

(√
log

K

δ

)
+
√
λ‖θ∗‖ (3)

Finite armed linear bandit algorithms do not suffer the ad-

ditional dimension dependency that the general action set
case has to take. Instead, the finite armed case regrets have
additional

√
logK terms because of the union bound argu-

ment. In the next section,
√

logK will reflect the dimension
of the action set.

4.2. Extension to the general action set case

For any given set S, the growth rate of ε-covering number,
N(S, ε) is hinged on the dimension of S (see Hausdorff
dimension). Since X ⊂ Bd1 and Z ⊂ Bd2 one can easily
expect K ≈ O(d log 1

ε ), and this is what we want to talk in
this subsection. Formal proof of the bound for N(X , ε) and
N(Z, ε) comes from the following lemma (adapted from
Lattimore & Szepesvári (2020, Problem 20.3)).
Lemma 4.3. For a bounded set S ⊂ Rd, its covering num-
ber N(S, ε) satisfies the following inequality:

N(S, ε) ≤
vol(S ′ + ε

2Bd)
vol( ε2Bd)

(4)

Here, S ′ is an arbitrary measurable set that contains S, and
S ′ + ε

2Bd is a sumset between S ′ and ε
2Bd.

We deferred the detailed proof in Appendix D. Now since
X ⊂ Bd1 and Z ⊂ Bd2 , we can conclude that N(X , ε) ≤
( 3
ε )d1 and N(Z, ε) ≤ ( 3

ε )d2 (see Lattimore & Szepesvári
(2020, Lemma 20.1) for the covering number of the Sd−1).

When we apply this lemma to the linearized action spaces
(set of xz>) of the bilinear bandit problem, the cardinality of
the discretized space can not be sharpened to a lower value
than O(ε−d1d2) whereas it is possible to get a cardinality of
order O(ε−d1−d2) if we apply the covering to the left and
right action spaces separately.

4.3. Modification of the finite arm algorithm

The only remaining part is which algorithm we will use
for the input of Algorithm 1. When it comes to the finite
armed linear bandit algorithm, the SupLinRel based algo-
rithms are usually the best known (Auer, 2002; Chu et al.,
2011; Valko et al., 2013). However, these algorithms re-
quire some modifications for the bilinear bandit setting to
optimize the regret. In particular, they use an assumption
about the l2-norm boundedness of the hidden parameter to
compute the regret. We need some modifications to apply
them to our current bilinear bandit problem. In the bilinear
bandit setting, only the singular value limits the maximum
reward, and rank of Θ∗ is a factor that increases Frobenius
norm from ‖Θ∗‖2F =

∑r
i=1 λi(Θ

∗)2 ≤ rλ1(Θ∗)2. Thus
from Eq. 3 with replacing ‖θ∗‖ to ‖Θ∗‖F , without proper
regularization on λ the confidence bound width has an order
of
√
r no matter what logK is. When logK � r it is a

severe loss of the regret upper bound since the regret upper
bound of the UCB-type linear bandit algorithm is usually
proportional to the confidence bound.
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Algorithm 2 SupLinUCB(adapted from Chu et al. (2011))

Input: β, S = dlnT e, Φst ← ∅ for all s ∈ [S]
Initialize A1 = A, s = 1.
for t = 1 to T do

repeat
Calculate r̂st,a and wst,a using BaseLinUCB with Φst
for all a ∈ As
if wst,a ≤ 1√

T
for all a ∈ As then

Choose at = arg maxa∈At(r̂
s
t,a + wst,a)

Φs
′

t+1 ← Φs
′

t for all s′ ∈ [S]
else if wst,a ≤ 2−s for all a ∈ As then
As+1 = {a ∈ As : r̂st,a + wst,a ≥
maxa′∈As(r̂

s
t,a′ + wst,a′)− 2 · 2−s}

s← s+ 1
else

Choose at ∈ As such that wst,at > 2−s

Φst+1 ← Φst ∪ {t}
Φs
′

t+1 ← Φs
′

t for all s′ ∈ [S]\{s}
end if

until at is found
end for

Algorithm 3 BaseLinUCB (Chu et al., 2011)

Input: β, Φst = {t1, t2, · · · tl}, V0 = 1
dId1d2

Xt,s = [at1 ; at2 ; · · · atl ]
Rt,s = [rt1 , rt2 , · · · , rtl ]>
Vt,s = V0 +

∑
τ∈Φst

aτa
>
τ

wst,a = β‖a‖V −1
t,s

r̂st,a = V −1
t,s Xt,sRt,s

Return r̂st,a and wst,a

Algorithm 2 is the modified SupLinUCB for the bilinear
setting. Note that unlike Chu et al. (2011), we add 1

dId
instead of Id for the regularized gram matrix Vt, since we
have to control the scale of

√
λ‖θ∗‖ term in Eq. (2) by

setting λ = 1
d .

Considering that the proof in Chu et al. (2011) strongly
depends on the fact that λmin(Vt) ≥ 1 and the boundedness
of the reward, we need several modifications for the regret
upper bound proof. The detailed proof is in the Appendix B.
After that, the following regret upper bound holds:

Theorem 4.4. If we run Algorithm 2 with βt =

2σ
√

14 log 2KT log T
δ + 1 the regret is bounded by

RT ≤ Õ

(√
d1d2T log

K

δ

)
with probability 1− δ.

The main advantage of SupLinUCB is that the algorithm
can be applied to the changing arm sets since it is basically
for the contextual linear bandit problem.

Algorithm 4 Phase Elimination (Valko et al., 2014)

Input: T : the number of pulls, A : finite action set, β,
{tj = 2j−1} : parameters of elimination and phase
Initialize A1 = A.
for j = 1 to J do
Vtj ← 1

dId1d2
for t = tj to tj+1 − 1 do
at ← arg maxa∈Aj ‖a‖V −1

t

Vt+1 ← Vt + ata
>
t

end for
Θ̂j = V −1

t atj :tr
>
tj :t

p← maxa∈Aj a
>Θ̂− ‖a‖V −1

t
β

Aj+1 ← {a ∈ Aj : a>Θ̂ + ‖a‖V −1
t
β ≥ p}

end for

On the other hand, if we want to consider about Spec-
tral Eliminator (Valko et al., 2014) and Phased elimination
with G-optimal exploration (Lattimore & Szepesvári, 2020;
Soare et al., 2014), they are directly applicable with some
tuning on the initial matrix V0. Instead, we cannot apply
these algorithms for the changing arm sets. Algorithm 4 is a
Spectral Eliminator with initial matrix V0 = 1

dId1d2 . Again,
the regularizing constant is 1

d to control the scale of the last
‖θ∗‖ term in Eq. (2). Without any modification of the proof,
the following regret bound holds:

Theorem 4.5. (Valko et al., 2014) If we run Algo-
rithm 4 with failure probability δ, bounding constant β =

2σ
√

14 log 2K log2 T
δ +1, then with probability at least 1−δ

the following regret bound holds.

RT ≤
4

log 2

(
2σ

√
14 log

2K log2 T

δ
+ 1

)
×
√
d1d2T log(1 + (d1 + d2)T )

In short, both algorithm shows the regret upper bound of
Õ(
√
d1d2T logK) with probability at least 1− δ.

4.4. Regret analysis

Theorem 4.6. Algorithm 1 with input ε = 1√
T

, Alg as
Algorithm 2 or Algorithm 4, and β for suitable constant for
Alg in Theorem 4.4 and Theorem 4.5 satisfies the following
regret upper bound with probability 1− δ:

RT ≤ Õ(

√
d1d2(d1 + d2)T log

1

δ
) (5)

Proof. Let K = |A|, xε = arg minx∈Xε ‖x∗ − x‖, and
zε = arg minz∈Zε ‖z∗ − z‖. We can separate the regret of
the Algorithm 1 to the following three terms:
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RT =

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>t Θ∗zt

=

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>ε Θ∗zε

+

T∑
t=1

x>ε Θ∗zε −
T∑
t=1

max
x,z∈E

x>Θ∗z

+

T∑
t=1

max
x,z∈E

x>Θ∗z −
T∑
t=1

x>t Θ∗zt

= R1 +R2 +R3

Here, R1 =
∑T
t=1 x

>
∗ Θ∗z∗ −

∑T
t=1 x

>
ε Θ∗zε repre-

sents the reward difference between the optimal action
and its closest ε-covering set element xε, zε. R2 =∑T
t=1 x

>
ε Θ∗zε −

∑T
t=1 maxx∈Xε,z∈Zε x

>Θ∗z is the dif-
ference between the action closest to the optimal action
and the optimal action among ε-covering set elements.
R3 =

∑T
t=1 maxx,z∈E x

>Θ∗z −
∑T
t=1 x

>
t Θ∗zt is the re-

gret of the finite armed linear bandit algorithm. Now those
three regret terms are calculated as follows:

• By definition, R2 ≤ 0

• R3 can be bounded by O(
√
d1d2T log K

δ ) by Theo-
rem 4.4 or Theorem 4.5.

