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Abstract

In many applications data are collected in batches,
some potentially biased, corrupt, or even adver-
sarial. Learning algorithms for this setting have
therefore garnered considerable recent attention.
In particular, a sequence of works has shown
that all approximately piecewise polynomial
distributions—and in particular all Gaussian,
Gaussian-mixture, log-concave, low-modal, and
monotone-hazard distributions—can be learned
robustly in polynomial time. However, these
results left open the question, stated explicitly
in (Chen et al., 2020), about the best possible sam-
ple complexity of such algorithms. We answer
this question, showing that, perhaps surprisingly,
up to logarithmic factors, the optimal sample com-
plexity is the same as for genuine, non-adversarial,
data! To establish the result, we reduce robust
learning of approximately piecewise polynomial
distributions to robust learning of the probability
of all subsets of size at most k of a larger discrete
domain, and learn these probabilities in optimal
sample complexity linear in k regardless of
the domain size. In simulations, the algorithm
runs very quickly and estimates distributions
to essentially the accuracy achieved when all
adversarial batches are removed. The results also
imply the first polynomial-time sample-optimal
algorithm for robust interval-based classification
based on batched data.

1. Overview
1.1. Robust learning

In many learning applications, some samples are inadver-
tently or maliciously corrupted. A natural and intuitive
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example shows that regardless of the number of samples
available, such corruption severely curtails the learning accu-
racy even for the simplest of tasks, a binary hypothesis test.

Consider independent binary samples distributed either all
Ber(1/2+β/2) or all Ber(1/2−β/2). With genuine samples,
the underlying distribution can be identified with error that
plummets to 0 exponentially fast in the number of samples.

However, if an adversary can observe a fraction 1 − β of
the samples and select the rest, our best error is destined to
remain a half, regardless of the number of samples available.
The poltergeist could simply use the observed samples to
determine the underlying distribution, and set the rest so
the whole sequence appears to be generated by a Ber(1/2)
distribution, leaving us with no better than a random guess.

This elemental example propagates to essentially all learn-
ing tasks, hard-limiting the performance of all learning al-
gorithms. For example, the total variation (TV) distance
between the two indistinguishable distributions above is β.
Hence the triangle inequality implies that for any number of
samples, if a β fraction are adversarial, then even binary, let
alone general discrete and continuous, distributions cannot
be learned to TV distance less than β/2. Similar hard limits
follow for classification and other learning tasks.

The foregoing seems to suggest the discouraging conclusion
that with a β fraction of adversarial data, an Ω(β) loss is
inevitable, which as real-life β may be quite large, could be
rather foreboding. Fortunately, that is not necessarily so.

In the following and many other applications, data are col-
lected from multiple sources, most typically genuine, but
some possibly corrupted or adversarial. Data may be gath-
ered by sensors, each providing a large amount of data, and
some sensors may be faulty. The word frequency of an
author may be estimated from several large texts, some of
which are mis-attributed. User preferences may be learned
by querying several individuals, some intentionally biasing
their feedback. Multiple agents may contribute to a crowd-
sourcing platform, but some may be unreliable or malicious.

The collection of data generated by each source, or during
a time period, is called a batch. Interestingly, for data gen-
erated in batches, a fraction β of which are corrupted or
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adversarial, significantly higher accuracy can be achieved.

1.2. Robust learning from batches

To formalize this setting, (Qiao & Valiant, 2017) considered
estimating an unknown distribution p over the finite domain
[`] = {1, . . . ,`} in TV-distance. Estimation is based on m
batches with ≥ n samples each. In most batches, the sam-
ples are drawn independently according to p, but a fraction
β < 0.5 of the batches are adversarial and may be arbitrar-
ily corrupted, possibly even with knowledge of the good
batches.

Unlike the strict Θ(β) accuracy limit for individual sam-
ples, they derived a batch-setting algorithm that approxi-
mates p to a much lower TV-distance O(β/

√
n), where

the implied constant factor is independent of `. They also
showed a matching adversarial lower bound (for batches),
that even for binary distributions, and hence for general
finite ones, the lowest achievable TV distance with any num-
ber of batches is ≥ ∆min := ∆min(β, n) := β/(2

√
2n).

However, their estimator had some limitations as well.
When all samples are genuine, and none is adversarial,
estimating p to TV distance ε requires Θ(`/ε2) sam-
ples, e.g., (Kamath et al., 2015). Since robust learning is
at least as hard, this also forms a statistical lower bound
on the number of samples required to achieve error ε with
adversarial batches.

To achieve TV distance O(β/
√
n) = O(∆min), the estima-

tor in (Qiao & Valiant, 2017) required Ω( n+`
n·∆2

min
) batches,

hence Ω(n+`
∆2

min
) samples that for n� ` exceeds the statistical

lower bound. Crucially, and much more significantly, its
run-time was exponential in the domain size `, rendering its
application, or even simulation, infeasible for even moderate
size domains.

The first polynomial-time, and practical, algorithm for
the problem was derived in (Jain & Orlitsky, 2019).
The algorithm efficiently finds and removes, or filters,
"outlier" adversarial batches that significantly perturb
the empirical distribution away from the underlying p,
and then estimates p as the empirical distribution of the
remaining batches. It achieves TV distance O(∆), where
∆ := ∆(β, n) := ∆min ·

√
ln(1/β) is essentially the

adversarial lower bound. To achieve this error they require
O(`/∆2) samples, matching the statistical lower bound
even when all samples are genuine.

