
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

Alexander Immer 1 2 Matthias Bauer † 3 4 Vincent Fortuin 1 Gunnar Rätsch 1 2 Mohammad Emtiyaz Khan 5

Abstract
Marginal-likelihood based model-selection, even
though promising, is rarely used in deep learning
due to estimation difficulties. Instead, most ap-
proaches rely on validation data, which may not
be readily available. In this work, we present a
scalable marginal-likelihood estimation method
to select both hyperparameters and network archi-
tectures, based on the training data alone. Some
hyperparameters can be estimated online during
training, simplifying the procedure. Our marginal-
likelihood estimate is based on Laplace’s method
and Gauss-Newton approximations to the Hessian,
and it outperforms cross-validation and manual-
tuning on standard regression and image classi-
fication datasets, especially in terms of calibra-
tion and out-of-distribution detection. Our work
shows that marginal likelihoods can improve gen-
eralization and be useful when validation data is
unavailable (e.g., in nonstationary settings).

1. Introduction
Bayesian deep learning has made great strides on approx-
imate inference but little has been done regarding model
selection. Bayesian predictive distributions have been used
to improve calibration, detect out-of-distribution data, and
sometimes even improve the accuracy (Osawa et al., 2019;
Maddox et al., 2019). To that end, a wide variety of scalable
approximate inference methods have been explored, includ-
ing Laplace’s method (Ritter et al., 2018), variational ap-
proximations (Blundell et al., 2015; Khan et al., 2018), sam-
pling methods (Wenzel et al., 2020), and ensembles (Laksh-
minarayanan et al., 2017). Still, there is not much work on
model-selection, even though it was one of the original mo-
tivations for Bayesian neural networks (Buntine & Weigend,
1991; MacKay, 1995; Neal, 1995).
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3 layers, 5221 params
MargLik = −88

1 layer, 151 params
MargLik = −110

Figure 1: A deeper 3-layer network (left) has a better
marginal likelihood compared to a 1-layer network (right).
This agrees with the fit where the deeper network appears to
explain the ‘sinusoidal’ trend better. We optimize the prior
and noise variance on marginal likelihood estimates during
training (see Alg. 1 and Sec. 4.1 for details).

Bayesian model-selection uses the marginal likelihood—the
normalizing constant of the posterior distribution—which
can be estimated solely from training data and without any
validation data. Also known as empirical Bayes (Robbins,
1955) or type-II maximum likelihood learning (Rasmussen
& Williams, 2006), it is closely related to Occam’s razor
(Jefferys & Berger, 1992; Rasmussen & Ghahramani, 2001;
MacKay, 2003). It can also be seen as a form of cross-
validation based on the training data (Fong & Holmes,
2020), and it is commonly used in Gaussian processes (GPs)
and Deep GPs to select hyperparameters (Rasmussen &
Williams, 2006; Damianou & Lawrence, 2013) or even learn
invariances from data (van der Wilk et al., 2018; Dutordoir
et al., 2020). However, it is rarely used in deep learning
because it is challenging to estimate (Llorente et al., 2020).

The marginal likelihood is intractable for even medium-
sized neural-network models, and most Bayesian deep learn-
ing approaches simply use validation data (Khan et al., 2018;
Zhang et al., 2018; Osawa et al., 2019). Originally, MacKay
(1995) advocated the use of Laplace’s method for small-
scale neural networks. This requires Hessian computations
and does not scale to large problems. Recently, Khan et al.
(2019) showed promising results for small-scale regression
using a GP viewpoint of deep networks, and Lyle et al.
(2020) used infinite-width neural networks (also GPs).

The goal of this paper is to provide a scalable and online
version of MacKay’s original proposal, and apply it to mod-
ern, larger models used in deep learning. We propose a
scalable Laplace’s method to approximate the marginal like-
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Figure 2: Each dot above shows a model of different size and/or architecture (around 40 models per plot of varying widths
and depths). Models with higher training marginal-likelihood tend to have higher test accuracy. For similar performance,
smaller models tend to have a higher marginal-likelihood as desired. Marker size and color changes with the number of
parameters. See Sec. 4.3 for details and App. C.5 for a full list of models with accuracy and marginal-likelihood estimates.

lihood and select both the hyperparameters and network
architectures. Differentiable hyperparameters can be opti-
mized during training in an online fashion (unlike MacKay
(1995)’s original proposal and Khan et al. (2019)’s recent
approach), and discrete ones can be selected after training.