• Lastly, since ‖x∗z>∗ − xεz>ε ‖F ≤ ‖(x∗ − xε)z>∗ ‖F +
‖xε(z>∗ − z>ε )‖F ≤ 2ε by the ε-cover construction, R1

is bounded as follows:

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>ε Θ∗zε

=

T∑
t=1

〈vec(Θ∗), vec(x∗z>∗ − xεz>ε )〉

≤
T∑
t=1

‖Θ∗‖F · ‖x∗z>∗ − xεz>ε ‖F ≤ 2εT‖Θ∗‖F

Overall, the regret bound is
RT ≤ R1 +R2 +R3

≤ 2εT
√
rλ1(Θ∗) + 0 + Õ(

√
d1d2T ln(

K

δ
))

Substituting ε = 1√
T

and using the fact K = N(A, ε) =

O(( 1
ε )d1+d2) from Section 4.2 concludes the theorem.

Remark 1 Note that from the proof the final regret

bound is Õ(
√
d1d2T ln K

δ ), and the regret of Eq. 5 is from

logK = Õ(d). The bound can be even lower when the scale
of N(X , ε) (or N(Z, ε)) is much smaller than d1 (or d2, re-
spectively), thanks to the modifications and initialization of

V0 discussed in 4.3. One of the cases is when X and Z are
finite action spaces.

Remark 2 One might wonder which ε shows the best em-
pirical performance of ε-FALB in practice. We can get the
same order of regret upper bound when ε ∈ [ 1√

T
, d√

T
], and

this range is also the best choice for empirical perspectives.
Appendix E.1 includes the experiment about the ε-value
selection.

4.5. Extension to the action set of matrices

In the previous section, we used the fact that the action
space of the bilinear bandit has much smaller dimensions
than d1 × d2 – from the perspective of (1), the action space
is a set of some rank-1 matrices. Then, one natural question
is whether we can extend the previous result to the action
space consists of matrices with rank ≤ ρ for some constant
ρ. Specifically, for the linear bandit problem

yt = 〈vec(At), vec(Θ∗)〉+ ηt

with the action space A ⊂ {Θ ∈ Rd1×d2 : λmax(Θ) ≤
1, rank(Θ) ≤ ρ}, we can expect to achieve a better regret-
bound compared to the naive d1d2 dimensional linear bandit,
and we show that it holds partially as we will see in the
following corollary. We can prove the corollary in a similar
way to the proof of Theorem 4.6.

Corollary 4.7. Let Od′,ρ = {M ∈ Rd′×ρ : MM> = Id′},
Dρ = {Diag(θ) : θ ∈ [−1, 1]ρ}. Suppose there are three
sets X ⊂ Od1,ρ,Z ⊂ Od2,ρ,D ⊂ Dρ such that the action
set can be represented as the product of three sets, namely
A = {vec(UΣV >) : U ∈ X , V ∈ Z,Σ ∈ Dρ}. If we run
Algorithm 1 with action set Aε(ε-covering set of A) and
other hyperparameters described as Theorem 4.6, then the
regret is bounded as below with probability 1− δ

RT ≤ Õ(

√
d1d2ρ(d1 + d2)T log(

T

δ
)

We left the details in the Appendix D. Note that all rank
ρ matrix can be decomposed as Θ = UΣV > by singular
value decomposition, the Corollary 4.7 covers wide range
of rank-ρ action sets.

5. Practical algorithms
Although the Algorithm 1 shows better regret bound than
the previous studies, it is not tractable to apply Algorithm 1
in practice since the cardinality of Xε and Zε grows in the
order of O(( 1

ε )d) = O(T d/2) in general, which is spatially
intractable. This spatial drawback leads a serious computa-
tional time disadvantage - see Appendix E.2 for details.

In addition, finite armed linear bandit algorithms are well
known to be inefficient in practice compare to the linear
bandit algorithms with general action space (Valko et al.,
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2014; Chu et al., 2011).

Instead, we devise two practical algorithms that one shows
superior empirical performance, and the other shows prov-
able computational complexity.

Table 2. Summary of our additional algorithms. Here Forced exp.
is about whether the algorithm requires first forced exploration
phase.

RESULTS
REGRET
BOUND

FORCED
EXP.

ACTION
SPACE

ε-FALB Õ(
√
d3T ) NO CHANGABLE

RO-UCB Õ(
√
d3rT ) NO CHANGABLE

B-PCA (2019)1 Õ(
√
d3T )2 NO Sd−1

ESTR (2019) Õ(
√
d3rT ) YES FIXED

5.1. Considering hidden parameter structure

We have verified that Algorithm 1 can guarantee regret
bound Õ(

√
d3T ) even for the worst-case by considering

the geometry of the action set, although we do not know
whether it is optimal or not. From the result, the rank of the
hidden parameter might not affect much on the worst-case
regret of the bilinear bandit.

However, it is undeniable that knowing the rank of the prob-
lem might help better approximation, evidenced by histori-
cal low-rank studies (Chi et al., 2019).

Suppose that there exists an oracle that solves the following
optimization problem, and the answer is Θ̂t

(Opt)


minΘ

∑t
s=1(x>s Θzs − rs)2

subject to rank(Θ) ≤ r,
‖Θ‖F ≤ C

In practice, the existing low-rank estimation algorithms usu-
ally depend on the gradient descent-based methods. They
need several conditions about action xs and zs to guarantee
to find the solution of (Opt), such as the restricted isometry
condition (Chi et al., 2019; Bhojanapalli et al., 2016) as
gradient descent methods usually require convexity condi-
tions on the landscape. Those conditions are usually hard
to achieve in the action history of the bandits. However,
assuming that the oracle for (Opt) exists, we can create a
concentration inequality like follows:
Theorem 5.1. For all t ∈ {1, · · · , T}, Θ̂t defined as above
satisfies the following inequality with probability at least

1Though the algorithm was designed by Kotlowski & Neu
(2019), we adapted this algorithm to the stochastic environment
and calculated the regret upper bound result.

2This bound is about the expected regret upper bound. It is
another challenging problem to calculate the high probability regret
bound for the bandit PCA algorithm.

1− δ:

‖vec(Θ̂−Θ∗)‖Wt
≤ O

(√
rd log

CT

δ

)
where Wt = Id1d2 +

∑t−1
s=1 vec(xsz

>
s )vec(xsz

>
s )>.

With this oracle, we can construct an algorithm, adapted
from linUCB, that has a regret of order Õ(

√
rd3T ). See

Appendix C for its proof.

Algorithm 5 rO-UCB (rank r Oracle UCB)

Input: β, W0 = Id1d2 , C =
√
r

for t = 1 to T do
Wt = W0 +

∑t−1
s=1 vec(xsz

>
s )vec(xsz

>
s )>

Θ̂t = Oracle(x1:t−1, z1:t−1, r1:t−1, r, C)
UCBt(x, z) = x>Θ̂tz + β‖vec(xz>)‖W−1

t

Choose (xt, zt) = arg max(x,z)∈X×Z UCBt(x, z)
and receive reward rt

end for

Figure 1. Simulation result for d = 8 and r = 1, and σ = 0.01.
We plot the average regret of the methods and the .95 confidence
intervals. Our method outperforms all the known general bilinear
bandit algorithms.

We present an experiment to compare the performance of
the existing bilinear algorithms and our rO-UCB algorithm.

In the experiment, we consider the four methods: ESTR-OS,
which is the proposed method of Jun et al. (2019); ESTR-
BM, the best heuristic method in Jun et al. (2019); OFUL,
naive OFUL extension as discussed in (1); and rO-UCB, our
proposed algorithm. We use the grid search method to adjust
the forced exploration time of ESTR and confidence bound
width of all algorithms. Instead of the true oracle, we used
one of the low rank approximation of Burer & Monteiro
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(2003) instead. The graph is about the best regret result for
each algorithm. Our rO-UCB outperforms every other algo-
rithms, and one can see several additional experiments in the
Appendix E.3 that in another environment with larger σ, our
rO-UCB outperforms other algorithms with stability while
ESTR algorithms fail because of the unsuccessful forced
exploration. We leave the hyper-parameters and additional
experiments in the Appendix E.3.

5.2. Stochastic bandit PCA analysis

Kotlowski & Neu (2019) is one of main inspirations of our
research. The bandit PCA of Kotlowski & Neu (2019) is
a specialized version of the adversarial bilinear problem,
which repeats the following steps for each round:

• Agent selects action xt ∈ Sd−1 through history.
• The environment choose a d by d symmetric matrix Lt

with a spectral norm of less than 1.
• Agent receives loss(or reward) lt = x>t Ltxt.