1.3. Robust learning large and continuous distributions

Since many modern applications utilize very large, often
continuous, domains, even linear `/∆2 dependence of the
sample complexity on the domain size may be prohibitive.

Fortunately, common distributions often possess some struc-

ture that facilitates more efficient learning. One of the most
popular, and important structures is piecewise polynomials.

A distribution q over [a, b] is t-piecewise degree-d if for
some partition of [a, b] into t intervals I1, . . . ,It, and degree-
d polynomials r1, . . . ,rt, ∀j, x ∈ Ij , q(x) = rj(x). Let
Pt,d denote the set of all t-piecewise degree d distributions.

Piecewise-polynomials include important distribution fam-
ilies, e.g., Pt,0 for histograms and Pt,1 for piecewise-linear
distributions. They can also approximate any piecewise
continuous distribution. Importantly, with very low t
and d, they arbitrarily closely approximate many staple
one-dimensional distribution families, including Gaussians
and their mixtures, log-concave, low-modal, and monotone
hazard e.g., (Acharya et al., 2017).

For genuine, non-adversarial, samples, several works,
e.g., (Acharya et al., 2017; Hao et al., 2020), derived effi-
cient algorithms that learn t-piecewise degree-d polynomials
to TV distance ε, with optimalO(td/ε2) sample complexity.

Pt,d can be similarly defined as discrete distributions over
the interval domain [`]. (Chen et al., 2019) showed that
these distributions can be robustly learned from batches to
TV-distanceO(∆) with sample complexity only quasi-poly-
logarithmic in `. However their sample complexity was
quasi-polynomial in the other parameters t, d, batch size
n, and 1/β. And the algorithm’s computational complexity
was quasi-polynomial in these parameters and the domain
size `.

If computation time is no object, (Jain & Orlitsky, 2020)
presented an exponential-time estimator that achieves TV
distance O(∆) with Õ(td/∆2) samples, the same, up to
log logarithmic factors, as the minimum genuine samples
required.

To obtain polynomial-time algorithms with low sample com-
plexity, subsequent works adapted the filtering approach
of (Jain & Orlitsky, 2019). For example, (Chen et al., 2020)
achieved TV-distance O(∆) using Õ((td log `)2/∆2)
samples, and concurrently (Jain & Orlitsky, 2020) achieved
the same TV distance using Õ(td/∆3) samples, in
particular, removing the dependence of sample complexity
on the domain size, and for the first time, enabling robust
learning over infinite and continuous domains.

1.4. Overview of results and applications

Still, both Õ((td log `)2/∆2) and Õ(td/∆3) exceed the
O(td/∆2) optimal sample complexity of genuine samples,
leading (Chen et al., 2020) to raise the open question of
the optimal sample complexity of robust polynomial Pt,d
estimators.

This paper essentially answers this question. We derive
a filter-based polynomial-time algorithm that achieves TV
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distance O(∆) using only Õ(td/∆2) samples, that up to
poly-logarithmic factors matches the statistical lower bound
of even genuine samples. It therefore essentially determines
the sample complexity of robust and efficient learning of
piecewise polynomials to optimal accuracy. It also shows
that for this large and general class, robustness can be
achieved at the small cost of at most a poly-logarithmic
increase in the number of samples.

These results apply to both continuous and discreet dis-
tributions, and as described in Subsection 2.2 also learn
distributions that can be approximated by Pt,d, hence apply
to monotone, log-concave, Gaussian, Gaussian mixtures,
and other fundamental distribution classes.

While we present the results in terms of robust density esti-
mation, their distance to other fundamental learning staples
is minute. We demonstrate two such applications.

The first is to robust classification. We show that a simple
extension of the results yields the first sample-optimal,
polynomial-time, robust, classifier based on batched
training data. We demonstrate the method’s efficacy on
the fundamental and practical problem of interval-based
classification over the real line.

The second application is to the common top k or heavy hit-
ters problem that calls for finding the k highest-probability
elements in a distribution over a large domain. The
problem arises in many applications ranging from caching,
to recommendation systems, and vaccine design. We
show that in the batch setting, the top k elements can be
approximated robustly with sample complexity linear in
k regardless of the domain size.

1.5. Other related works

This paper builds on several long and impressive lines of
work, briefly summarized herein. Structured-distribution
estimation was studied in (Chan et al., 2014; O’Brien, 2016;
Diakonikolas, 2016; Ashtiani & Mehrabian, 2018; Acharya
et al., 2017; Hao et al., 2020). Robust-statistics was intro-
duced in the classical works of (Tukey, 1960; Huber, 1992).
Efficient algorithms for learning the mean and covariance
matrices of high-dimensional sub-gaussian and other dis-
tributions with bounded fourth moments in the presence
of the adversarial samples was studied in (Lai et al., 2016;
Diakonikolas et al., 2016). When more than half of the sam-
ples are adversarial, the underlying distribution cannot be
estimated well, and instead, (Charikar et al., 2017) returned
a small set of candidate distributions one of which is a good
approximate of the underlying distribution. For extensive
surveys on robust learning algorithms see (Steinhardt et al.,
2017; Diakonikolas et al., 2019).

The filtering approach to robust estimation was introduced
in (Diakonikolas et al., 2016), and used in several subse-

quent applications including high dimensional estimation
(Diakonikolas et al., 2017; 2018; Steinhardt et al., 2017;
Diakonikolas et al., 2019). These estimators applied to sin-
gle samples and learned in L2 distance. By contrast, the
results in this paper and those in (Jain & Orlitsky, 2019;
2020) address batch learning under TV-distance.

