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Abstract
Direct loss minimization is a popular approach for
learning predictors over structured label spaces.
This approach is computationally appealing as it
replaces integration with optimization and allows
to propagate gradients in a deep net using loss-
perturbed prediction. Recently, this technique was
extended to generative models, by introducing
a randomized predictor that samples a structure
from a randomly perturbed score function. In this
work, we interpolate between these techniques by
learning the variance of randomized structured
predictors as well as their mean, in order to bal-
ance between the learned score function and the
randomized noise. We demonstrate empirically
the effectiveness of learning this balance in struc-
tured discrete spaces.

1. Introduction
Learning and inference in high-dimensional structured mod-
els drives much of the research in machine learning appli-
cations, from computer vision, natural language process-
ing, to computational chemistry. Examples include scene
understanding (Kendall et al., 2017) machine translation
(Wiseman and Rush, 2016) and molecular synthesis (Jin
et al., 2020). The learning process optimizes a score for
each of the exponentially many structures in order to best
fit the mapping between input and output in the training
data. While it is often computationally infeasible to evaluate
the loss of all exponentially many structures simultaneously
through sampling, it is often feasible to predict the highest
scoring structure efficiently in many structured settings.

Direct loss minimization is an appealing approach in dis-
criminative learning that allows to learn a structured model
by predicting the highest scoring structure (Hazan et al.,
2010; Keshet et al., 2011; Song et al., 2016). It allows to im-
prove the loss of the structured predictor by considering the
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gradients of two predicted structures: over the original loss
function and over a perturbed loss function. This approach
implicitly uses the data distribution to smooth the loss func-
tion between a training structure and a predicted structure,
thus propagating gradients through the maximal argument
of the predicted structure. Unfortunately, our access to the
data distribution is limited and we cannot reliably repre-
sent the intricate relation between a training instance and
its exponentially many structures. Recently, this framework
was extended to generative learning, where a random per-
turbation that follows the Gumbel distribution law allows
to sample from all possible structures (Lorberbom et al.,
2018). However, one cannot apply this generative learn-
ing approach effectively to discriminative learning, since
the random noise that is added in the generation process
interferes in predicting the best scoring structure.

In this work we combine these two approaches: we explic-
itly add random perturbation to each of the structures, in
order to reliably represent the intricate relation between the
a training instance and its exponentially many structures. To
balance between the learned score function and the added
random perturbation, we treat the score function as the mean
of the random perturbation, and learn its variance. This way
we are able to control the ratio between the signal (the score)
and the noise (the random perturbation) in discriminative
learning.

In summary, we make the following contributions:

1. We show that the uniqueness assumption of the pre-
dicted structure is a key element in the gradient step of
direct loss minimization, thus mathematically defining
its general position assumption.

2. We prove that random perturbation ensures unique
maximizers with probability one.

3. We identify that random perturbation might also serve
as noise that masks the score function signal. Hence,
we introduce a method for learning both the mean
and the variance of randomized predictors in the high-
dimensional structured label setting.

4. We show empirically the benefit of our approach in
two structured prediction problems.



Learning Randomly Perturbed Structured Predictors for Direct Loss Minimization

2. Related Work
Effective structured learning and inference over discrete,
combinatorial models is challenging and has been addressed
by different approaches.

Direct loss minimization is an effective approach in discrim-
inative learning that was devised to optimize non-convex
and non-smooth loss functions for linear structured predic-
tors (Hazan et al., 2010). Later it was extended to non-linear
models, including hidden Markov models and deep learners
(Keshet et al., 2011; Song et al., 2016). Our work extends
direct loss minimization by adding random noise to its struc-
tured predictor and learning its variance. Recently, the idea
of optimization that replaces sampling was extended to gen-
erative learning and reinforcement learning (Lorberbom
et al., 2018; 2019). Similar to our work, these works also
add random Gumbel perturbation and learn the mean of
their structured predictor. In contrast, our work also learns
the variance of the predictor, and our experimental valida-
tion shows it contributes to the performance of the predictor.
Also, our theoretical contribution sets the framework to han-
dle any structured predictor. Closely related is a method of
differentiating through marginal inference (Domke, 2010),
which shows that the gradient of the loss with respect to the
parameters can be computed based on inference over the
original parameters , and one over the parameters pertubed
in the direction of the loss derivative w.r.t. to the marginals.

Another line of work considers continuous relaxations of
the discrete structures. Paulus et al. (2020) have suggested a
unified framework for constructing structured relaxations of
combinatorial distributions, and have demonstrated it as a
generalization of the Gumbel-Softmax trick. Their method
builds upon differentiating through a convex program and
induces solutions found in the interior of the polytope rather
than on its faces, as a function of temperature-controlled
approximation. An efficient extension for sorting and rank-
ing differential operators has been suggested lately (Blondel
et al., 2020). SparseMAP (Niculae et al., 2018) is a sparse
structured inference framework which offers a continuous
relaxation. It finds sparse MAP solutions on the faces of
the marginal polytope. Recently, Berthet et al. (2020) sug-
gested stochastic smoothing to allow differentiation through
perturbed maximizers. In contrast, we do not use convex
smoothing techniques of the structured label for differentia-
tion.

Blackbox optimization (Pogancic et al., 2020) is a new
scheme to differentiate through argmax, which allows back-
ward pass through blackbox implementations of combinato-
rial solvers with linear objective functions.