Indeed, this is a partial problem of the bilinear problem,
where the right and left actions are the same. Thus, we
analyze the regret of the stochastic bandit PCA problem to
check the regret lower bound of the bilinear bandit problem.
The problem changes as follows:

• The environment decides the d by d symmetric matrix
L with a spectral norm less than 1 at the start of the
game. That is, Lt = L for all t.

• Agent selects action xt ∈ Sd−1 through history.
• Agent receives loss(or reward) lt = x>t Lxt + ηt.

As a result, we have the following theorem.

Theorem 5.2. The expected cumulative regret of FTRL with
Sparse sampling algorithm (Kotlowski & Neu, 2019) on
stochastic bandit PCA problem is bounded as follows:

E[RT ] ≤ Õ
(√

d3T
)

We defer the details to the Appendix F. The main advantage
of this stochastic bandit PCA is that it requires only Õ(dT )
computational complexity (Kotlowski & Neu, 2019).

6. Discussion on the lower bound
One of the shortcomings in our study is the gap between
the known regret lower bound (Ω(d

√
T ), Jun et al. (2019))

and the regret upper bound of our algorithm. Motivations
mentioned in Section 4 also lead us to suspect that Ω(

√
d3T )

might be the minimax lower bound for the bilinear bandit
problem, while a parallel work of Lattimore & Hao (2021)
has proposed the existence of the algorithm with a better
regret upper bound. In this section, we will briefly discuss
about those evidences.

Signal to Noise Ratio Jun et al. (2019) provide the signal
to noise ratio(SNR) as the evidence of the

√
d3 term in the

upper bound. Please refer to Section 6 of Jun et al. (2019)
for the details.

Stochastic Bandit PCA As mentioned in the additional
algorithm section, while studying Bandit PCA, stochastic
bandit PCA was able to obtain only the regret of order
Õ(
√
d3T ), unlike adversarial bandit PCA regret Õ(

√
rd2T ).

The reason for this difference was intriguing because the
noise factor completely obscures the parameter’s properties,
similar to the relationship between the adversarial linear
bandit and the stochastic linear bandit.

In Appendix F, we bound the regret of the online mirror
descent algorithm by the following inequality.

RT ≤
d log T

η
+ η ×

∑
t

Bt

The main difference between stochastic and adversarial ban-
dit PCA problem comes from the calculation of Bt:

• Adversarial : Bt ≤ · · · ≤ d‖Lt‖2F ≤ dr
• Stochastic : Bt ≤ · · · ≤ d‖L‖2F + d2σ2 ≤ dr + d2σ2

Here, this new term d2σ2 is created by the sum of noises
and has a larger dimensional dependency than the term
created by the original loss matrix. Therefore, no matter
what property does the hidden matrix L possesses, all of
which are obscured by the noise term.

A similar phenomenon happens in the linear bandit problem.
Apparently, contradictory result between the upper bound
for adversarial bandits on the unit ball and the lower bound
for stochastic bandits for the unit ball is one of the famous
phenomenons in the linear bandit field (Bubeck et al., 2012;
Lattimore & Szepesvári, 2020). From the close relationship
between the linear bandit and the bilinear bandit, and from
the SNR ratio analysis, we can expect that our Algorithm 1
might be asymptotically optimal.

Bandit Phase Retrieval On the other hand, Lattimore &
Hao (2021) suggests the possibility of Õ(d

√
T ) bilinear

bandit algorithm by analyzing the bandit phase retrieval
problem, which is a sub-problem to our bilinear bandit prob-
lem. The work of Lattimore & Hao (2021) is a tight result of
the known regret lower bound (Ω(d

√
T ), (Jun et al., 2019)),

and similar strategies may lead to the bilinear bandit algo-
rithm with the regret upper bound Õ(d

√
T ). Note that for

the case where the left and right arm sets are both the unit
balls and the parameter Θ∗ is symmetric, one can apply
their algorithm to solve the bilinear problem with regret
Õ(d
√
T ). Whether or not the same is true for the more

generic bilinear problems and whether or not rank(Θ∗) af-
fects the regret upper bound are important open problems
for bilinear bandits.
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Proving or refuting these lower bound conjectures will be
a meaningful research subject in the future. Although Jun
et al. (2019) verified a lower bound of Ω(d

√
T ) through

the singleton action set case, it was hard to be generalized
to the action spaces with multiple actions since the lower
bound calculation of the bilinear bandit requires computing
the cross-terms of the paired action. Interested readers can
check our lower bound analysis in the Appendix G, which
is about the lower bound of the nontrivial action spaces.

7. Conclusion
In this paper, we have proposed new algorithms that en-
joy either improved regret bound or much better numerical
performance over prior art. Specifically, by focusing on
the action set dimension, ε-FALB achieves an improved
regret bound that disproves a conjectured optimal regret rate
from Jun et al. (2019). Furthermore, our algorithm rO-UCB
achieves significantly better numerical results over existing
algorithms by leveraging our novel concentration inequality,
which allows us to avoid forced exploration.

Our new results tell us that we are yet far from understanding
the optimal regret rate for bandits with matrix parameters,
which opens up numerous future directions. First, studying
the optimal regret of bilinear bandits with the landmark arm
sets like the unit ball or finite set remains to be a challenging
open problem. Second, it seems that UCB-type algorithms
with the adaptive design confidence inequalities are not
amenable to exploiting the action set’s true dimension, as
far as known proof techniques are concerned. While fixed
design confidence bounds lead to tighter theoretical bounds
for finite arm sets such as SupLinRel-type algorithms, the
community has seen that algorithms based on the adaptive
design confidence bounds such as OFUL are simple yet
enjoy better empirical performance. It would be interesting
to develop novel algorithmic frameworks that can exploit the
true dimension of the action set, which can lead to practical
algorithms with tighter regret guarantees.
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Appendix

A. Review of the linear bandit theory
In this section, we demonstrate why general action set approach usually has additional dimensional dependency –through an
example– by analyzing the framework of LinUCB (Abbasi-Yadkori et al., 2011), a popular algorithm in this area.

The ESTR-lowOFUL algorithm of (Jun et al., 2019) is based on spectralUCB (Valko et al., 2014) and, by extension, on
LinUCB (Abbasi-Yadkori et al., 2011). However, these algorithms have no restrictions on the action set other than its bound.
Since the number of actions may be infinite, it is difficult to prove that all actions satisfy Eq. 2 at the same time. Instead,
they focus on the fact that θ∗ and θ̂ are close in l2 sense as the following inequality:

Theorem A.1. (Abbasi-Yadkori et al., 2011) At round t, the following inequality holds with probability at least 1− δ:

‖θ̂t − θ∗‖V −1
t
≤ βt . (6)

UCB-based linear bandit algorithms construct a confidence region Ct that contains θ∗ with a probability of at least 1− δ
using Eq. 6, and calculate upper confidence bound of an action a as follows:

UCBt(a) = max
θ∈Ct
〈a, θ〉 .

This quantity can be interpreted as the maximum inner product value possible in the confidence region. Define θ̄ =
arg maxθ∈Ct〈xt, θ〉. From the following inequalities

〈θ∗, x∗〉 ≤ UCBt(x∗) ≤ UCBt(xt) = 〈θ̃, xt〉 , (7)

The regret occurring at t can be bounded by r̄t = 〈x∗ − xt, θ∗〉 ≤ 〈xt, θ̃ − θ∗〉. Bounding the second inner product is the
core task of UCB-based algorithm regret analysis. However, since there is almost no restriction on the action set except the
norm bound, we cannot assure that Eq. 2 holds for all actions. Therefore, we rely on Cauchy’s inequality and obtain a loose
bound as follows:

r̄t ≤ 〈xt, θ̃ − θ∗〉

≤ 〈xt, θ̃ − θ̂〉+ 〈xt, θ̂ − θ∗〉

≤ ‖xt‖V −1
t

(‖θ̃ − θ̂‖Vt + ‖θ̂ − θ∗‖Vt)

≤ 2‖xt‖V −1
t
βT .

Finally the regret is summarized as RT =
∑T
t=1 r̄t ≤ 2βT

∑T
t=1 ‖xt‖V −1

t
. In this calculation, note that βt of Eq. 6 is

usually much larger than the bound of Eq. 2 (e.g., in LinUCB it is about
√
d order larger). This additional loss comes mainly

from the step using Cauchy’s inequality, which bounds only the inner product by l2 sense along all possible directions. On
the other hand, Eq. 2 bounds the inner product for a specific direction, which leads to a tighter bound.

For the summation
∑T
t=1 ‖xt‖V −1

t
, we note that the geometry of the action space is not exploited well except for span(A).

This summation is usually bounded by the following lemma,

Lemma A.2. (Elliptic Potential Lemma, Abbasi-Yadkori et al. (2011))

min(1, ‖xt‖2V −1
t

) ≤ 2 log
|Vt|
|V0|

≤ 2d log
Tr(V0) + T

d
− 2 log |V0| .