Several recent works considered related "multi-source" or
"collaborative" PAC learning scenarios. As in our setting,
they assume multiple sources, some genuine and others
possibly adversarial, where each source provides multi-
ple labeled samples, but some specific assumptions differ.
(Awasthi et al., 2017) considers only the realizable case and
allow actively acquisition of more data from the source of
choice. (Qiao, 2018) also focuses on realizable case where
sources share a common labelling function, but may have
different input distributions. (Konstantinov et al., 2020) con-
siders the setting that most closely resembles ours and the
more general prior work (Jain & Orlitsky, 2020), but they
do not present efficient algorithms and incur sub-optimal
O(
√
k∆) excess loss, higher than the O(∆) we achieve.

1.6. Organization of the paper

In the next section we describe the main results we obtain,
the techniques used to derive them, and some of their ap-
plications. In Section 3, we simplify the learning problem
to that of learning all k-element subsets of a large discrete
set. In Section 4 we describe an efficient filtering algorithm
for this problem. In Section 5 we describe the experiments.
The appendix contains most of the proofs.

2. Main techniques, results, and applications
While we would like to learn continuous distribution in TV
distance, as in (Chen et al., 2019; Jain & Orlitsky, 2020;
Chen et al., 2020), it will prove advantageous to first learn
them in a weaker (smaller) distance.

2.1. Density estimation in Ak distance

Recall that the TV distance between two real distributions q
and q′ is the maximum of |q(S)− q′(S)| over all Borel sets
S ⊆ R. This notion generalizes to arbitrary collections S
of real sets. The S-distance between q and q′ is

||q − q′||S := max
S∈S
|q(S)− q′(S)|.

For k ≥ 1, let Ak be the collection of all unions of at most
k real intervals. Clearly ||q−q′||Ak ≤ ||q−q′||TV for any q,
q′, with equality when the domain size ` ≤ k. Hence from
now on we assume ` > k, and can also be infinite.

One nice property of Ak distance is that with only genuine
samples, the empirical distribution itself, already estimates
any discrete or continuous distribution toAk distance ε with
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O(k/ε2) samples, which is also optimal.

To learn distributions in Ak distance, (Jain & Orlitsky,
2020) and (Chen et al., 2020) adapted the filtering algo-
rithm in (Jain & Orlitsky, 2019). First removing outlier
batches, and retaining batches whose empirical distribution
approximates p in Ak, rather than TV, distance.

However, both algorithms had suboptimal sample com-
plexity. For ∆ = ∆min

√
ln(1/β) = Θ(β

√
ln(1/β)/n),

essentially the best Ak distance achievable with n-sample
batches, they required Õ(k/∆3), and Õ((k log `)2/∆2)
samples, respectively.

Our fundamental contribution is an algorithm that learns any
discrete or continuous distribution to Ak-distance ∆ with
sample complexity Õ(k/∆2), optimal up to logarithmic
factors.

Theorem 1. For some constants c < 1/2 and C > 1, for
any k, β < c, δ < 1, n > Ω(logC(1/β)), and discrete or
continuous p, the algorithm uses m · n = Õ(k+log(1/δ)

∆2 )
total samples, and in time poly(k, n,m, β, δ) outputs an
estimate p̂ that with probability ≥ 1− δ satisfies

||p̂− p||Ak ≤ O(∆).

Remark. Theorem 1 achievesAK distanceO(∆), within
a small O(

√
log(1/β)) factor from the adversarial lower

bound for unlimited samples. The algorithm uses a poly-
logarithmic factor more samples than the min-max number
required for this distance even with strictly genuine data.
When the number of samples does not suffice to achieve the
minimal AK distance of O(∆), the algorithm can be mod-
ified to achieve AK distance Õ(

√
k/(mn)), again within

a poly-logarithmic factor from the statistical lower bound
as achieving AK distance ε requires at least k/ε2 genuine
samples. This result can be derived by augmenting Theo-
rem 1 with the steps taken in the derivation of Theorem 2
in (Jain & Orlitsky, 2019). A similar observation also holds
for all the applications stated next.

To derive the algorithm, we first reduce robust Ak learning
over any domain, even continuous, to robust learning
the probability of all 2k-element subsets of discrete
distributions over large domains. We propose a filtering
algorithm that learns these probabilities with optimal
sample complexity linear in k and independent of the
domain’s size. The new, simpler, formulation allows for a
tight SDP relaxation, that with more refined analysis yields
near optimal sample complexity.

The algorithm has several important implications. We apply
it to three robust-learning tasks using batched data: (i)
learning distributions in or near Pt,d, (ii) interval-based
binary classification, (iii) learning the top-k heavy hitters.
For all three problems we achieve the nearly best possible
TV distance O(∆) with the same sample complexity as

with genuine samples up to logarithmic factors.

2.2. Density estimation in TV distance

Theorem 1 described an optimal, robust, batch-based, al-
gorithm for learning any distribution over the reals in Ak
distance. Yet ||q − q′||Ak ≤ ||q − q′||TV for any q, q′. This
section extends the results to robustly learn in the more
standard, and stringent, TV-distance.

In Theorem 3 we present a batch-based algorithm that
robustly learns Pt,d and related distributions Pt,d, including
monotone, log-concave, Gaussian, Gaussian mixtures, and
other fundamental distributions.