Our work considers two popular structured prediction prob-
lems: bipartite matching and k-nearest neighbors. Learn-
ing matchings in bipartite graphs has been extensively re-

searched. When the bipartite graph is balanced, a matching
can be represented by a permutation, which is an extreme
point of the Birkhoff polytope, i.e., the set of all doubly
stochastic matrices. Many works have built upon Sinkhorn
normalization, an algorithm that maps a square matrix to a
doubly-stochastic matrix. The Sinkhorn normalization has
been incorporated in end-to-end learning algorithms in or-
der to obtain relaxed gradients for learning to rank (Adams
and Zemel, 2011), bipartite matching (Mena et al., 2018),
visual permutation learning (Santa Cruz et al., 2019), and
latent permutation inference (Linderman et al., 2018). This
continuous relaxation is inspired by the Gumbel-Softmax
trick (Jang et al., 2016; Maddison et al., 2017). Andriyash
et al. Andriyash et al. (2018) have later showed that the
Gumbel-Softmax estimator is biased and proposed a method
to reduce its bias. We also consider the problem of stochas-
tic maximization over the set of possible latent permutations.
However, we do not relax the use of bipartite matchings.
Instead, we directly optimize the bipartite matching predic-
tor and propagate gradients using the direct optimization
approach.

Our work also considers learning k-nearest neighbors, i.e.,
learning an embedding of points that encourages the k clos-
est points to the test point to have the correct label. The
body of work on sorting and specifically top-k operators in
an end-to-end learning framework is extensive. Grover et al.
(2019) have suggested a continuous relaxation of the output
of the sorting operator from permutation matrices to the set
of unimodal row-stochastic matrices, where every row sums
to one and has a distinct maximal argument. Plötz and Roth
(2018) developed a continuous deterministic relaxation that
maintains differentiability with respect to pairwise distances,
but retains the original k-nearest neighbors as the limit of a
temperature parameter approaching zero. Other approaches
are based on top-k subset sampling (Xie and Ermon, 2019;
Kool et al., 2019). Berrada et al. (2018) have introduce a
family of smoothed, temperature controlled loss functions
that are suited to top-k optimization. In contrast, our work
does not relax the objective but rather directly optimize the
top-k neighbors. Xie et al. (2020) have proposed a smoothed
approximation to the top-k operator as the solution of an
Entropic Optimal Transport problem.

3. Background
Learning to predict structured labels y ∈ Y of data instances
x ∈ X covers a wide range of problems. The structure
is incorporated into the label y = (y1, ..., yn) which may
refer to matchings, permutations, sequences, or other high-
dimensional objects. For any data instance x, its different
structures are scored by a parametrized function µw(x, y).
Discriminative learning aims to find a mapping from train-
ing data S = {(x1, y1), ..., (xm, ym)} to parameters w for
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which µw(x, y) assign high scores to structures y that de-
scribe well the data instance x. The parameters w are fit-
ted to minimize the loss `(·, ·) of the instance-label pairs
(x, y) ∈ S between the label y and the highest scoring struc-
ture of µw(x, y). While gradient methods are the most pop-
ular methods to learn the parameters w, they are notoriously
inefficient for learning discrete predictions. When consid-
ering discrete labels, the maximal argument of µw(x, y) is
a piecewise constant function of w, and its gradient with
respect to w is zero for almost any w. Consequently, various
smoothing techniques were proposed to propagate gradients
while learning to fit discrete structures.

Direct loss minimization approach aims at minimizing the
expected loss minw E(x,y)∼D`(y

∗
w, y) that incurs when the

training label y is different than the predicted label (Hazan
et al., 2010; Keshet et al., 2011; Song et al., 2016)

y∗w , arg max
ŷ

µw(x, ŷ) (1)

Direct loss minimization relies on a loss-perturbed predic-
tion

y∗w(ε) , arg max
ŷ
{µw(x, ŷ) + ε`(y, ŷ)}. (2)

It introduces an optimization-based gradient step for the
expected loss, namely ∇E(x,y)∼D`(y

∗
w, y) =

lim
ε→0

1

ε

(
E(x,y)∼D[∇wµw(x, y∗w(ε))−∇wµw(x, y∗w)]

)
. (3)

Unfortunately, the above gradient step does not hold for
any w, cf. (Hazan et al., 2010) Section 3.1. For exam-
ple, when w = 0 the gradient estimator in Equation (3)
may be zero for any (x, y) ∼ D regardless of the value of
∇E(x,y)∼D[`(y∗w, y)]. In Section 4.1 we define the math-
ematical condition for which Equation (3) represents the
gradient.

Recently, the direct loss minimization technique was ap-
plied to generative learning. In this setting, a random per-
turbation γ(y) is added to each configuration, (Lorberbom
et al., 2018). The technique allows to randomly gener-
ate structures y for any given x from a generative distri-
bution q(y|x) ∝ eµw(x,y). The generative learning ap-
proach relies on the connection between q(y|x) and the
Gumbel-max trick, namely Pγ∼g[y∗w,γ = y] ∝ eµw(x,y),
when y∗w,γ = arg maxŷ{µw(x, ŷ) + γ(ŷ)} and γ(y) are
i.i.d. random variables that follow the zero mean Gumbel
distribution law, which we denote by G. The corresponding
gradient step, in discriminative learning setting, takes the
form: ∇Eγ∼G [`(y∗w,γ , y)] =

lim
ε→0

1

ε

(
Eγ∼G [∇µw(x, y∗w,γ(ε))−∇µw(x, y∗w,γ)]

)
. (4)

Here, y∗w,γ(ε) = arg maxŷ{µw(x, ŷ) + γ(ŷ) + ε`(y, ŷ)}.
The advantage of using this framework in this setting is

that it effortlessly elevates the mathematical difficulties in
defining the gradient of the expected loss that exists in the
direct loss minimization framework. Unfortunately, the
random noise γ(y) that is injected to the optimization may
mask the signal µw(x, y) and thus get sub-optimal results
in discriminative learning. To enjoy the best of both worlds,
we propose to learn the proper amount of randomness to
add to the discriminative learner.