The first inequality in the elliptic potential lemma is known to be relatively tight (Li et al., 2019), but it is not easy to control
directly the determinant of the gram matrix Vt. Therefore, the second inequality in Lemma A.2 uses the determinant-trace
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inequality to bound the sum by a tractable value. This bound may not help since this determinant-trace inequality ignores
most of the geometry of the action set. For example, the bound in this lemma cannot distinguish the action set of d canonical
vectors and the infinite action set of whole sphere, Sd−1, since both sets span Rd . Jun et al. (2019) considered the low-rank
parameter structure by modifying V0, but no known method exploits the exact geometry of the action set by manipulating
V0.

In short, previous studies analyze the linear bandit algorithm for the general action set along the following framework.

• It is hard to construct an event that Eq. 2 holds for all actions since the number of actions could be infinite. Instead,
consider a bound on the distance between θ̂ and θ∗ in l2 sense.

• Based on the confidence ellipsoid generated through Eq. 6, calculate the regret upper bound by separating the action
norm and the θ̂ estimation error through Cauchy’s inequality. This process may produce a large regret upper bound due
to the inefficiency of the Cauchy’s inequality.

B. SupLinUCB modification
For this section, please recall the notations in Section 4.1. In this section, we will analyze about the case when the action set
A is fixed for the notational convenience. However, this algorithm can also be applied to the changing arm set case as the
original SupLinUCB algorithm is for the contextual bandit with linear payoff function. The proof does not change much
when A changes over time. Plus, from the assumptions in Section 3 we can naturally assume that the absolute value of the
mean reward |〈a, θ∗〉| is bounded by 1 for all action a ∈ A, and ‖θ∗‖ ≤ C ≤

√
d for some constant C.

We analyze SupLinUCB algorithm with V0 = 1
λId, and choose an appropriate λ later.

The main differences from Chu et al. (2011) are:

• The original paper (Chu et al., 2011) only deals with bounded reward models. We extend this case to the sub-Gaussian
noise model.

• From the reason briefly discussed in Section 4.3, we change the initial matrix from V0 = I to V0 = 1
λI for some λ > 1.

Due to this change, one has to modify several proof steps. For example, Lemma 2 of Chu et al. (2011) is no longer
applicable.

• The main proof of SupLinUCB is based on the framework of SupLinRel (Auer et al., 2002), but this framework
overlooked the scale of lnK, which leads to an excessive estimation of the order of lnK. We decrease the order of
lnK term since lnK is crucial in our approach.

Original SupLinUCB paper uses Azuma Hoeffding’s inequality to bound the inner product 〈x, θ̂− θ∗〉. Here, we use another
inequality to bound general sub-Gaussian random variables.

Lemma B.1. Valko et al. (2014, Lemma 7) : For any fixed x ∈ Rd and any δ > 0, we have that if β0 = 2σ
√

14 log 2
δ + ‖θ∗‖√

λ
,

then at time t, with probability greater than 1− δ:

|〈x, θ∗ − θ̂〉| ≤ β0‖x‖V −1
t

From Lemma B.1, we get a confidence bound width by adapting the proof of Lemma 15 in Auer et al. (2002):

Lemma B.2. (Chu et al., 2011) Let β = 2σ
√

14 log 2TK lnT
δ + C√

λ
. Then with probability at least 1 − δ, for all time

t ∈ [T ] and s ∈ [S], the followings hold:

• |〈a, θ∗ − θ̂t〉| ≤ wst,a for all a ∈ As;

• a∗ ∈ Âs, where a∗ is the best action in hindsight .

• |〈a∗ − a, θ∗〉| ≤ 8× 2−s for all a ∈ As

Note here that if
√

log TK � C√
λ

, the bound β is dominated by the factor C√
λ

. The regret upper bound is usually proportional

to the confidence bound width, and it might be too massive to be useful when
√

log TK � C√
λ

. In the bilinear bandit
problem, it might be crucial since higher rank of the hidden parameter matrix makes the upper bound of the Frobenius norm
looser. To avoid this, we define λ = C2.
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Denote the event mentioned in Lemma B.2 as E′. We discuss the regret bound under this event. Let Φ0 be the set of time
steps for which an action is chosen by the condition wst,a ≤ 1√

T
for all a ∈ As. Based on Lemma B.2,

RT =

T∑
t=1

(a∗ − at)>θ∗

=
∑
t∈Φ0

(a∗ − at)>θ∗ +

S∑
s=1

∑
t∈Φs

(a∗ − at)>θ∗

≤
∑
t∈Φ0

a>t (θ̄t − θ∗) +

S∑
s=1

∑
t∈Φs

(a∗ − at)>θ∗

≤ 2√
T
|Φ0|+

S∑
s=1

∑
t∈Φs

min{(a∗ − at)>θ∗, 2}

≤ 2√
T
|Φ0|+

S∑
s=1

∑
t∈Φs

min{23−s, 2}

≤ 2√
T
|Φ0|+ 8

S∑
s=1

∑
t∈Φs

min{wst,at , 1}

The first inequality is from the same UCB trick in Eq. 7, and the second inequality is from the fact that w0
t,a ≤ 1√

T
holds at

all time steps in Φ0, and the boundedness of 〈a, θ∗〉 for all a ∈ A. The third inequality comes from the Lemma B.2, and the
final inequality is from the definition of at for t ∈ Φs.

SupLinUCB strongly uses the property that the least eigenvalue of Vt is greater than or equal to 1 (since V0 = Id), which is
not applicable to our case V0 = 1

λId. Hence, we use Eq. A.2 instead of Lemma 2 and 3 of Chu et al. (2011). Now applying
Eq. A.2 for each Φs leads the following result:∑

t∈Φs

min(wst,at , 1) ≤ max(β, 1)
∑
t∈Φs

min(1, ‖at‖V −1
s,t

)

≤ max(β, 1)

√
|Φs|

∑
t∈Φs

min(1, ‖at‖2V −1
s,t

)

≤ max(β, 1)

√
|Φs|(2d log

d
λ + |Φs|

d
+ d log λ)

≤ max(β, 1)

√
|Φs|(2d log

d√
λ

+
√
λ|Φs|

d
)

≤ Õ(
√
d|Φs| lnK) .

Finally the regret is bounded as follows:

RT ≤
2√
T
|Φ0|+ 8

S∑
s=1

∑
t∈Φs

min(wst,at , 1)

≤ 2
√
T +

∑
s∈[S]

Õ(
√
d|Φs| lnK)

≤ 2
√
T + Õ(

√
dST lnK) = Õ(

√
dT lnK) .

For the last inequality, we use Cauchy’s inequality: (
∑
s∈[S]

√
|Φs|)2 ≤ S(

∑
s∈[S] |Φs|) ≤ ST .
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C. Proof of Theorem 5.1
In this section, we derive the confidence bound width for rO-UCB algorithm. Here, we define C as the Frobenius norm
bound for both Θ̂t and Θ∗. Since we know that λmax(Θ∗) ≤ 1, one possible option for C might be C =

√
r.

Theorem C.1. Suppose that Θ̂t is the solution of the Opt in Section 5. Then, with probability at least 1− δ the following
holds: for all t ∈ {1, · · · , T}, Θ̂t satisfies

‖vec(Θ̂−Θ∗)‖Wt
≤ O

(√
rd log

CT

δ

)
.

when δ ≥ 1
2 exp(T )

Proof. Using Cramer-Chernoff inequality for σ sub-Gaussian (Lattimore & Szepesvári (2020), Theorem 5.3) with the
probability at least 1− δ, the following holds:

2

t∑
s=1

ηs((x
>
s Θzs)− (x>s Θ∗zs)) ≤ 2

√√√√2σ2

t∑
s=1

((x>s Θzs)− (x>s Θ∗zs))2 log
1

δ
. (8)

Since we assumed max(‖Θ̂t‖, ‖Θ∗‖) ≤ C, Θ̂t ∈ Ξ = {Θ ∈ Rd1×d2 : rank(Θ) ≤ r, ‖Θ‖ ≤ C}. Since Ξ is a bounded set,
its ε-covering set Ξε has a finite cardinality. This means that for all Θ ∈ Ξε, the following inequality holds with probability
at least 1− δ:

2

t∑
s=1

ηs((x
>
s Θzs)− (x>s Θ∗zs)) ≤ 2

√√√√2σ2

t∑
s=1

((x>s Θzs)− (x>s Θ∗zs))2 log
|Ξε|
δ

. (9)

However, we have to focus on the bound of Θ̂t not a fixed point Θ. For the bound of Θ̂t, we first compute the bound of
|(x>s Θ̂tzs)− (x>s Θεzs)| where Θε ∈ Ξε is a point that satisfies ‖Θ̂t−Θε‖F ≤ ε. Since ‖x‖, ‖z‖ ≤ 1 for all x ∈ X , z ∈ Z ,
the following inequality holds for all round s ∈ [T ].

|(x>s Θ̂tzs)− (x>s Θεzs)| = |(x>s (Θ̂t −Θε)zs)| ≤ ε (10)

The last inequality comes from the fact that the maximum singular value of a matrix is smaller than its Frobenius norm.