The method relies on the Generalized Gauss-Newton (GGN)
and the Empirical Fisher (EF) approximation to the Hes-
sian. The full GGN and EF can also be extremely expensive
and we reduce the cost by using additional diagonal and
block-diagonal approximations (Martens & Grosse, 2015;
Botev et al., 2017). All these approximations have been
used in approximate inference before (Khan et al., 2018;
Zhang et al., 2018; Ritter et al., 2018; Osawa et al., 2019;
Foresee & Hagan, 1997; Khan et al., 2019), but they have
not been applied to model selection and their effectiveness
for marginal likelihood estimation has also been unknown.
Unlike our proposal, the method by Khan et al. (2019) is
limited to regression and uses the full but intractable GGN
approximation. Blundell et al. (2015) also used the vari-
ational lower-bound for hyperparameter optimization but
found it to give worse results.

Our main contribution is to show that, even after making
these approximations to improve scalability, the estimated
marginal likelihoods can faithfully select reasonable models
(see Figs. 1 and 2). Our method achieves performance on par
or better than cross-validation on a range of regression and
classification benchmarks. The best architecture identified
by the marginal likelihood aligns with the test performance
(see Fig. 2). It aligns well with the empirical observation
that ResNets often perform better than the standard convo-
lutional networks, which in turn are observed to give better
results than their fully-connected counterparts. Overall, our
work supports the long-held hypothesis that the marginal
likelihood is effective for model selection in deep learning,
and shows that a relatively cheap and simple approximation
can achieve competitive results.

2. Background
In this paper, we consider supervised learning tasks with
inputs xn ∈ RD and C-dimensional vector outputs yn (real
or categorical outcomes), and denote the data as the set
D = {(xn,yn)}Nn=1 of N training-example pairs.

Bayesian models. We denote by f(x,θ) the C-
dimensional real-valued output of a neural network with
parameters θ ∈ RP , specified by a modelM which typ-
ically consists of a network architecture and hyperparam-
eters. A Bayesian model can then be defined using a
likelihood and a prior, to get the posterior distribution:
p(θ|D,M) ∝ p(D|θ,M)p(θ|M). We assume that the
data examples are sampled i.i.d. from p(y|f(x,θ),M). The
normalizing constant of the posterior, also known as the
marginal likelihood, is given by the following expression:

p(D|M) =
∫ ∏N

n=1 p(yn|f(xn,θ),M)p(θ|M) dθ. (1)

The model M might consist of the choice of network-
architecture (CNN, ResNet, etc.) and hyperparameters of
the likelihood and prior, for example, observation noise and
prior variances. Some of these are continuous parameters
while others are discrete. Our goal is to use the marginal
likelihood to select such parameters.

Bayesian model comparison. The marginal likelihood in
Eq. 1 can be seen as a probability distribution over the space
of all datasets (of size N ) given the modelM. The distribu-
tion is expected to be wider for complex models, because
such models can generate data of more variety than simpler
models. Given the training data D, a model too simple or
too complex will therefore be assigned a lower probability
p(D|M), naturally yielding Occam’s razor (Blumer et al.,
1987; Jefferys & Berger, 1992; Rasmussen & Ghahramani,
2001). See Fig. 3.13 in Bishop (2006) for an illustration. A
simple method is to pick the model that assigns the highest
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probability to the training data,

M∗ = argmaxM p(D|M). (2)

This procedure is also called type-II maximum likelihood
estimation or empirical Bayes (MacKay, 2003); it is com-
monly used in the Gaussian process literature to find the
hyperparameters of the kernel function (Rasmussen &
Williams, 2006). Additionally, we can reapply Bayes rule
with the marginal likelihood as the likelihood and an addi-
tional prior distribution p(M) over the models (MacKay,
1992; 2003). Eq. 2 can then be seen as a special case of a
maximum a-posteriori (MAP) estimate with a uniform prior.