In this work we focus on learning discrete structured la-
bels y = (y1, ..., yn). A general score function µw(x, y)
cannot be computed efficiently for discrete structured la-
bels y = (y1, ..., yn) since the number of possible labels
is exponential in n and a general score function µw(x, y)
may assign a different value for each structure. Typically,
such score functions are decomposed to localized score
functions over small subsets α ⊂ {1, ..., n} of variables
where yα = (yi)i∈α. The score function takes the form:
µw(x, y) =

∑
α∈A µw,α(x, yα). The correspondence be-

tween the exponential family of distributions eµw(x,y) and
the Gumbel-max trick requires an independent random vari-
able γ(y) for each of the exponentially many structures
y = (y1, ., , , .yn). However, since we are focusing on dis-
criminative learning we are not limited by the Gumbel-max
trick. Instead, we can use fewer random variables in order
to learn the minimal amount of randomness to add. We limit
our predictors to low-dimensional independent random vari-
ables γ(y) =

∑n
i=1 γi(yi), where γi(yi) are independent

random variables for each index i = 1, ..., n and each yi. In
this setting, the number of random variables we are using is
linear in n, compared to exponential many random variables
in the Gubeml-max setting.

4. Learning Structured Predictors
In the following we present our main technical concept that
derives the gradient of an expected loss using two structured
predictions. In Section 4.1 we prove the gradient step of
an expected loss in the direct loss minimization framework.
We also deduce that it holds whenever y∗w(ε) is unique.
Subsequently, in Section 4.2, we show that low dimensional
random perturbations γi(yi) are able to implicitly enforce
uniqueness of the maximizing structure with probability
one. In Section 4.3, we present our approach that learns
the variance of the random perturbation, to ensure that the
random noise γi(yi) does not mask the signal µw(x, y).

4.1. Direct Loss Minimization

We rely on the expected max-value that is perturbed by the
loss function. This is the “prediction generating function"
in Lorberbom et al. (2018). In the direct loss minimization
setting, as defined in Equation (3), this function takes the
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form:

G(w, ε) = E(x,y)∼D

[
max
ŷ∈Y

{
µw(x, ŷ) + ε`(y, ŷ)

}]
(5)

The proof technique relies on the existence of the Hes-
sian of G(w, ε) and the main challenge is to show
that G(w, ε) is differentiable, i.e., there exists a vector
∇µw(x, y∗(ε)) such that for any direction u, its corre-
sponding directional derivative limh→0

G(w+hu,ε)−G(w,ε)
h

equals E(x,y)∼D[∇wµw(x, y∗(ε))>u]. The proof builds a
sequence of functions {gn(u)}∞n=1 that satisfies

lim
h→0

G(w + hu, ε)−G(w, ε)

h
= lim
n→∞

E(x,y)∼D[gn(u)]

(6)

E(x,y)∼D[ lim
n→∞

gn(u)] = E(x,y)∼D[∇wµw(x, y∗(ε))>u].

(7)
The functions gn(u) correspond to the loss perturbed pre-
diction y∗w(ε) through the quantity µw+ 1

nu
(x, ŷ) + ε`(y, ŷ).

The key idea we are exploiting is that there exists n0 such
that for any n ≥ n0 the maximal argument y∗

w+ 1
nu

(ε) does
not change.

Lemma 1. Assume µw(x, y) are continuous functions of w
and that their loss-perturbed maximal argument y∗

w+ 1
nu

(ε),
which is defined in Equation (2), is unique for any u and
n. Then there exists n0 such that for n ≥ n0 there holds
y∗
w+ 1

nu
(ε) = y∗w(ε).

Proof. Let fn(y) = µw+ 1
nu

(x, y) + ε`(y, ŷ) so that
y∗
w+ 1

nu
(ε) = arg maxy fn(y). Also, let f∞(y) =

µw(x, y)+ε`(y, ŷ) so that y∗w(ε) = arg maxy f∞(y). Since
fn is a continuous function of then maxy fn(y) is also a con-
tinuous function and limn→∞maxy fn(y) = maxy f∞(y).
Since maxy fn(y) = fn(y∗

w+ 1
nu

(ε)) is arbitrarily close
to maxy f∞(y) = f∞(y∗w(ε)), and y∗w(ε), y∗

w+ 1
nu

(ε) are
unique then for any n ≥ n0 these two arguments must
be the same, otherwise there is a δ > 0 for which
|f∞(y∗w(ε))− fn(y∗

w+ 1
nu

(ε))| ≥ δ.

This lemma relies on the discrete nature of the label space,
ensuring that the optimal label does not change in the vicin-
ity of y∗w(ε). This phenomena distinguishes the discrete
label setting from the continuous relaxations of the label
space (Domke, 2010; Berthet et al., 2020; Paulus et al.,
2020). These relaxations of the label space utilize their
continuities to differentiate through the label. In direct loss
minimization, one works directly with the discrete label
space which allows to control the maximal argument in
infinitesimal interval.