Let Obj(Θ) =
∑t
s=1(x>s Θzs−rs)2 =

∑t
s=1(x>s Θzs−x>s Θ∗zs−ηs)2. By the minimality of Θ̂t, the following inequality

holds for Θ∗ ∈ Ξ :

Obj(Θ̂t)−Obj(Θ∗) =

t∑
s=1

((x>s Θ̂tzs)− (x>s Θ∗zs))
2 − 2

t∑
s=1

ηs((x
>
s Θ̂tzs)− (x>s Θ∗zs)) ≤ 0 . (11)

In addition, by (10) and the fact |((x>s Θεzs) + (x>s Θ̂tzs)− 2(x>s Θ∗zs))| ≤ |((x>s Θεzs)|+ |(x>s Θ̂tzs)|+ 2|(x>s Θ∗zs))| ≤
4C + o(ε), we obtain the following result

t∑
s=1

[
((x>s Θεzs)− (x>s Θ∗zs))

2 − ((x>s Θ̂tzs)− (x>s Θ∗zs))
2
]

=

t∑
s=1

((x>s Θεzs)− (x>s Θ̂tzs))((x
>
s Θεzs) + (x>s Θ̂tzs)− 2(x>s Θ∗zs))

≤
t∑

s=1

ε× 4C +O(ε2) = 4Ctε+O(ε2t) . (12)

This implies, ignoring constant and ε2 terms,
t∑

s=1

((x>s Θεzs)− (x>s Θ∗zs))
2 ≤

t∑
s=1

((x>s Θ̂tzs)− (x>s Θ∗zs))
2 + 4Ctε

≤ 2

t∑
s=1

ηs((x
>
s Θ̂tzs)− (x>s Θ∗zs)) + 4Ctε
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= 2

t∑
s=1

ηs[(x
>
s Θ̂tzs)− (x>s Θεzs)] + 2

t∑
s=1

ηs[(x
>
s Θεzs)− (x>s Θ∗zs)] + 4Ctε

≤ 2

t∑
s=1

|ηs|ε+ 2

√√√√2σ2

t∑
s=1

((x>s Θεzs)− (x>s Θ∗zs))2 log
|Ξε|t
δ

+ 4Ctε . (13)

Here,

• The first inequality holds by (12);

• The second inequality is by (11);

• The third inequality can be achieved by applying triangular inequality on the first term, and applying (9) on the second
term (holds with probability 1− δ).

As will be discussed later in section F.2, the sub-Gaussian maxima inequality shows that maxTs=1 |ηs| ≤ O(
√
σ2 log T

δ′ )

with probability 1 − δ′, which means
∑t
s=1 |ηs|
T 2 ≤ O(

√
log(T/δ′)

T ) for all t. By letting ε = 1
T 2 and δ′ = δ, the following

inequality holds with probability 1− 2δ:√√√√ t∑
s=1

((x>s Θεzs)− (x>s Θ∗zs))2 ≤ 2

√
2σ2 log

|Ξε|t
δ

+O(

√√
σ2 log(T/δ) + C

T
)

≤
√

8σ2r(d1 + d2 + 1) log(9CT 2/δ) +O(

√√
σ2 log(T/δ) + C

T
)

Here we used a Proposition 9 in Abbasi-Yadkori et al. (2012) on (13) for the first inequality – if z2 ≤ a+ bz and a, b > 0,
then z ≤ b+

√
a by a simple quadratic equation computation. The second inequality is from Lemma 3.1 of Candes & Plan

(2011), log |Ξε| ≤ r(d1 + d2 + 1) log 9C
ε . Note that the order of the latter term is ignorable compare to the first term if

T ≥ 1
σ2 .

Finally, combining Eq. 13 and Eq. 10 makes the following result:

t∑
s=1

((x>s Θ̂tzs)− (x>s Θ∗zs))
2 ≤ 2

t∑
s=1

((x>s Θ̂tzs)− (x>s Θεzs))
2 + 2

t∑
s=1

((x>s Θεzs)− (x>s Θ∗zs))
2

≤ 2ε2t+ 16σ2r(d1 + d2 + 1) log
9CT 2

δ

≈ 16σ2r(d1 + d2 + 1) log
9CT 2

δ
. (14)

Now we change Eq. 14 to be appropriate for the linear bandit form,
t∑

s=1

(〈vec(xsz>s ), vec(Θ̂−Θ∗)〉)2 ≤ 16σ2(r(d1 + d2 + 1) log(
9CT 2

δ
))

⇒ vec(Θ̂−Θ∗)
>(

t∑
s=1

vec(xsz
>
s )vec(xsz

>
s )>)vec(Θ̂−Θ∗) ≤ 16σ2r(d1 + d2 + 1) log(

9CT 2

δ
)

⇒ ‖vec(Θ̂−Θ∗)‖2Wt
≤ 16σ2r(d1 + d2 + 1) log(

9CT 2

δ
) + 4C2

⇒ ‖vec(Θ̂−Θ∗)‖Wt
≤
√

16σ2r(d1 + d2 + 1) log(
9CT 2

δ
) + 4C2 .

with probability at least 1 − 2δ for each t. Let this event Et. Now P(∪Tt=1E
c
t ) ≤ 2Tδ by the union bound argument.

Substituting δ to δ
2T leads the desired result.
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C.1. Regret upper bound of rO-UCB

About the regret upper bound of rO-UCB, one can follow the usual LinUCB proof introduced in Appendix A by replacing
Theorem A.1 to Theorem C.1.

Let βT =

√
16σ2r(d1 + d2 + 1) log( 18

√
rT 3

δ ) + 4r. By Theorem C.1, with probability 1− δ, ‖vec(Θ̂−Θ∗)‖Wt
≤ βT .

for all t ∈ {1, 2, · · · , T}. By the steps introduced in Appendix A, RT ≤ 2βT
∑T
t=1 ‖vec(xtzTt )‖W−1

t
. Now the regret of

rO-UCB algorithm can be summarized as follows:

RT ≤ βT
T∑
t=1

‖vec(xtzTt )‖W−1
t

≤ βT


√√√√T

T∑
t=1

min(1, ‖vec(xtzTt )‖2
W−1
t

)


≤ βT

√
T (2d1d2 log

Tr(W0) + T

d1d2
− 2 log |W0|)

≤ Õ(
√
rd1d2dT )

Here the second inequality comes from Cauchy’s inequality and ‖vec(xtzTt )‖W−1
t
≤ ‖vec(xtzTt )‖W−1

0
= ‖vec(xtzTt )‖ ≤

1. The third inequality is from the elliptic potential lemma (Lemma A.2).

D. Proof of Lemma 4.3 and Corollary 4.7
Lemma D.1. (Lemma 4.3) For a bounded set S ⊂ Rd, its covering number N(S, ε) satisfies the following inequality:

N(S, ε) ≤
vol(S ′ + ε

2Bd)
vol( ε2Bd)

(15)

Here, S ′ is an arbitrary measurable set that contains S, and S ′ + ε
2Bd is a sumset between S ′ and ε

2Bd.

Proof. From Lattimore & Szepesvári (2020), the packing number M(S, ε) is always greater than or equal to N(S, ε). Let
P be a maximum cardinality ε-packing set of S. Then for any p, q ∈ P , ( ε2Bd + {p}) ∩ ( ε2Bd + {q}) = ∅. By definition
( ε2Bd + {a}) ⊂ S ′ + ε

2Bd. Therefore, ∪p∈P ( ε2Bd + {p}) ⊂ S ′ + ε
2Bd. By the monotonicity and additivity of the volume

measure, vol(∪p∈P ( ε2Bd + {p})) = M(S, ε)vol( ε2Bd) ≤ vol(S ′ + ε
2B), and the theorem holds.

Corollary D.2. (Corollary 4.7) Let Od′,ρ = {M ∈ Rd′×ρ : MM> = Id′}, Dρ = {Diag(θ) : θ ∈ [−1, 1]ρ}. Suppose that
we have three sets X ⊂ Od1,ρ,Z ⊂ Od2,ρ,D ⊂ Dρ, and the action set A is defined as A = {vec(UΣV >) : U ∈ X , V ∈
Z,Σ ∈ Dρ}. Now if we perform Algorithm 2 and Algorithm 4 with the action set Aε, the ε-covering set of A, we get the
following regret upper bound:

RT ≤ O(
√
d1d2ρ(d1 + d2) log(T ))

First, we will prove the following lemma about the cardinality of the Aε:
Lemma D.3. |Aε| ≤ ( 9ρ

ε )ρ(d1+d2+1)

Proof. Let’s decompose A into X , Z , and D. Consider the cardinality of the ε/3-covering set of each set.