Laplace’s method. Using the marginal likelihood for
neural-network model selection was originally proposed
by MacKay (1992), who used Laplace’s method to approxi-
mate Eq. 1. The method relies on a local quadratic approxi-
mation of log p(θ|D,M), around a maximum θ∗, resulting
in a Gaussian approximation to p(θ|D,M), denoted by
q(θ|D,M), and an approximation to the marginal likeli-
hood, denoted by q(D|M) and shown below,

log p(D|M) ≈ log q(D|M) (3)

:= log p(D,θ∗|M)− 1
2 log

∣∣ 1
2πHθ∗

∣∣ ,
with Hessian Hθ := −∇2

θθ log p(D,θ|M). However, com-
puting Hθ , a large matrix of size P × P , and its determinant
is infeasible in general. We refer to the log marginal like-
lihood as margLik and report its value normalized by the
number of training examples.

Using the above objective to select models can also lead to
better generalization. The log-determinant in Eq. 3 favors
Hessians with small eigenvalues and is thus closely related
to low curvature and flatness of a solution’s neighborhood.
Such flat minima have been argued to generalize better than
sharper ones (Hochreiter & Schmidhuber, 1997), a claim
that is supported empirically (Keskar et al., 2016; Jiang et al.,
2019; Maddox et al., 2019) and has also been formalized
using PAC-Bayesian generalization bounds (Dziugaite &
Roy, 2017). We can therefore expect models selected using
the marginal-likelihood to have similar properties. The local
Gaussian approximation above may not always be sufficient,
and the goal of this paper is to investigate its capacity to
measure complexity of large neural networks.

Hessian approximations. Recently, scalable approxima-
tions to the Hessian Hθ, such as those based on the gen-
eralized Gauss-Newton (GGN) and empirical Fisher (EF),
have been applied to approximate Bayesian inference (Khan
et al., 2018; Zhang et al., 2018; Ritter et al., 2018; Osawa
et al., 2019; Immer et al., 2021; Kristiadi et al., 2020), but
their application to marginal-likelihood estimation or model
selection has not yet been explored, except by Khan et al.
(2019) on small regression tasks with a full GGN.

The GGN approximation to the log-joint Hessian is based on
the Jacobian matrix Jθ(x) ∈ RC×P of the network features
with entries [Jθ(x)]ci =

∂fc(x,θ)
∂θi

, as well as the Hessians
of the log-likelihood and the log-prior,

Λ(y; f) := −∇2
ff log p(y|f), Pθ := −∇2

θθ log p(θ|M),

respectively. The GGN approximation is then given by

Hθ ≈ HGGN
θ = JT

θLθJθ + Pθ, (4)

where Jθ is an NC × P matrix formed by stacking N Ja-
cobians Jθ(xn) overall xn in D, and Lθ is a NC × NC
block-diagonal matrix with blocks Λ(yn; f(xn,θ)).

The expression for the GGN approximation in Eq. 4 is equiva-
lent to the Fisher information matrix (Kunstner et al., 2019);
we therefore also consider the empirical Fisher (EF) approx-
imation to the Hessian, which relies on an outer product of
the gradients Gθ(x) = ∇θ log p(y|f(x,θ),M) ∈ RP :

Hθ ≈ HEF
θ = GT

θGθ + Pθ, (5)

where Gθ is an N × P matrix of stacked gradients Gθ(xn)
for all xn ∈ D. The complexities of the GGN and EF are
O(P 2NC+PNC2) andO(P 2N), respectively. The EF is
therefore O(C) cheaper to compute as C is typically much
smaller than P . For details, see App. B. Throughout, we
use "Laplace-GGN" and "Laplace-EF" to refer to Laplace’s
method where the Hessian has been approximated by using
the GGN or EF, respectively.

3. Model Selection with Laplace-GGN and -EF

We propose to use GGN and EF approximations for scalable
marginal-likelihood estimation based on Laplace’s method.
Our method involves two key steps:

Step 1. During training, we update differentiable hyperpa-
rameters ofM by using gradients of Eq. 3. See line 8 in
Alg. 1 and cf. Fig. 3 (left) for an example.

Step 2. After training, we use the marginal likelihood of
the trained model to make discrete choices, e.g., to select
the network architecture as shown in Fig. 1, or to choose
between several trained models, shown in Fig. 3 (right).

We first describe each of these steps and then give details
about efficient Hessian-determinant computations.