Theorem 1. Assume µw(x, y) is a smooth function of w
and that E(x,y)∼D‖∇wµw(x, y)‖ ≤ ∞. If the conditions

of Lemma 1 hold then the prediction generating function
G(w, ε), as defined in Equation (5), is differentiable and

∂G(w, ε)

∂ε
= E(x,y)∼D[`(y, y∗w)]. (8)

∂G(w, ε)

∂w
= E(x,y)∼D

[
∇µw(x, y∗(ε))

]
. (9)

Proof. Let fn(y) = µw+ 1
nu

(x, y) + ε`(y, ŷ) as in Lemma
1 and let

gn(u) ,
maxŷ∈Y fn(ŷ)−maxŷ∈Y f∞(ŷ)

1/n
(10)

We apply the dominated convergence theorem
on gn(u), so that limn→∞ E(x,y)∼D[gn(u)] =
E(x,y)∼D[limn→∞ gn(u)] in order to prove Equations (6,7).
We note that we may apply the dominated convergence the-
orem, since the conditions E(x,y)∼D‖∇wµw(x, y)‖ ≤ ∞
imply that the expected value of gn is finite (We recall that
fn is a measurable function, and note that since ŷ ∈ Y is an
element from a discrete set Y , then gn is also a measurable
function.).

From Lemma 1, the terms `(y, y∗(ε)) are identical in both
maxŷ∈Y fn(ŷ) and maxŷ∈Y f∞(ŷ). Therefore, they can-
cel out when computing the difference maxŷ∈Y fn(ŷ) −
maxŷ∈Y f∞(ŷ). Then, for n ≥ n0:

max
ŷ∈Y

fn(ŷ)−max
ŷ∈Y

f∞(ŷ) = µw+ 1
nu

(x, y∗(ε))−µw(x, y∗(ε))

and Equation (10) becomes:

gn(u) =
µw+ 1

nu
(x, y∗(ε))− µw(x, y∗(ε))

1/n
. (11)

Since µw(x, y∗(ε)) is smooth, then limn→∞ gn(u) is com-
posed of the derivatives of µw(x, y∗(ε)) in direction u,
namely, limn→∞ gn(u) = ∇wµw(x, y∗(ε))>u.

In the above theorem we assume that µw(x, y) is smooth,
namely it is infinitely differentiable. It suffices to assume
that µw(x, y) is twice differentiable, to ensure that G(w, ε)
is twice differentiable and hence its Hessian exists.
Corollary 1. Under the conditions of Theorem 1,
E(x,y)∼D[`(y, y∗w)] is differentiable and its derivative is de-
fined in Equation (3).

Proof. Since Theorem 1 holds for every direction u:

∂G(w, ε)

∂w
= E(x,y)∼D

[
∇wµw(x, y∗(ε))

]
.

Adding a derivative with respect to ε we get:

∂

∂ε

∂G(w, 0)

∂w
=

lim
ε→0

1

ε
E(x,y)∼D

[
∇wµw(x, y∗(ε))−∇wµw(x, y∗)

]
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The proof follows by showing that the gradient computation
is apparent in the Hessian, namely Equation (3) is attained
by the identity ∂w∂εG(w, 0) = ∂ε∂wG(w, 0). Now we turn
to show that ∂w∂εG(w, 0) = ∇wE(x,y)∼D[`(y, y∗w)]. Since
ε is a real valued number rather than a vector, we do not
need to consider the directional derivative, which greatly
simplifies the mathematical derivations. We define fn(ŷ) ,
µw(x, ŷ)+ 1

n`(y, ŷ) and follow the same derivation as above
to show that ∂εG(w, 0) = E(x,y)∼D[`(y, y∗w)]. Therefore
∂w∂εG(w, 0) = ∇wE(x,y)∼D[`(y, y∗w)].

We note the strong conditions that require the theorem
to hold: the loss-perturbed maximal argument y∗

w+ 1
nu

(ε),
which is defined in Equation (2), is unique for any u and n.
Unfortunately, this condition does not hold in some cases,
e.g., when w = 0. Next we show that with added random
perturbation we can ensure this holds with probability one.

4.2. Randomly Perturbing Structured Predictors

We turn to show that randomly perturbing the structured
signal µw(x, y) =

∑
α∈A µα(x, yα) with smooth random

noise γi(yi) allows us to implicitly enforce the unique-
ness condition. To account for the structured signal and
the low-dimensional random perturbation we define the set
y∗w,γ(ε) =

arg max
ŷ

{∑
α∈A

µw,α(x, ŷα) +

n∑
i=1

γi(ŷi) + ε`(y, ŷ)
}
. (12)

To reason about the set of maximal structures of y∗w,γ(ε),
we introduce the set of random perturbation Γε(y

′) which
consists of all random values γi(yi) for which y′ is their
maximal structure: Γε(y

′) =
γ :

∑
α∈A

µw,α(x, ŷ′α) +

n∑
i=1

γi(ŷ
′
i) + ε`(y, ŷ′)

≥

∀ŷ
∑
α∈A

µw,α(x, ŷα) +

n∑
i=1

γi(ŷi) + ε`(y, ŷ)


(13)

Whenever the set in Equation (12) consists of more than
a single structure, say y′ and y′′, their corresponding sets
Γε(y

′) and Γε(y
′′) intersect. We now prove that this happens

with zero probability whenever γi(yi) are i.i.d. and with a
smooth probability density function.