• First, since X ⊂ Od1,ρ ⊂ Bd1ρ(
√
ρ), N(X , ε/3) ≤ ( 9ρ

ε )d1ρ by the Lemma 4.3;

• Similarly, N(Z, ε/3) ≤ ( 9ρ
ε )d1ρ .

For Σ1,Σ2 ∈ D, ‖Σ1 − Σ2‖F = ‖diag(Σ1) − diag(Σ2)‖. Thus N(D, ε/3) ≤ N([−1, 1]ρ, ε/3) ≤ N(Bρ(
√
ρ), ε/3) ≤

( 9ρ
ε )ρ. This implies, if we let A′ = {vec(UΣV >) : U ∈ Xε/3, V ∈ Zε/3,Σ ∈ Dρ

ε/3}, then this A′ is the ε-covering set for
A by following the logic of Lemma 3.1 of Candes & Plan (2011) (note that we are not sure about minimality). Therefore,
N(A, ε) ≤ ( 9ρ

ε )ρ(d1+d2+1) holds, and the proof is finished.
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After obtaining this cardinality bound, all the steps follow the framework of Theorem 4.6. For the notational convenience,
let 〈〈W1,W2〉〉 := 〈vec(W1), vec(W2)〉 for matrices W1,W2 ∈ Rd1×d2 . Define A∗ as the optimal action in hindsight and
Aε = arg minA∈aε ‖A∗ −A‖. Then,

RT =

T∑
t=1

〈〈A∗,Θ〉〉 −
T∑
t=1

〈〈At,Θ〉〉

=

T∑
t=1

〈〈A∗,Θ〉〉 −
T∑
t=1

〈〈Aε,Θ〉〉

+

T∑
t=1

〈〈Aε,Θ〉〉 −
T∑
t=1

max
A∈Aε

〈〈A,Θ〉〉

+

T∑
t=1

max
A∈Aε

〈〈A,Θ〉〉 −
T∑
t=1

〈〈At,Θ〉〉

= R1 +R2 +R3 .

Here,

• By definition, R2 ≤ 0 ;

• R3 can be bounded by O(
√
d1d2T log K

δ ) by Theorem 4.4 or Theorem 4.5;

• Lastly, R1 is bounded by the following ε-covering argument:
T∑
t=1

〈〈A∗,Θ〉〉 −
T∑
t=1

〈〈Aε,Θ〉〉

=

T∑
t=1

〈〈A∗ −Aε,Θ〉〉

≤
T∑
t=1

‖Θ‖F · ‖A∗ −Aε‖F

≤
T∑
t=1

√
dλmaxε .

Sum up R1, R2 and R3 leads
RT ≤ R1 +R2 +R3

≤ εT
√
dλmax + 0 + Õ(

√
d1d2T ln(K)) .

Substituting ε =
√
d1d2ρ√
T

with the fact lnK ≤ ρ(d1 + d2 + 1) ln 9
√
Tρ√
d1d2

leads desired Õ(
√
d1d2dρT ) regret upper bound.

E. Additional experimental results
E.1. Experiment about the best ε

We have performed an additional experiment for various ε as shown in Figure 2. We set the experiment setting as follows:

• X = Z = S1, unit circles, d = 2

• Noise: Gaussian distribution with standard deviation σ = 0.01

• Number of total rounds: T = 2500

• Number of repeated experiments: 60

• Θ =

[
1 0
0 0.3

]
, best arm x∗ = z∗ = [1, 0]
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• Size of ε: 8ε0, 4ε0, 2ε0, ε0, where ε0 = π
80 <

1√
T

.

• Covering set Xε = Zε = {(cos(θ), sin(θ)) : θ = (i+ 0.5)ε, i = 0, 1, · · · , πε − 1}
• Finite armed linear bandit algorithm for ε-FALB: SupLinUCB

We chose the covering set as the farthest one from the true best arm to show the effect of the coarse ε-covering set. We
have found that a coarse ε-covering set construction could severely harm the regret when ε is over d/

√
T , and proved this

observation through more precise theoretical calculations.

Figure 2. Simulation result for the ε-FALB algorithm. d = 2, X = Z = S1, Θ∗ = diag(1, 0.3), T = 2500, and σ = 0.01. Here
ε0 = 1/

√
T is the parameter of the covering set from the theoretical analysis in our paper.

E.2. Experiment about the inefficiency of ε-FALB

Before describing the experiment result, we have to explain how we calculate argmax in the continuous action sets. One
of the main obstacle in the UCB-like setting is arg maxx,z∈X×Z UCBt(x, z), which is computationally difficult for the
continuous action sets. Note that it can be hard even for the standard linear bandits (cf. Section 19.3.1 in Lattimore &
Szepesvári (2020), Section 3.4 in Dani et al. (2008)). One can use the global search heuristics (Srinivas et al., 2010; Brochu
et al., 2010) which are known to be effective in practice. In our case, we use alternating maximization. Note that UCB
function is a summation of a hyperplane and a cone, which is quite exploitable geometry. Few more calculation suggests
that when one side of the action is fixed, the function UCBt(·, z) is again the summation of a hyperplane and a cone,
which implies when the action sets X and Z are sufficiently good, one can perform alternating maximization with few
computations. Below are the experimental conditions.

• Left and right action sets: B2(0)

• Rank r = 1

• Noise: gaussian distribution with standard deviation σ = 0.01

• Number of total rounds: T = 2500

• Number of repeated experiments: 60

• Optimization method for alternating maximization: COBYLA

• Finite armed linear bandit algorithm for ε-FALB: SupLinUCB

Table 3. Experimental result of the inefficiency of ε-FALB.
RESULTS LINUCB WITH COBYLA ε-FALB (ε = 1/25) ε-FALB(ε = 1/50)

COMP. TIME (MIN) 3 3 35

This experiment shows how the spatial complexity growth of the ε-FALB affects the computational time – even when d = 2,
the computation time is seriously longer than the LinUCB with COBYLA with ε = 1/50, and the case of ε-FALB with
ε = 1/25 shows that this time disadvantage is mainly from the spatial complexity. Considering that the computational cost
of the ε-FALB increases at a much faster rate (exponentially) as the dimension increases, you can see that the ε-FALB is
computationally inefficient in virtually all cases.
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Figure 3. T = 5000, R = 0.01 Figure 4. T = 5000, R = 0.1 Figure 5. T = 10000, R = 0.1

Figure 6. Simulation result for various standard deviations (R) and total times (T ). Our method outperforms all known general bilinear
bandit algorithms, while the forced exploration algorithms ESTR-OS and ESTR-BM show excessive explorations or linear regret failures.

E.3. Additional experiments about noise and time

While performing our simulation experiments, we follow the experimental conditions of Jun et al. (2019), to compare our
algorithm with their best condition. Since bandit problems in practice require fine-tuning the hyperparameters such as
confidence bound width βt (Chapelle & Li, 2011; Li et al., 2010; Zhang et al., 2016), we adjusted the confidence bound
width βt with cβt for OFUL, LowOFUL of Jun et al. (2019), and rO-UCB. For the fair comparison, we calibrated c by grid
search and report the result with the smallest average regret. In addition, since ESTR-OS and ESTR-BM requires exploration
time adjustment, we also tune exploration time T1 to CT1

T1, and find the best CT1
by grid search as in the experiment of Jun

et al. (2019). Finally, our rO-UCB uses Burer & Monteiro (2003) instead of the oracle, which requires an initial point as the
input of the algorithm. We set the initial point close to the true parameter Θ to make our optimization work as the true oracle.

• Left action dimension d1 = 8, right action dimension d2 = 8

• Rank r = 1

• Number of right and left action |X | = |Z| = 16

• Confidence bound width calibration constant: c = 10−2, 10−1.5, 10−1, 10−0.5, 100

• Exploration time multiplication constant: CT1 = 10−1, 10−0.75, 10−0.5, 10−0.25, 100

• Noise: gaussian distribution with standard deviation R = 0.01, 0.1

• Number of total rounds: T = 5000, 10000

• Number of repeated experiments: 60

As one can see from the experimental results, forced exploration based algorithms (ESTR-OS, ESTR-BM) frequently fails
or requires too much initial exploration when the condition about T or R changes. This means ESTR algorithms are not
rigorous, and requires excessive amount of fine-tunning of exploration time and confidence bound width. On the other hand,
our oracle based algorithm stably shows the best performance among all the other algorithms.

F. Proof of Theorem 5.2
F.1. Preliminary

Here we consider the stochastic bandit PCA model,
lt = w>t Lwt + εt

where wt ∈ Sd−1 is an action vector in round t. Basically, this section follows the steps of the proof framework of Algorithm
1 in Kotlowski & Neu (2019) with sparse sampling.

• Wt : Positive semidefinite density matrix which decides the distribution of the action wt. Tr(Wt) = 1.
– W̃t+1 : Intermediate d× d matrix after the update step of the mirror descent on Wt. Applying the projection step

on W̃t+1 is Wt+1. For more details, see Section 4 of Kotlowski & Neu (2019).