3.1. Step 1: Online model selection during training

Here we alternate between optimizing the network pa-
rameters θ and updating the continuous hyperparameters
M∂ ⊆ M that appear in the marginal likelihood in a dif-
ferentiable way. Such differentiable hyperparameters may
include the observation noise of the likelihood, the variances
of the Gaussian prior, or the softmax temperature parameter.
The resulting algorithm is outlined in Alg. 1.
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Figure 3: Proposed method for model selection using the marginal likelihood. In Step 1, we apply our online algorithm
(Alg. 1) to optimize the marginal likelihood estimate (Eq. 3) with respect to the differentiable hyperparameters (here: prior
precision δi per layer and softmax temperature T ). In Step 2, we compare the resulting model (left) to an overfitting model
(right) with higher training accuracy but lower test accuracy; both models have the same architecture. The Laplace-GGN
marginal likelihood estimate log q(D|M) correctly identifies the model that generalizes better. See Sec. 4.1 for details.

To optimize the network parameters θ we perform regular
neural network training on the maximum a posteriori (MAP)
objective in Eq. 6 using stochastic optimizers like ADAM
(Kingma & Ba, 2015) or SGD (cf. line 4 in Alg. 1),

log p(D,θ|M) =

N∑
n=1

log p(yn|f(xn,θ)) + log p(θ). (6)

To optimize the continuous hyperparametersM∂ , we per-
form gradient ascent on the marginal likelihood estimate
(Eq. 3). Because of computational considerations further
detailed in Sec. 3.4, we only do so every F epochs after
an initial burn-in period of B epochs and then perform K
update steps with step size γ > 0 (cf. lines 6-10 in Alg. 1):

M∂←M∂ + γ∇M∂ log q(D|M). (7)

The marginal likelihood estimate can be updated cheaply for
each of the K iterations (cf. App. B). Fig. 3 (left) illustrates
this optimization of the Gaussian prior-variances for each
layer as well as the softmax temperature of the likelihood.
We can also use the marginal-likelihood for early stopping
without validation data.

Note that the parameters θ∗ in Eq. 3 are assumed to be the
MAP estimate, however this is not true during training at
some θ. We also try another method derived from a local
integration in App. A.1 instead, but empirically this does
not yield good results and is more expensive. We discuss
the choice of hyperparameters of Alg. 1 in Sec. 3.4.

3.2. Step 2: Model selection after training

To choose between two discrete model alternatives, such
as different architectures, we compare their marginal likeli-
hood estimates after training. This step is a basic hypothesis
test, where we compare two modelsM andM′ and choose

Algorithm 1 Marginal likelihood based training

1: Input: dataset D, likelihood p(D|θ,M), prior
p(θ|M). Initial modelM, step size γ, stepsK, burn-in
epochs B, marglik frequency F . GGN or EF.

2: initialize θ of the neural network
3: for each epoch do
4: θ← trainEpoch(objective in Eq. 6)
5: if epoch > B and epoch mod F = 0 then
6: compute log q(D|M) (Eq. 3) with HGGN

θ or HEF
θ

7: for K steps do
8: M∂←M∂ + γ∇M∂ log q(D|M)
9: updateM and log q(D|M)

10: end for
11: end if
12: end for
13: Return marginal likelihood log q(D|M) and optionally

posterior approximation q(θ|D,M).

the more likely model given the data according to the likeli-
hood ratio p(D|M)/p(D|M′), which is the most powerful
statistical test for this purpose (Neyman & Pearson, 1933).
In terms of the marginal likelihood, we only need to choose
the model with a higher value (cf. Fig. 1 and Fig. 3 (right)).

3.3. Scalable Laplace approximations

Efficient determinant computation. Scalable marginal
likelihood estimation (Eq. 3) relies on an efficient computa-
tion of the determinant of the GGN or EF approximation of
the Hessian (Eqs. 4 and 5). When N is small, we can use
the Woodbury matrix identity to rewrite the determinant of
the Hessian (a P × P matrix) in terms of determinants of
matrices whose size only depends on the number of data
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points N and outputs (e.g., classes) C instead:

|HGGN
θ | = |

P × P

JT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + PθJT
θLθJθ + Pθ| = |

NC ×NC

JθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θJθP−1θ JT
θ + L−1θ ||Lθ||Pθ|

|HEF
θ | = |

P × P

GT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + PθGT
θGθ + Pθ| = |

N ×N

GθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + INGθP−1θ GT
θ + IN ||Pθ|. (8)

The determinants |Pθ| (though still P × P ) and |Lθ| are
usually cheap to compute as the prior p(θ) often factorizes
across parameters and Lθ is block-diagonal. When neither
O(N3) nor O(P 3) are tractable, we consider the following
structured GGN approximations of different sparsities.