For real distribution p, let optt,d(p) := infq∈Pt,d ||p−q||TV
be p’s TV-distance to its nearest distribution in Pt,d. We
wish to find a distribution p̂ such that for a small ε and
universal constant α, with probability ≥ 1− δ,

||p̂− p||TV ≤ α · optt,d(p) + ε.

This ensures that we learn distributions not just in Pt,d, but
also nearby. While not emphasized here, the α we derive
is roughly 3, and same as the best known factor for learning
Pt,d with only genuine samples.

To convert learning Ak- to TV-distance, we use a transfor-
mation that maps Ak neighborhoods of distributions in or
near Pt,d to TV -neighborhoods.
Theorem 2. (Acharya et al., 2017) For a constant α
(roughly 3) and any t, d, and ε, an algorithm they describe
runs in time poly(t, d, ε) and converts any real distribution
p′ to a distribution p′′ such that for every distribution p,
||p− p′′||TV ≤ α · optt,d(p) +O(||p− p′||At(d+1)

) + ε.

The theorem shows that if p is near Pt,d, then an At(d+1)

distance approximation of p can be converted to a
TV-distance approximation of p, hence it suffices to
approximate p in the weaker At(d+1) distance.

Combining Theorems 1 and 2 for k = t(d+ 1), we derive a
polynomial-time algorithm that robustly estimates any real
distribution nearly as well as its best Pt,d approximation,
using the optimal number of samples.
Theorem 3. For some constants α (roughly 3), c < 1/2,
and C > 1, for any t, d, β < c, δ < 1, n > Ω(logC( 1

β )),
and real or discrete distribution p, a simple combination
of the above algorithms uses m · n = Õ( t(d+1)+log(1/δ)

∆2 )
total samples, and in time poly(t, d, n,m, β, δ) outputs an
estimate p̂ that with probability ≥ 1− δ satisfies

||p̂− p||TV ≤ α · optt,d(p) +O(∆).

Note that the adversarial-batch lower bound on the approxi-
mation’s TV distance is ∆min = β/(2

√
2n), while the theo-

rem, like all other robust-learning results so far, applies to
a slightly higher TV distance ∆ = O(∆min

√
log(1/β)).

Based on evidence from Gaussian robust mean esti-
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mation, (Chen et al., 2020) suggested that the extra
O(
√

log(1/β)) factor may be necessary for any polyno-
mial time algorithm.

2.3. Application to interval-based classification

We now show that though presented for density estimation,
a simple extension of our results yields the first polynomial-
time, sample-optimal, robust batch classifier, and demon-
strate it on the fundamental and practical problem of interval-
based binary classification over the reals.

Without loss of generality let the observations be distributed
over [0, 1]. Each good batch therefore contain n labeled
samples from a distribution p over [0, 1]× {−1, 1}, while
the adversarial batches contain n arbitrary pairs.

Consider a hypothesis family of Boolean functions Hk :
[0, 1] → {−1, 1} whose decision regions, the inverse im-
ages of −1 and 1, consist of at most k-intervals. The loss of
classifier h ∈ Hk for any distribution q over [0, 1]×{−1, 1}
is rq(h) := Pr(X,Y )∼q[h(X) 6= Y ]. The optimal Hk clas-
sifier for a distribution q is hopt(q) := arg minh∈Hk rq(h),
and the optimal loss is ropt

q (Hk) := rq(h
opt(q)).

Given samples from an underlying distribution p, the goal
is to return a classifier h ∈ Hk whose excess loss rp(h)−
ropt
p (Hk) relative to the optimal loss is small.

Map any distribution q over [0, 1]×{−1, 1}, to a new distri-
bution q[−1,1] over [−1, 1], where q[−1,1](z) := Pr(X ·Y =
z) for (X,Y ) ∼ q. Note that there is a 1-1 correspondence
between q and q[−1,1], and that we can define Ak distance
over the new domain [−1, 1].

Lemma 6 in (Jain & Orlitsky, 2020) upper bounds the excess
loss when the optimal classifier for distribution q is applied
to distribution p in terms of Ak distance between p[−1,1]

and q[−1,1]. For completeness we present a short proof in
Appendix F.

Lemma 4. For any distributions p, q over [0, 1]× {−1, 1},
rp(h

opt(q))− ropt
p (Hk) ≤ 2||p[−1,1] − q[−1,1]||A2k

.

Furthermore, (Maass, 1994) derived an algorithm that for
any empirical distribution q over [0, 1]× {−1, 1} finds the
optimal classifier hopt(q) in polynomial time in the number
of samples and k. Then from the above Lemma to obtain
an excess loss O(∆) it suffices to estimate p[−1,1] to Ak
distance O(∆).

Theorem 1 provides an algorithm to learn any real
distribution to Ak distance O(∆) using Õ(k/∆2) samples,
implying the following.

Theorem 5. For some constants c < 1/2 and C > 1,
for any k, β < c, δ < 1, n > Ω(logC(1/β)), and
p over [0, 1] × {−1, 1}, the above algorithm uses
m · n = Õ(k+log(1/δ)

∆2 ) pairs, and in poly(k, n,m, β, δ)

time outputs a classification h∗ with excess loss
rp(h

∗)− ropt
p (Hk) ≤ O(∆).

Since the VC-dimension of the collectionHk is O(k), any
algorithm achieving excess loss ε requires Ω(k/ε2) sam-
ples, even with genuine data. Therefore, achieving excess
loss O(∆) requires Ω(k/∆2) samples, even with genuine
data, showing that our algorithm is sample optimal up to
logarithmic factors.