Theorem 2. Let γi(yi) be i.i.d. random variables with a
smooth probability density function. Then the set of maximal
arguments in Equation (12) consists of a single structure
with probability one.

Proof. Consider there is an event (a set) of γ for which
the set of maximal arguments consists of more than one

structure, e.g., y′ and y′′ and denote it by Ω. Clearly,
Ω ⊂ Γε(y

′) ∩ Γε(y
′′). Let β be the set of indexes

for which y′i 6= y′′i . Since for any γ ∈ Ω it holds
that

∑
α∈A µw,α(x, ŷ′α) +

∑n
i=1 γi(ŷ

′
i) + ε`(y, ŷ′) =∑

α∈A µw,α(x, ŷ′′α) +
∑n
i=1 γi(ŷ

′′
i ) + ε`(y, ŷ′′), then Ω ⊂

{γ :
∑
i∈β γi(ŷ

′
i) − γi(ŷ

′′
i ) = c} for the constant c =

µw,α(x, ŷ′′α) − µw,α(x, ŷ′α) + ε`(y, ŷ′′) − ε`(y, ŷ′). Since
γi(ŷ

′
i) − γi(ŷ

′′
i ) are independent random variables with

smooth probability density function, then their sum also
has a smooth probability density function. Consequently
the probability that

∑
i∈β γi(ŷ

′
i)− γi(ŷ′′i ) = c is zero, and

thus Pγ [Ω] = 0.

We note that the uniqueness of the maximal structure of
y∗w,γ can be proved by Theorem 2 as well, in which case
the constant c = µw,α(x, ŷ′′α) − µw,α(x, ŷ′α). It follows
from the above theorem that adding random perturbations
solves the uniqueness problem in direct loss gradient rule.
Unfortunately, as we show in our experimental evaluation,
the random perturbation that smooths the objective can also
serve as noise that masks the signal µw(x, y). To address
this caveat, we propose to learn the magnitude, i.e., the
variance, of this noise explicitly.

4.3. Learning The Variance Of Randomly Perturbed
Structured Predictors

We propose to learn the magnitude of the random pertur-
bation γi(yi). In our setting it translates to the prediction
y∗w,γ =

arg max
ŷ

{∑
α∈A

µu,α(x, ŷα) +

n∑
i=1

σv(x)γi(ŷi)
}

(14)

w = (u, v) are the learned parameters. In this case we
treat

∑
α∈A µu,α(x, ŷα) +

∑n
i=1 σv(x)γi(ŷi) as a random

variable whose mean is learned using µu,α(x, ŷα) and its
variance is learned using σv(x). As such, we consider a
strictly positive σv(x) both theoretically and practically.
We are learning the same variance σv(x) for all random
assignments γi(yi). We do so to learn to balance the overall
noise

∑n
i=1 γi(yi) with the signal

∑
α µu,α(x, ŷα). The

learned variance σv(x) allows us to interpolate between
the original direct loss setting, where σv(x) = 0, to the
generative learning setting, where σv(x) = 1.

Corollary 2. Assume µu(x, y), σv(x) are smooth functions
of w = (u, v). Let γi(yi) be i.i.d. random variables with a
smooth probability density function. Let G(w, ε) =

Eγ∼G
[

max
ŷ∈Y

{∑
α∈A

µu,α(x, ŷα)+

n∑
i=1

σv(x)γi(ŷi)+ε`(y, ŷ)
}]
.

(15)
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(a) A randomly perturbed structured prediction illustration (b) The max predictor probability
distribution for a low σ(x).

(c) The max predictor probability
distribution for a high σ(x).

Figure 1. The randomized predictor y∗w,γ is the structure that maximizes the randomly perturbed scoring function among all possible
structures in Y (Figure 1a). As σ(x) decreases, the expected max predictor approaches the expected value of a categorical random
variable (Figure 1b). And vice versa, as σ(x) increases, the expected max predictor converges to a uniform distribution over the discrete
structures (Figure 1c).

Then G(w, ε) is a smooth function and ∂
∂uEγ [`(y, y∗w,γ)] =

lim
ε→0

1

ε
Eγ
[ ∑
α∈A

(∇µu,α(x, y∗α(ε))−∇µu,α(x, y∗α))
]

(16)

and ∂
∂vEγ [`(y, y∗w,γ)] =

lim
ε→0

1

ε
Eγ
[ n∑
i=1

∇σv(x)
(
γi(y

∗
i (ε))− γi(y∗i )

)]
. (17)

We prove Corollary 2 in the supplementary material.

The random perturbation induces a probability distribution
over structures y. As σ increases, the expected max predic-
tor tends to a uniform distribution over the discrete struc-
tures. Similarly, as σ decreases, the expected max predictor
approaches a deterministic decision over the discrete struc-
tures. This idea is illustrated in Figure 1.

Interestingly, whenever the random variables γ(y) follow
the zero mean Gumbel distribution law, the random vari-
able µu(x, ŷ) + σv(x)γ(ŷ) follows the Gumbel distribu-
tion law with mean µu(x, y) and variance σ2π2/6. In this
case, the variance turns to be the temperature of the corre-
sponding Gibbs distribution: Pγ∼G [arg maxŷ{µu(x, ŷ) +
σv(x)γ(ŷ)} = y] ∝ eµu(x,y)/σv(x), see proof in the supple-
mentary material. Our framework thus also allows to learn
the temperature of the Gumbel-max trick instead of tuning
it as a hyper-parameter.