• L : Rd×d hidden matrix. Lt = L+ εtI
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• L̃t : Estimator of the loss matrix L, and later we will show that it is an unbiased estimator. It is defined as follows:

L̃t =

 lt
λ2
I
uIu

>
I if i = j

slt
2λIλJ

(uIu
>
J + uJu

>
I ) otherwise

(16)

– s: Uniform random variable with probability 1/2 for each ±1

– I, J : Index random variable for sparse sampling in [d] = {1, · · · , d}.
– ui: Eigenvectors of Wt =

∑
λiuiu

>
i

– lij : loss when i, j indices are chosen. It is defined as follows

lij =

{
u>i Ltui if i = j
1
2 (ui + suj)

>Lt(ui + suj) otherwise
(17)

• η : Mirror descent step size

• γ : Forced uniform exploration probability. Details are in Kotlowski & Neu (2019) Algorithm 3, Sparse sampling
section.

• V = γ
d I + (1− γ)Wt =

∑
µiuiu

>
i (µi = γ

d + (1− γ)λi)

• Bt = W
1/2
t L̃tW

1/2
t , {bti} are the eigenvalues of Bt.

We assume that noise εt is bounded, and the reward is always bounded by a constant C. This bounded noise assump-
tion is just for convenience, and as will be discussed in the latter section, it is easily relaxed to the sub-gaussian condition.

The following lemma assures that L̃t is the unbiased estimator of L.

Lemma F.1. Et[L̃t] = L

Proof.

L̃t =

 lt
λ2
I
uIu

>
I =

w>t Lwt
λ2
I

uIu
>
I + εt

λ2
I
uIu

>
I if i = j

slt
2λIλJ

(uIu
>
J + uJu

>
I ) =

sw>t Lwt
2λIλJ

(uIu
>
J + uJu

>
I ) + sεt

2λIλJ
(uIu

>
J + uJu

>
I ) otherwise

(18)

In any case, the latter term including εt has zero mean since εt is mean 0 independent noise under Et. The former term which
includes w>t Lwt can be processed in the same way as in the Appendix A.2 of Kotlowski & Neu (2019), which implies
Et[L̃t] = L.

After this, following the traditional step of the mirror descent framework, regret is bounded by the following form.

Lemma F.2.

RT ≤
d log T

η
+ γT + (1− γ)

∑
t

E[〈〈Wt − W̃t+1, L̃t〉〉] .

The above Lemma F.2 will be proven by the following Lemma F.3.

Lemma F.3. For all positive semi-definite matrix U , the following holds.
>∑
t=1

〈〈Wt − U, L̃t〉〉 ≤
DR(U‖W1)

η
+

>∑
t=1

〈〈Wt − W̃t+1, L̃t〉〉 .

The proof of this lemma follows the exactly same steps of Lemma 12 as in Kotlowski & Neu (2019), so we omit it.

Proof. (Proof of Lemma F.2) First we have to modify the left side of Lemma F.3 considering the form of the regret. Using
Lemma F.1 and conditional independence with Wt the following relationship holds:

(1− γ)Et[〈〈Wt, L̃t〉〉] = (1− γ)〈〈Wt, L〉〉 = Et[〈〈wtw>t , L〉〉]−
γ

d
〈〈I, L〉〉

Here the last equality comes from the fact Et[wtw>t ] = γ
d I + (1− γ)Wt. Now subtract 〈〈U,L〉〉 on both sides where U is a
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positive semi-definite matrix of trace 1

Et[〈〈wtw>t − U,L〉〉] = (1− γ)Et[〈〈Wt − U, L̃t〉〉] + γ〈〈I
d
− U,L〉〉

Since the spectral norm of L is bounded by 1,

〈〈I
d
− U,L〉〉 ≤ ‖I

d
− U‖1‖L‖∞ ≤ tr(

I

d
+ U) ≤ 2

Here the norm on the matrix is the Schatten norm. Now substitute U to w∗w>∗ where w∗ is the optimal action, and applying
Lemma F.3 on the above inequality leads the following regret bound:

RT =

>∑
t=1

E[〈〈U − wtw>t , L〉〉] =

>∑
t=1

E[Et[〈〈U − wtw>t , Lt〉〉]]

≤ (1− γ)E[Et[〈〈U −Wt, L̃t〉〉]] + 2γT

≤ (1− γ)
DR(U‖W1)

η
+ (1− γ)

>∑
t=1

E[〈〈Wt − W̃t+1, L̃t〉〉] + 2γT .

Here, one minor challenge is that DR(U‖W1) is infinite since rank(U) = 1. One can easily check how to deal with this
issue referring the proof of Lemma 9 in Kotlowski & Neu (2019).

The main difference between Kotlowski & Neu (2019) and our stochastic badit PCA comes from the calculation of the latter
term of Lemma F.2, E[〈〈Wt − W̃t+1, L̃t〉〉]. Readers are encouraged to continue comparing the proof of the Lemma 11 of
Kotlowski & Neu (2019) and that in this paper.

Lemma F.4. Suppose that the hyperparameter η and γ satisfy η ≤ min( 1
2d ,

1
2C ,

1
2Cd ) and γ = Cdη. Then the sparse

sampling method guarantees

E[〈〈Wt − W̃t+1, L̃t〉〉] ≤ 8η(dr + d2σ2) .

Proof. Let’s recall the definition of the several variables before the proof.

• Wt =
∑
λiuiu

>
i is the eigenvalue decomposition of Wt

• V = γ
d I + (1− γ)Wt =

∑
µiuiu

>
i (µi = γ

d + (1− γ)λi)

• Bt = W
1/2
t L̃tW

1/2
t , {bti}di=1 are the eigenvalues of Bt.

• lij : loss when i, j indices are chosen. It is defined as follows

l̃ij =

{
u>i Ltui if i = j
1
2 (ui + suj)

>Lt(ui + suj) otherwise

In addition, note that from (3) in Kotlowski & Neu (2019), the following equalities hold:
〈〈Wt − W̃t+1, L̃t〉〉 = ηTr(Bt(I + ηBt)

−1Bt)

=

d∑
i=1

ηb2ti
1 + ηbti

.

First, assume I = J . This event occurs with probability µ2
i . From the definition of the sparse sampling algorithm,

L̃t = lii
µ2
i
uiu
>
i and Bt = liiλi

µ2
i
uiu
>
i . In other word the only nonzero eigenvalue of Bt is bt1 = liiλi

µ2
i

. From the bound

µ2
i = ((1− γ)λi + γ/d)2 ≥ 4 (1−γ)γλi

d ≥ 2γλid , we can bound |bt1| ≤ |lii|d2γ ≤
1
2η . Applying this bound, we obtain

〈〈Wt − W̃t+1, L̃t〉〉 =
ηb2t1

1 + ηbt1
≤ 2ηb2t1 = 2η

l2iiλ
2
i

µ4
i

.

Similarly for I 6= J , (which occurs with probability 2µiµj)

• Bt =
slij
√
λiλj

2µiµj
(uiu

>
j + uju

>
i ) has two nonzero eigenvalues;

• bt± = ± slij
√
λiλj

2µiµj
;
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• Similarly from the previous calculation |bt±| ≤ 1
2η .

Finally we again get the bound of 〈〈Wt − W̃t+1, L̃t〉〉 as follows:

〈〈Wt − W̃t+1, L̃t〉〉 ≤ 2ηb2t+ + 2ηb2t− ≤ 2η
l2ijλiλj

µ2
iµ

2
j

.

Now we can calculate the total expectation of 〈〈Wt − W̃t+1, L̃t〉〉.

E[〈〈Wt − W̃t+1, L̃t〉〉] ≤ 2η
∑
i,j

Es[l
2
ij ]λiλj

µiµj
≤ 8η

∑
i,j

Es[l
2
ij ] = (8η

∑
i,j

Es[(w
>
t Lwt)

2]) + 8ηd2σ2 .

Here Esis the expectation from the random sign variable s, and the second inequality comes from µi > (1− γ)λi ≥ 1
2λi.

Note that since the problem is now about stochastic bandit PCA problem, additional last noise term of lij = w>t Lwt + εt
leads an additional 8ηd2σ2 term at the bound of E[〈〈Wt − W̃t+1, L̃t〉〉]. The steps of the Lemma 11 in Kotlowski & Neu
(2019) leads

∑
i,j Es[(w

>
t Lwt)]

2 ≤ d‖L‖2F ≤ dr, and applying this bound concludes the lemma.

Combining Lemma F.4, Lemma F.3 and Lemma F.2 the regret is bounded as follows:

RT ≤
d log T

η
+ γT + 8η(1− γ)T (dr + d2σ2) .

Substituting η = 1√
Td

and γ = Cdη, we can get regret upper bound of order O(
√
d3T log T ).