(Jain & Orlitsky, 2020) showed that the best possible excess
loss for this problem is Ω(∆min). They used a similar
reduction from Ak distance, to derive a polynomial-time
algorithm withO(∆) excess loss, but required a suboptimal
Õ(k/∆3) number of samples.

2.4. Application to the top k heavy hitters problem

Our last application is to the prevalent top k, or heavy hitters,
problem. Given samples from a distribution over a large
domain, we would like to find the k elements with highest
probability. This problem arises in numerous applications
including deciding which pages to store in a cache, results
to show on the front page of a web search, viruses to inoc-
ulate for in an influenza vaccine (Wikipedia, 2020; Center
for Disease Control, 2020), and products to recommend to
online shoppers.

As in the rest of the paper, we consider samples that arrive
in batches, some possibly corrupt or adversarial. For
example, some shoppers biasing consumer ratings towards
select products.

The top k elements clearly have the highest total probability
among all k-element subsets. However, this set cannot
always be found as some elements with nearly identical
probabilities cannot be identified. Instead, we therefore aim
to robustly find a k-element subset whose total probability
is maximal up to a O(∆) difference.

The results in this section apply to all discrete distributions,
that without loss of generality we assume range over the in-
tegers. They can be trivially extended to mixed distributions
over the reals as well.

A natural approach may be to learn p robustly to TV distance
∆ as in (Jain & Orlitsky, 2019), and return the k element
subset with highest estimated probability. However, this
approach would require number of samples proportional to
the domain size, while in a typical k-hitter problem, k is
significantly smaller.

Instead, we first estimate p to an Ak distance O(∆), which
from Theorem 1 can be done efficiently using Õ(k/∆2)
samples. We then return the k-element subset with highest
estimated probability. Since the collection Ak is a superset
of the collection of all subsets of size ≤ k, learning to an
Ak distance O(∆) implies learning the probability of all
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such subsets to accuracy O(∆). By the triangle inequality,
the k-element subset with highest estimated probability is
maximal up to a 2O(∆) probability difference.

3. Two simplifications of Ak-distance learning
3.1. Discretization using partitioning

Let B denote a collection of all m batches. Recall that
each batch has n samples. For s = n · m, let xs =
x1, x2, . . . ,xs ∈ R be the samples of B sorted in non-
decreasing order, and define p̄B to be the empirical dis-
tribution of xs.

Given samples xs, for j ≥ 1, let Pj = P j1 , P
j
2 , . . . ,P

j
k·j ,

partition R into k · j disjoint intervals, or parts, each con-
taining ≈ s

k·j samples, and given by

P ji :=


(−∞, xb s

k·j c] i = 1,

(xb (i−1)s
k·j c

, xb i·sk·j c] 2 ≤ i < k · j,

(xb (i−1)s
k·j c

,∞) i = k · j.

Let C(Pj) be the collection of real subsets formed by
unions of parts of Pj . Unions of consecutive parts of Pj
are themselves intervals in R that we call intervals over Pj .

Let Ak(Pj) be the collection of all unions of at most k
intervals over Pj . Clearly, Ak(Pj) ⊆ Ak, hence ||q −
q′||Ak(Pj) ≤ ||q − q′||Ak for any distributions q and q′.
Interestingly a reverse relation holds for the underlying
distribution p.

Lemma 6. For m · n = Ω̃(k/∆2), w.h.p., for all j ≥ 1
∆

and all distributions q over R,
||q − p||Ak ≤ ||q − p||Ak(Pj) +O(∆).

To prove the lemma we need the following results, proved
in Appendix F.

Lemma 7. For any subset S ∈ Ak, there are sets S′, S′′ ∈
Ak(Pj) such that S′ ⊆ S ⊆ S′′ and p̄B(S′′ \ S′) ≤ 2/j.

Lemma 8. For β < 1/2, m ·n = Ω̃(k+log 1/δ
∆2 ), with proba-

bility> 1−δ, for all S ∈ C(Pj), p(S) ≤ 2· p̄B(S)+O(∆).

Proof of Lemma 6. From Lemma 7 for any subset
S ∈ Ak, let S′, S′′ ∈ Ak(Pj) be the sets such
that S′ ⊆ S ⊆ S′′ and p̄B(S′′ \ S′) ≤ O(1/j).
Clearly S′′ \ S′ ⊆ C(Pj), then from Lemma 8, w.h.p.,
p(S′′ \S′) ≤ 2 · p̄B(S′′ \S′)+O(∆) ≤ O(1/j+∆). Then

p(S)− q(S) ≤ p(S)− q(S′)
= p(S′)− q(S′) + p(S \ S′)
≤ p(S′)− q(S′) + p(S′′ \ S′)
≤ ||q − p||Ak(Pj) +O(1/j + ∆).

A similar bound for q(S)− p(S) completes the proof. �

The lemma shows that to approximate p in Ak-distance it

suffices to estimate it inAk(Pj)-distance for any j = Ω( 1
∆ ).

The advantage of this reduction is that the set Ak(Pj) is
finite in contrast to Ak.

Given a distribution q on R, for any j ≥ 1 let qj ∈ Rk·j
be the discrete distribution over the indices of partition Pj ,
defined by qj(i) = q(P ji ) for i ∈ [k · j].