5. Experimental Validation
In the following we validate the advantage of our approach
(referred to as ‘Direct Stochastic Learning’) in two popular
structured prediction problems: bipartite matching and k-
nearest neighbors. We compare to direct loss minimization
(Hazan et al., 2010), which can be interpreted as setting the
noise variance to zero (referred to as Direct σ̄ = 0), as well
as to Lorberbom et al. (2018), in which the noise variance
is set to one (referred to as Direct σ̄ = 1). Additionally, we

compare to state-of-the-art in neural sorting (Grover et al.,
2019; Xie and Ermon, 2019) and bipartite matching (Mena
et al., 2018). Further architectural and training details are
described in the supplementary material.

In all direct loss based experiments we set a negative ε.
When ε > 0 the loss-pertubed label y∗w(ε) chooses a con-
figuration with a higher loss and performs a gradient de-
scent step on ∇wµw(x, y∗w(ε)), i.e., it moves the parame-
ters w to reduce the score function for the high-loss label
µw(x, y∗w(ε)). When ε < 0 the loss-perturbed label y∗w(ε)
chooses a configuration with a lower loss and performs a gra-
dient descent step on −∇wµw(x, y∗w(ε)), i.e., it increases
the score function for the low-loss label µw(x, y∗w(ε)). This
choice is especially important in structured prediction, when
there might be exponentially many structures with high loss
and only few structures with low loss. This observation
already appears in the original direct loss work (Hazan et al.,
2010) (see last paragraph of Section 2).

5.1. Bipartite Matchings

We follow the problem setting, architecture µu,α(x, yα) and
loss function `(y, y∗) of Mena et al. (2018) for learning
bipartite matching, and replace the Gumbel-Sinkhorn opera-
tion with our gradient step, see Figure 2.

In this experiment each training example (x, y) ∈ S con-
sists of an input vector x ∈ Rd of d numbers drawn in-
dependently from the uniform distribution over the [0, 1]

interval. The structured label y, y ∈ {0, 1}d2 , is a bipartite
matching between the elements of x to the elements of the
sorted vector of x. Formally, yij = 1 if xi = sort(x)j and
zero otherwise. Here we set α to be the pair of indexes
i, j = 1, . . . , d that corresponds to the desired bipartite
matching. The network learns a real valued number for
each (i, j)-th entry, namely, µu,ij(x, yij) and our gradient
update rule in Equation (16) replaces the Gumbel-Sinkhorn
operator of Mena et al. (2018). We note that y∗w,γ can be
computed efficiently using any max-matching algorithm,
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Figure 2. Architecture for learning bipartite matchings: The expectancy over Gumbel noise of the loss is derived w.r.t. the parameters u of
the signal and w.r.t. the parameters v of the variance controller σ directly (Equations 16,17 respectively). The network µ has a first fully
connected layer that links the sets of samples to an intermediate representation (with 32 neurons), and a second (fully connected) layer
that turns those representations into batches of latent permutation matrices of dimension d by d each. It has the same architecture as the
equivalent experiment by Mena et al. (2018). The network σ has a single layer connecting input sample sequences to a single output
which is then activated by a softplus activation. We chose such an activation to enforce a positive σ value.

which maximizes a linear function over the set of possible
matching Y : y∗w,γ =

arg max
ŷ∈Y

d∑
ij=1

µu,ij(x, ŷij) +

d∑
ij=1

σv(x)γij(ŷij) (18)

Our gradient computation also requires the loss perturbed
predictor y∗w,γ(ε), which takes into account the quadratic
loss function:

`(y, ŷ) =

d∑
i=1

 d∑
j=1

xjyij −
d∑
j=1

xj ŷij

2

Note that this loss function is not smooth, as it is a function
of binary elements, i.e. the squared differences between one
hot vectors. Seemingly, the quadratic loss function does not
decompose along the score structure µu,ij(x, yij), therefore
it is challenging to recover the loss-perturbed prediction
efficiently. Instead, we use the fact that y2

ij = yij for yij ∈
{0, 1} and represent the loss as a linear function over the
set of all matchings: `(y, ŷ) = t +

∑d
j=1 tij ŷij , with t =∑d

ij=1 x
2
jyij and tij =

∑d
i=1 x

2
j (1−2yij). (Further details

in the supplementary material). With this, we are able to
recover the loss-perturbed predictor y∗w,γ(ε) with the same
computational complexity as y∗w,γ , i.e., using linear solver
over maximum matching:

y∗w,γ(ε) = arg max
ŷ∈Y

d∑
ij=1

µu,ij(x, ŷij) (19)

+

d∑
ij=1

σv(x)γij(ŷij) + ε

d∑
ij=1

tij ŷij .

Note that we may omit t from the optimization since it does
not impact the maximal argument.

In our experimental validation we found that negative ε
works the best. In this case, when yij = 0 the corresponding
embedding potential µu,ij(x, yij) is perturbed by −|ε|x2

j ,
while when yij = 1 it is increased by |ε|x2

j . Doing so
incrementally pushes y∗w,γ(ε) towards predicting the ground
truth permutation, which is aligned with our intuition of
the towards-best direct loss minimization. The dynamics
of our method as a function of matching dimension under
a positive versus a negative ε is illustrated in Figure 3. In
Figure 3a we plot the loss as a function of training epochs
with varying size of matching dimension d. While the loss
is similar for ε > 0 and ε < 0 when d = 10, this changes
for d = 100. As such, the percentage of correctly sorted
input entries of y∗w and y∗(ε) greatly differs when d = 100
for different ε. Importantly, when learning with ε > 0 there
are less than 40% correct entries in y∗w (Figure 3c), while
when learning with ε < 0 there are at least 90% correct
entries in y∗w (Figure 3b).