F.2. In the case of the sub-Gaussian noise

For the convenience of the previous proofs, we assumed that εt is a bounded noise with variance σ2. However, we can easily
extend the result to the case of the σ sub-Gaussian noise. The bounded noise condition is used only when bounding 1 + ηbti.
If η ≤ 1

Cd is satisfied, then the bounded noise condition was not necessary for the rest of the process (note that we set
η = 1√

Td
to get the regret upper bound of Õ(

√
d3T )). Therefore, what we need to check is whether 1√

Td
≤ 1

Cd holds even
in the σ sub-Gaussian noise condition. For the sub-Gaussian maxima, the following inequality holds (Rigollet, 2015):

P (max
t
εt >

√
2σ2(log T + log

1

δ
)) ≤ δ

Therefore, if we substitute C ≈
√

2σ2(log T + log 1
δ ), then most of our arguments hold with high probability 1 − δ. In

most cases log T �
√
T , so the condition η = 1√

dT
< 1

Cd can be regarded as a reasonable assumption.

G. Discussion about the bilinear bandit lower bound
In this section, we will discuss the lower bounds of the bilinear bandit model. As mentioned in Jun et al. (2019), one of the
simple case for the lower bound is when the arm set X or Z is a singleton. Then by using known linear bandit regret lower
bound (Dani et al., 2008; Lattimore & Szepesvári, 2020), one can easily achieve the regret lower bound Ω(max(d1, d2)

√
T ).

However, most of the algorithm assumes multiple entries for each side of the action set. Especially they require each X and
Z spans the whole dimension d1 and d2, respectively; since if not, one can reduce the problem by projecting the action
space to the lower dimension. For example, Jun et al. (2019) selects d1(and d2) independent actions at the start of the
algorithm, and X and Z of the rank-1 bandits (Katariya et al., 2017; Trinh et al., 2020) can be seen as sets of the canonical
vectors. In other words, the dimension of the action sets discussed in most of the bilinear algorithms is not only the nominal
dimension, but the dimension of the span(X ) and span(Z). From this point of view, lower bound using singleton example
only represents d1 × 1 and 1× d2 cases.

When it comes to the non-singleton action sets, one has to deal with the bilinear nature of the problem, which introduces
cross terms between the left and right arms. It makes the problem challenging to deal with in general (Jun et al., 2019). We
are curious that the d order of regret lower bound also holds to all d1 × d2 bilinear bandits, and the theorem below verifies
that is true.
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Theorem G.1. Consider the arm sets X := {±1/
√
d1}d1 ,Z := {±1/

√
d2}d2 There exists Θ ∈ Rd1×d2 that satisfies the

following regret lower bound:

E[R(Θ)] ≥ Ω(max(d1, d2)
√
T ) .

Proof. WLOG assume d1 ≥ d2. Let the hidden parameter hypothesis space Σ = {θξ> : θ ∈ {±
√
ε/d1}d1 , ξ ∈

{±
√
ε/d2}d2}. The best expected reward maxx∈X maxz∈Z(x>θ)(ξ>z) is achieved at sign(x) = sign(θ) and sign(z) =

sign(ξ) with the maximum of ε. Fix the bandit algorithm. Denote by xt and zt the arms pulled at time t. Then,

Rn(X ,Z, θξ>) =

T∑
t=1

[ε− Eθ,ξ(x>t θ) · (ξ>zt)]

Here, x>t θ =
∑
i xtiθi =

∑
i(
√
ε

d1
1{sign(xti) = sign(θi)} −

√
ε

d1
1{sign(xti) 6= sign(θi)}) =

√
ε

d1

∑
i(1 − 2 ·

1{sign(xti) 6= sign(θi)}). Define #T
t {At} =

∑T
t=1 1{At}, where At is an event. Using 1{sign(xti) 6= sign(θi)} =

1{xtiθi < 0},
Rn(X ,Z, θθ>)

=

T∑
t=1

ε− ε

d1d2
Eθ,ξ

d1∑
i=1

d2∑
j=1

(1− 2 · 1{xtiθi < 0}) · (1− 2 · 1{ztjξj < 0})


=

 T∑
t=1

ε− ε

d1d2
Eθ,ξ

d1∑
i=1

d2∑
j=1

(1− 2 · 1{xtiθiztjξj < 0})


(a)
= 2

ε

d1d2

T∑
t=1

Eθ,ξ
d1∑
i=1

d2∑
j=1

1{xtiθiztjξj < 0}

≥ 2
ε

d1d2

d1∑
i=1

d2∑
j=1

Eθ,ξ

[
1

{
#T
t=1

{
xtiθiztjξj < 0

}
≥ T

2

}
· T

2
+ 1

{
#T
t

{
xtiθiztjξj < 0

}
<
T

2

}
·#T

t

{
xtiθiztjξj < 0

}]

≥ 2
ε

d1d2

∑
i

∑
j

Pθ,ξ
(

#T
t=1

{
xtiθiztjξj < 0

}
≥ T

2

)
· T

2

where (a) is by d1d2 =
∑
i

∑
j 1.

We hope to enumerate all possible θξ> ∈ Σ and average out the regret:
1

|Σ|
∑
θ

Rn(X ,Z, θξ>) ≥ C

for some C and then claim that there exists a θξ> such that the regret is greater than C. Define pθξ,ij =

Pθ,ξ
(

#T
t=1

{
xtiθiztjξj < 0

}
≥ T

2

)
. Let

∑
θ−j

:=
∑
θ1:j−1

∑
θj+1:d

, summation over all other coordinates except j-th

coordinate. Define θ
′(j) to be the “flipped-j-th-coordinate’ version of θ: θ

′(j)
j = −θj and θ

′(j)
k = θk,∀k 6= j. Then,

1

|Σ|
∑
θ∈Σ

Rn(X ,Z, θθ>) ≥ Tε

d1d2|Σ|
∑
θ,ξ

∑
i

∑
j

pθξ,ij

=
Tε

d1d2|Σ|
∑
i

∑
j

∑
θ−i

∑
ξ−j

(pθξ,ij + pθ′(i)ξ,ij + pθξ′(j),ij + pθ′(i)ξ′(j),ij)

Now, we realize that it all boils down the lower-bounding
pθξ,ij + pθ′(i)ξ,ij + pθξ′(j),ij + pθ′(i)ξ′(j),ij ,

Without loss of generality, suppose that d1 > d2. Then, we can apply the Bretagnolle’s inequality (Lattimore & Szepesvári
(2020, Theorem 14.2)) for each pair pθξ,ij + pθ′(i)ξ,ij and pθξ′(j),ij + pθ′(i)ξ′(j),ij

pθ′(i)ξ,ij = Pθ′(i),ξ

(
#T
t=1

{
xtiθ

′(i)
i ztjξj < 0

}
≥ T

2

)
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= Pθ′(i)ξ

(
#T
t=1

{
xtiθiztjξj > 0

}
≥ T

2

)
= Pθ′(i)ξ

(
#T
t=1

{
xtiθiztjξj < 0

}
<
T

2

)
Due to the Bretagnolle’s inequality and the noise model N(0, 1),

pθξ,ij + pθ′(i)ξ,ij ≥ Pθ,ξ
(

#T
t=1

{
xtiθiztjξj < 0

}
≥ T

2

)
+ Pθ′(i)ξ

(
#T
t=1

{
xtiθiztjξj < 0

}
<
T

2

)

≥ 1

2
exp

−Eθ,ξ T∑
t=1

(x>t (θξ> − θ′(i)ξ>)zt)
2

2


≥ 1

2
exp

−2Eθ,ξ
T∑
t=1

(xtiθiξ
>zt)

2


(a)

≥ 1

2
exp

(
−2T

ε2

d2
1

)
where in (a) we consider the worse case of xt and zt. Now we see that

pθξ,ij + pθ′(i)ξ,ij ≥
1

2
exp

(
−2T

ε2

d2
1

)
Similarly, one can calculate

pθξ(j),ij + pθ′(i)ξ(j),ij ≥
1

2
exp

(
−2T

ε2

d2
1

)
Then,

1

|Σ|
∑
θ,ξ

Rn(X ,Z, θθ>) ≥ nε/d1d2

|Σ|
∑
i

∑
j

∑
θ−i

∑
ξ−j

(pθξ,ij + pθ′(i)ξ,ij + pθξ′(j),ij + pθ′(i)ξ′(j),ij)

≥ nε/d1d2

|Σ|
∑
i

∑
j

2d1−12d2−1 1

2
exp(−2T

ε2

d2
1

)

≥ nε/d1d2

2d1+d2
d1d22d1−12d2−1 exp(−2T

ε2

d2
1

)

=
nε

4
exp(−2T

ε2

d2
1

)

(a)
=

d1
√
n

4
exp(−2)

where (a) by choosing ε = d1√
n

. This concludes the proof.