Map every subset S ∈ C(Pj) to the binary vector vS ∈
{0, 1}k·j whose ith coordinate indicates whether P ji ⊆ S.
Observe that for any distribution q over R, we can express
q(S) as the inner product qj · vS . Let V`k denotes the collec-
tion of binary vectors {0, 1}` with at most k runs of ones.
Since each interval over Pj corresponds to a single run of
ones, if S ∈ Ak(Pj), then vS ∈ Vk·jk ⊆ {0, 1}kj .

This discussion and Lemma 6 show that if for the discretized
versions of an estimator p̂ and underlying distribution p,
maxv∈Vk·jk

|p̂j ·v−pj ·v| ≤ O(∆) then ||p̂−p||Ak ≤ O(∆).

However, the collection Vk·jk is rather complicated and does
not have a tight convex relaxation. Previous relaxations of
Vk·jk (Chen et al., 2020) lead to sub-optimal sample com-
plexities. Instead, we show in the next section that this prob-
lem can be further reduced to robust learning of the probabil-
ities of all subsets of a fixed size 2k over a large discrete do-
main. In Section 4, we show that these probabilities can be
robustly estimated with optimal sample-complexity Õ(k).

3.2. Reduction to learning k element subset

Let I(Pj) ⊆ C(Pj) consist of all unions of at most 2k

parts of Pj . Let {0, 1}`k denote the set of binary vectors of
length ` with at most k ones. Observe that every subset in
S ∈ I(Pj) corresponds to a binary vector vS ∈ {0, 1}k·j2k .
Note that I(P2) = C(P2), as {0, 1}2k2k = {0, 1}2k.

We now show that to estimate p in Ak distance it suffices
find a q such that ∀j ∈ 2[log(1/∆)], the powers of two be-
tween 2 and 1/∆, the distances ||p− q||I(Pj) are small.

Theorem 9. For every m · n = Ω̃(k+log 1/δ
∆2 ) and distribu-

tion q over R, with probability > 1− δ,

||q − p||Ak ≤
∑

j∈2[log(1/∆)]

max
v∈{0,1}k·j2k

|qj · v − pj · v|+O(∆).

Note that for any j, the set I(Pj) ⊂ A2k, therefore the
sample complexity of estimating p in I(Pj) distance is at
most that of learning in A2k-distance.

Importantly, this reduces the more complicated set Vk·jk to
more manageable sets {0, 1}k·j2k , which, as we see in the
next section, have nice convex relaxations.

To prove Theorem 9, note a simple geometric observation,
proved in Appendix F.
Lemma 10. For any i ≥ 1, any interval over partition
P2i is the union of at-most 2 parts from each partition
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P2i ,P2i−1

, ...,P22

and one interval over P2.

The following result is a simple consequence.

Lemma 11. For any i ≥ 1, any subset in Ak(P2i)

is the union of one subset from each of I(P2i),
I(P2i−1

),...,I(P21

).

Proof of Lemma 11. Any subset in Ak(P2i) is a union of at
most k intervals over partition P2i , and Lemma 10 implies
that it can be expressed as a union of at-most 2k parts from
each partition P2i , . . . ,P22

and at most k intervals over P2.
The lemma follows as any union of intervals over P2 is in
C(P2), and C(P2) = I(P2). �

Proof of Theorem 9. For any distribution q over R,
Lemma 11 and the triangle inequality imply

||q − p||Ak(P2i ) = max
S∈Ak(P2i )

|q(S)− p(S)|

≤
i∑

`=1

max
S∈I(P2` )

|q(S)− p(S)|.

Letting i = blog2( 2
∆ )c and Lemma 6 complete the proof.�

4. Filtering algorithm for Ak distance
4.1. Notation

We begin with notation that helps describe the filtering al-
gorithm. Recall that B is the collection of m batches, each
consisting of ≥ n samples. Let BG denote the collection
of all good batches in B whose samples are drawn inde-
pendently from common unknown real distribution p. We
refer to the batches in remaining set BA := B \ BG as
adversarial. Note that |BA| ≤ βm.

Let µ̄b denote the empirical distribution of samples in batch
b ∈ B. Note that µ̄b is a collection of nDirac delta functions.
Let B′ denote any sub-collection of B. For a batch sub-
collection B′ ⊆ B, consider the average of the empirical
distributions of batches in B′.

p̄B′ ,
1

|B′|
∑
b∈B′

µ̄b.

Note that p̄B′ is also the empirical distribution of all samples
in batches of B′.

Recall that for any distribution q over R, qj ∈ Rk·j is the
discrete distribution induced over the the parts of partition
Pj , and let µ̄jb and p̄jB′ be the corresponding empirical dis-
tributions of batch b and batch collection B′, respectively.

For any discrete distribution, or normalized frequency vec-
tor, q, let MulN (q, n) denote the distribution of a normalized
multinomial frequency vector µ, where n · µ ∼ Mul(q, n).
Also, let C(q) := 1

n (Diag(q) − qqᵀ) be the covariance of
MulN (q, n).

Let µ1, . . . ,µm ∼ MulN (q, n) be m i.i.d. normalized fre-
quency vectors, and let µ̄ and V be the mean and covari-
ance of the µi’s. Intuitively speaking, both V and C(µ̄)
converge to the covariance of MulN (q, n), hence their dif-
ference tends to zero.

If the partition Pj was fixed beforehand, not after obtain-
ing the samples, then for b ∈ BG, the frequency vector
µ̄jb would follow a normalized multinomial distribution
MulN (pj , n). Even though the partition depends on the sam-
ples, the above multinomial-distribution intuition is still use-
ful as the distribution of µ̄jb is still essentially MulN (pj , n).