Mena et al. (2018) have introduced two evaluation measures:
the proportion of sequences where there was at least one
error (Prop. Any Wrong), and the overall proportion of
samples assigned to a wrong position (Prop. Wrong). They
report the best achieved Prop. Any Wrong measure over
an unspecified number of trials. To indicate robustness, we
extend these measures to the following: Percentage of zero
Prop. Any Wrong sequences, as well as Average and STD
of Prop. Wrong, which are calculated over a number of
training and testing repetitions.

We follow the Sorting Numbers experiment protocol of
Mena et al. (2018) and use the code released by the au-
thors, to perform 20 Sinkhorn iterations and 10 different
reconstruction for each batch sample. Also, the training
set consists of 10 random sequences of length d and a test
set that consists of a single sequence of the same length d.
At test time, random noise is not added to the learned sig-
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(a) loss with negative and positive ε (b) y∗ and y∗(ε) with negative ε (c) y∗ and y∗(ε) with positive ε

Figure 3. The effect of the sign of ε, as a function of dimension during training. We plot the percentage of correctly sorted input entries of
the predictor (y∗) and the loss-augmented predictor (y∗(ε)) as well as the loss. While the loss is similar for negative and positive ε when
d = 10, this changes for d = 100 (Figure 3a). As such, the percentage of correctly sorted input entries of y∗w and y∗(ε) greatly differs
when d = 100 for different ε. Importantly, when learning with ε > 0 there are less than 40% correct entries in y∗w (Figure 3c), while
when learning with ε < 0 there are at least 90% correct entries in y∗w (Figure 3b).

nal µu,ij(x, yij). The results in Table 1 show the measures
calculated over 200 repetitions of training and testing.

One can see that direct loss minimization performs better
than Gumbel-Sinkhorn, and the gap is larger for longer
sequences. One can also see that learning the variance
of the noise improves the performance of the structured
predictor in all three measures, when compared to direct
loss minimization (Hazan et al., 2010), in which the variance
is set to zero, as well as to (Lorberbom et al., 2018), in which
the noise variance is set to one.

Running time comparison is given in Ta-
ble 2. Our code may be found in https:
//github.com/HeddaCohenIndelman/
PerturbedStructuredPredictorsDirect.

5.2. k-Nearest Neighbors For Image Classification

We follow the problem setting and architecture µu,α(x, yα)
and loss function `(y, y∗) of Grover et al. (2019) for learn-
ing the k-nearest neighbors (kNN) classier. We replace
the unimodal row stochastic matrix operation with our gra-
dient step to directly minimize the distance to the clos-
est k candidates, see Figure 4. In this experiment each
training example (x, y) ∈ S consists of an input vector
x = (x1, ..., xn, xq) of n candidate images x1, ..., xn and
a single query image xq; its corresponding structured la-
bel y = (y1, ..., yn) . The structured label y ∈ {0, 1}n
points to the k candidate images with minimum Euclidean
distance to the query image, i.e.,

∑n
i=1 yi = k. Here

we set α to be the index i = 1, . . . , n that correspond
to the top k candidate images. µu,i(x, yi) is the negative
distance between the embedding hu(·) of the i-th candi-
date image and that of the query image: µu,i(x, yi) =
−‖hu(xi)− hu(xq)‖. Our prediction y∗u,γ yields the top-k
images having the minimum Euclidean distance in embed-
ding space (equivalently, the maximum negative Euclidean
distance) y∗u,k,γ = arg maxŷ∈Y {µu(x, ŷ) + γ(ŷ)}. Here,

Table 1. Bipartite Matching Evaluation Measures.
Results show Percentage of zero Prop. Any Wrong sequences of
test set (i.e perfect sorting). Average and STD of Prop. Wrong in
parenthesis. We show the effect of learning signal-to-noise ratio
method ‘Direct Stochastic Learning’ in comparison with ‘Direct
σ̄ = 0’ referring to direct loss minimization (Hazan et al., 2010),
which can be interpreted as setting the noise variance to zero,
’Direct σ̄ = 1’ referring to (Lorberbom et al., 2018), in which the
noise variance is set to one, and ‘Gumbel-Sinkhorn’ referring to
(Mena et al., 2018). Training set setting of 10 random sequences
of length d and a test set of a single sequence of length d. Results
are calculated from 200 training and testing repetitions.

d Direct
σ̄ = 0

Direct
σ̄ = 1

Direct Stochastic
Learning Gumbel-Sinkhorn

5 98.5%
(0.6%±4.9%)

100%
(0%±0%)

100%
(0%±0%)

100%
(0%±0%)

10 97%
(0.6%±3.4%)

100%
(0%±0%)

100%
(0%±0%)

100%
(0%±0%)

25 89.5%
(0.9%±2.8%)

97.5%
(0.3%±1.7%)

97.5%
(0.3%±1.6%)

87.5%
(1%±3%)

40 84.5%
(1.2%±4.5%)

90.5%
(0.6%±2.2%)

91.6%
(0.5%±1.6%)

83.5%
(1%±5%)

60 82%
(0.9%±2.6%)

80.0%
(0.9%±2.2%)

83.3%
(0.7%±1.8%)

21%
(5%±9%)

100 74.9%
(1.4%±6.9%)

68.5%
(1.2%±2.4%)

76.8%
(0.9%±2.1%)