For any batch b, and sub-collection B′, let Cjb,B′ := (µ̄jb −
p̄jB′)(µ̄

j
b− p̄

j
B′)

ᵀ be the deviation of batch b relative to batch
collection B′.

The filtering statistics of a batch b w.r.t. a sub collection
B′, F jb,B′ = Cjb,B′ − C(p̄jB′) is the difference between
the deviation of batch b relative to batch collection B′ and
covariance matrix of a frequency vector µ generated us-
ing the distribution µ ∼ Mul(p̄jB′ , n). Finally, the filtering
statistics of a batch sub collection B′ ⊆ B is the aver-
age F jB′ := 1

|B′|
∑
b∈B′ F

j
b,B′ of the filtering scores of all

batches b ∈ B′ w.r.t. this sub collection B′.

Note that F jB′ = 1
|B′|

∑
b∈B′ C

j
b,B′ − C(p̄jB′) is the differ-

ence between the empirical covariance matrix of {µ̄jb}b∈B′ ,
and the covariance matrix of the normalized multinomial
distribution with parameter q = p̄jB′ , the mean of frequency
vectors µ̄jb in B′.

We note that this filtering statistics was first used in (Jain
& Orlitsky, 2019) to robustly learn discrete distributions in
TV distance, and later used in (Jain & Orlitsky, 2020; Chen
et al., 2020) for learning in Ak distance.

4.2. The filtering algorithm

If there were no adversarial batches, the empirical distri-
bution p̄B of all batches would estimate p in Ak distance.
However, the presence of adversarial outlier batches can
move the empirical distribution p̄B away from p.

We derive a filtering algorithm that finds a sub-collection
B′ of batches such that ∀ j ∈ 2[log(1/∆)]

max
v∈{0,1}k·j2k

|p̄jB′ · v − p
j · v| ≤ O( β

log2 j

√
log( 1

β )

n ) = O( ∆
log2 j

).

(1)
Note that

∑
j∈2[log(1/∆)]

1
log2 j

≤
∑
i

1
i2 = O(1) and ∆ =

β
√

(1/n) · log(1/β). Hence Theorem 9 implies that p̄B′
estimates p to Ak distance O(∆).

Inequality (1) characterizes B′ whose empirical distribution
approximates the underlying distribution p in Ak distance.
However, its definition involves the unknown p itself. It
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is naturally more convenient to work with inequalities that
does not include p.

One attempt at such an inequality is

max
v∈{0,1}k·j2k

〈vvᵀ, F jB′〉 ≤ O(
β log 1

β

n·log4 j
) = O( ∆2

β log4 j
).

While under mild conditions this inequality can be shown
to imply (1), it is still not easy to use as the set {vvᵀ :

v ∈ {0, 1}k·j2k } is not convex, hence it is unclear how to
efficiently optimize the left hand side.

To circumvent this difficulty, we define a semi-definite pro-
graming (SDP) relaxation of {vvᵀ : v ∈ {0, 1}k·j2k } as
Rj := {M ∈ Rk·j×k·j : M < 0,Mii ≤ 1,

∑
iMii ≤ 2k}.

This leads to the following B′ inequality, ∀ j ∈ 2[log(1/∆)],

max
M∈Rj

〈M,F jB′〉 ≤ O(
β log 1

β

n·log4 j
) = O( ∆2

β log4 j
). (2)

Lemma 16 in the appendix shows that any B′ with |BG ∩
B′| ≤ (1− 2β)|BG| that satisfies this inequality also satis-
fies Inequality (1).

Next, we describe a filtering algorithm that finds B′ ⊆ B
satisfying the new inequality.

To find such a batch sub-collection, we show that for all
B′ ⊆ B such that |BG∩B′| ≤ (1−2β)|BG| good batches,
the following conditions hold:

1. There is a computationally efficient algorithm for find-
ing argmax{〈M,F jB′〉 : M ∈ Rj}.

2. Given an M for which 〈M,F jB′〉 is large, we can
delete batches from B′ such that in expectation we
delete 3 times more adversarial batches than good.

3. If B′ has no adversarial batches, it satisfies (2).

The algorithm consists of a main part (Algorithm 1) that
sequentially over j ∈ 2[log(1/∆)] checks if Equation (2)
is satisfied for partition Pj . If not, it iteratively calls sub-
routine Batch-Deletion (Algorithm 2), to delete the appropri-
ate batches. Due to space limitations we present the pseudo
code for Algorithm 1 and Algorithm 2 in the appendix. Next,
we argue that the algorithm identifiesB′ for which (2) holds.

It starts with B′ = B, and sequentially over j ∈ 2[log(1/∆)],
perform the following recursive algorithm. Efficiently find
M maximizing 〈M,F jB′〉 (condition 1). Use M to delete
batches b ∈ B′ for which 〈M,Cjb,B′〉 is high. Continue
until Equation (2) holds for j. As the algorithm proceeds, so
long as Equation (2) fails to hold, Condition 2 ensures that
the algorithm removes more adversarial batches than good
batches (in expectation). Observe that without adversarial
batches, Equation (2) holds. Hence, at the latest, when all
adversarial batches are removed, the condition 3 ensures

Equation (2) will hold and algorithm will stop. The second
condition ensures that w.h.p. the algorithm does not remove
more than more than |BA|/2 = β(1− β)BG/2, which for
β ≤ 1/6 is ≤ 2βBG good batches, before removing all
adversarial batches.

Hence in the end B′ will satisfy Equation (2), and therefore
Equation (1). The empirical distribution p̄B′ achieves the
guarantee in Theorem 1.

In the appendix, we derive the above filtering conditions
by using the following concentration properties of good
batches.

Essential Properties of good batches: For all sub-collections
B′G ⊆ BG of good batches, j ∈ 2[log(1/∆)], and M ∈ Rj :

1. If |B′G| ≥ (1− 2β)|BG|, then

(a) 〈M, (p̄jB′G
− pj)⊗2〉 ≤ O

(
∆2

log4 j

)
,

(b) 〈M,F jB′G
〉 ≤ O

(
∆2

β log4 j

)
.

2. If |B′G| ≤ 2β|BG|, then∑
b∈B′G

〈M, (µ̄jb − pj)⊗2〉 ≤ O
(
|BG| · ∆2

β log4 j

)
.

The next theorem shows that w.h.p. the good batch collec-
tion BG satisfies the above properties.

Theorem 12. For some constants c < 1/2 and C > 1, for
any k, β < c, δ < 1, n > Ω(logC(1/β)), and discrete or
continuous p. If |BG|·n = Ω̃(k+log(1/δ)

∆2 ), then the essential
properties hold with probability ≥ 1− δ.

Crucially, the Theorem shows that for carefully chosen SDP
relaxation Rj of the set of 2k sparse binary vectors, the
filtering properties hold with only Ω̃(k) samples. By com-
parison, (Chen et al., 2020) used a convex relaxation of
binary vectors that are sparse in Haar basis, and for that
relaxation they showed Õ(k2) sample complexity.

Let Lji : {v ∈ Rj : ||v||∞ = 1, ||v||22 ≤ i}. The next
theorem shows that to prove that the above properties hold
for all elements in Rj it suffices to show that the property
holds for the following strictly smaller set {vvᵀ : v ∈ Lk·j2k }.
Theorem 13. Consider an n×n symmetric matrixA of real
numbers. Then there is a universal constant KG ≤ 1.7822
such that

max
M∈Rj

|〈M,A〉| ≤ 2 ·KG max
v∈Lk·j2k

|〈vvᵀ, A〉|.

We derive the above theorem in Appendix G using
Grothendieck’s inequality.

The set {vvᵀ : v ∈ Lk·j2k } is still infinite. Even its o(1) cover
can be shown to have size exponential in Ω̃(k · j). Taking
the union bound on the cover elements, as in the previous
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Figure 1. Learning distributions in Ak distance

works, would yield only a sub-optimal maxj Õ(k ·j/∆2) =

Õ(k/∆3) sample complexity. But applying a much more
nuanced and complex technique, we obtain the optimal
sample complexity Õ(k/∆2). Due to space constraint we
leave the details to Appendix G and I.

5. Experiments
We corroborate our results by performing simulations.

We present here experiments for our main technical contribu-
tion, robustly learning arbitrary distributions to Ak distance
using just O(k) samples, even when the domain size is
much larger than k. The simulations for learning continuous
distribution in TV distance are relegated to the appendix.

For discrete distributions we set the domain size ` to 500.
We select this rather large value to show that the algorithm
is practical for large domains, where exploiting the structure
becomes more important.

We show two plots, for both we set the fraction of adversarial
batches to a relatively high value β = 0.4 and the batch size
to a moderate value of 500. This shows that the algorithms
perform well even when corruption is high and batch size is
only moderate. Note that the algorithm’s performance will
improve if we increase the batch size or decrease β.

We compare the performance of our algorithm with three
other estimators. The first is a powerful oracle, who knows
which batches are good batches and uses their empirical dis-
tribution as its estimate. The performance of Oracle shows
the information theoretic limit in absence of adversarial
batches. The second estimator is the standard empirical
estimator that simply returns the empirical distribution of
all samples in B. The third estimator is the (Jain & Orlitsky,
2020) filtering-based estimator. We also considered the esti-
mator of (Chen et al., 2020), however for the large domain
size we test our algorithm on, the implementation of their
algorithm provided with their paper took several hours even
for a single run, while our estimator took on average less
than three minutes.

The simulations were performed on a laptop with a configu-
ration of 2.3 GHz Intel Core i7 CPU and 16 GB of RAM.
We took the average of 10 runs to plot the results. For both
plots we select p by generating a random vector in [0, 1]`

and normalizing it. We tried various adversarial distribution:
a randomly chosen distribution similar to p; a randomly gen-
erated k piecewise histogram; and their linear combination
with p. For each estimator we plot the results for worst
adversarial distribution.

In our first simulation we verify that our algorithm can learn
large discrete distributions in Ak distance, with a number
of samples only linear in k. We choose the a rather large
alphabet size ` = 500 and test for various values of k from
10, 20, 30, 40, 50. For each k we choose the number of
good batches to be k/β2. Our plots show that the error
achieved by our algorithm essentially remains the same as
k increases, demonstrating the linear dependence of the
sample complexity on k. Our algorithm nearly achieves
the performance of the oracle that enjoys the best statistical
guarantee, even for the non-adversarial setting. Note that
results in Ak learning imply the other results.

In the second plot we keep k constant and increase
number of good batches as fk/β2, for factor f =
[0.01, 0.25, 0.5, 0.75, 1, 1.5, 2, 5].
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