0%
(11.3%±11.2%)

Table 2. Comparison of average epoch time (seconds) of the bipar-
tite matching experiment, per selected d

d Direct Stochastic Learning Gumbel-Sinkhorn
10 0.247 0.288
40 0.252 0.294
100 0.304 0.306

we set Y to be the set of all structures y ∈ {0, 1}n satisfying∑n
i=1 yi = k. The loss function is a linear function of its la-

bels: `(y, ŷ) = −
∑n
i=1 ‖xi−xq‖yiŷi. Our gradient update

rule in Equation (16) replaces the unimodal row stochastic
construction operator of Grover et al. (2019). We note that
y∗w,γ and y∗w,γ(ε) can be computed efficiently by extracting

https://github.com/HeddaCohenIndelman/PerturbedStructuredPredictorsDirect
https://github.com/HeddaCohenIndelman/PerturbedStructuredPredictorsDirect
https://github.com/HeddaCohenIndelman/PerturbedStructuredPredictorsDirect
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Figure 4. k-nn schematic architecture. The expectancy over Gumbel noise of the loss is derived w.r.t. the parameters u of the signal and
w.r.t. the parameters v of the variance controller σ directly (Equations 16,17 respectively). We deployed the same distance embedding
networks as the ones deployed by Grover et al. (2019) (Details in the supplementary material). Our prediction y∗u,γ yields the top-k
images having the minimum Euclidean distance in embedding space (equivalently, the maximum negative Euclidean distance). The
network σ output is activated by a softplus activation in order to enforce a positive σ value.

the top k elements over n elements.

Table 3. Test-Set Classification Average Accuracy, Per k.
We show the effect of our ‘Direct Stochastic Learning’ method for
learning signal-to-noise ratio in comparison with: ‘Direct σ̄ = 0’
referring to direct loss minimization without random noise (Hazan
et al., 2010), ‘Direct σ̄ = 1’ referring to Lorberbom et al. (2018),
in which the noise variance is set to one, ‘NeuralSort’ referring to
Grover et al. (2019), and ‘RelaxSubSample’ referring to Xie and
Ermon (2019) who quote results for k = 5 only.

MNIST
k=1 k=3 k=5 k=9

Direct σ̄ = 0 99.1% 99.2% 99.3% 99.2%
Direct σ̄ = 1 16% 53.84% 14.25% 41.53%
Direct Stochastic Learning 99.34% 99.4% 99.4% 99.34%
NeuralSort deterministic 99.2% 99.5% 99.3% 99.3%
NeuralSort stochastic 99.1% 99.3% 99.4% 99.4%
RelaxSubSample 99.3%

Fashion-MNIST
k=1 k=3 k=5 k=9

Direct σ̄ = 0 89.8% 93.2% 93.5% 93.7%
Direct σ̄ = 1 92.5% 93.4% 93.3% 93.2%
Direct Stochastic Learning 92.6% 93.3% 94% 93.7%
NeuralSort deterministic 92.6% 93.2% 93.5% 93%
NeuralSort stochastic 92.2% 93.1% 93.3% 93.4%
RelaxSubSample 93.6%

CIFAR-10
k=1 k=3 k=5 k=9

Direct σ̄ = 0 24.9% 27% 39.6% 39.9%
Direct σ̄ = 1 23.1% 89.95% 90.85% 91.6%
Direct Stochastic Learning 29.6% 90.7% 91.25% 91.7%
NeuralSort deterministic 88.7% 90.0% 90.2% 90.7%
NeuralSort stochastic 85.1% 87.8% 88.0% 89.5%
RelaxSubSample 90.1%

We report the classification accuracies on the standard test
sets in Table 3. For MNIST and Fashion-MNIST, our
method matched or outperformed ‘NeuralSort’ (Grover
et al., 2019) and ‘RelaxSubSample’ (Xie and Ermon, 2019),
in all except k = 3, 9 in MNIST. For CIFAR-10, our method
outperformed ‘NeuralSort’ and ‘RelaxSubSample’, in all
except k=1, for which disappointing results are attained by
all direct loss based methods. We note that ‘Direct σ̄ = 0’

seems to suffer from very low average accuracy on CIFAR-
10 dataset. Additionally, ‘Direct σ̄ = 1’ suffer from very
low average accuracy on MNIST dataset. It is evident that
our method stabilizes the performance on all datasets.

Running time comparison for k = 3 is given in Table 4.
Performance is robust to k in both methods.

Table 4. Comparison of average epoch running time (seconds) of
the k-nn experiment. Results are for k = 3.

Direct Stochastic Learning NeuralSort Stochastic
MNIST 28.3 14.4

Fashion-MNIST 198.6 328.6
CIFAR-10 220. 337.6

6. Discussion And Future Work
In this work, we learn the mean and the variance of struc-
tured predictors, while directly minimizing their loss. Our
work extends direct loss minimization as it explicitly adds
random perturbation to the prediction process to better con-
trol the relation between data instance and its exponentially
many possible structures. Our work also extends direct op-
timization through the arg max in generative learning as it
adds a variance term to better balance the learned signal with
the perturbed noise. The experiments validate the benefit of
our approach.

The structured distributions that are implied from our
method are different than the standard Gibbs distribution,
when the localized score functions are over subsets of vari-
ables. The exact relation between these distributions and the
role of the Gumbel distribution law in the structured setting
is an open problem. There are also optimization-related
questions that arise from our work, such as exploring the
role of ε and its impact on the convergence of the algorithm.
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