Kronecker-factored Laplace. The Kronecker-factored
(KFAC) GGN approximation is based on a block-diagonal
approximation to HGGN

θ and is specified by a Kronecker
product per layer (Martens & Grosse, 2015; Botev et al.,
2017). The GGN of the l-th layer of the neural network
is approximated as [JT

θLθJθ]l ≈ Ql ⊗Wl where Ql is
computed from the gradient by backpropagation and Wl de-
pends on the input to the l-th layer. Wl and Ql are quadratic
in the l-th layer’s input and output size, respectively. Let
q(l) ∈ RDl and w(l) ∈ RD′l be the eigenvalues of Ql and
Wl, respectively. If the prior Hessian Pθ is isotropic per
layer, that is, the l-th block-diagonal entry of Pθ is given by
p
(l)
θ Il, then we can compute the determinant for the Laplace-

GGN efficiently as

|HGGN
θ | ≈ |HKFAC

θ | =
∏
l

∏
ij q

(l)
i w

(l)
j + p

(l)
θ . (9)

In contrast to the typical use of Kronecker-factored approx-
imations in optimization (Martens & Grosse, 2015; Botev
et al., 2017) and approximate inference (Ritter et al., 2018;
Zhang et al., 2018), we do not use damping which would dis-
tort the Laplace-GGN (cf. App. A.3 for discussion and abla-
tion experiment). Computationally, the Kronecker-factored
Laplace-GGN is cheaper than the full Laplace-GGN because
we only need to decompose matrices that are quadratic in
the number of neurons per layer. This number typically does
not exceed a few thousand.

Diagonal Laplace. The diagonal Laplace approximates
the GGN or EF by their diagonal, which allows for the cheap
computation of the determinants

|HGGN
θ | ≈

∏
p [H

GGN
θ ]pp and |HEF

θ | ≈
∏
p [H

EF
θ ]pp . (10)

Here, [H]pp denotes the diagonal entries of H. The com-
putation of the diagonal GGN still scales with the number
of outputs C due to the dependence on the block-diagonal
Lθ. In contrast, the diagonal EF is very cheap to com-
pute because it only requires the sum of point-wise squared
individual gradients over the training data. Despite their
simplicity and the hypothesis by MacKay (1992) that they
are “no good”, we find that these approximations work well
in practice. Especially for convolutional neural networks,

the diagonal approximations provide a cost-effective alterna-
tive to block-diagonal approximations when used in Alg. 1.
This is in contrast to the predictive performance of diago-
nal Laplace approximations, which are often significantly
worse their less sparse counterparts (Ritter et al., 2018; Im-
mer et al., 2021).

3.4. Computational considerations

The overall runtime of our algorithm depends on the fre-
quency F with which we estimate the marginal likelihood,
the number of consecutive hyperparameter update steps K,
as well as the burn-in period B. Furthermore, the cost of
each marginal likelihood estimation (line 6 in Alg. 1) and
marginal likelihood update (line 9 in Alg. 1) depends on the
specific approximation of the Hessian used. Here, we dis-
cuss the most important aspects briefly. See App. B for more
details and discussion, including computation and memory
complexities.

Estimation of the marginal likelihood (Eq. 3) requires one
full pass over the training data: While its first term, the
log joint p(D,θ|M) (Eq. 6), decomposes into individual
terms per data point and can, therefore, be estimated on
minibatches, this is not the case for the log determinant of
the Hessian. However, this initial estimation cost amortizes
over theK consecutive update steps for the hyperparameters
(Alg. 1 lines 7 to 10), as the most expensive computations
can be reused. Therefore, it makes sense to perform many
update steps (K large) but do so at a lower frequency (es-
timation frequency F low). We typically use K = 100 up-
date steps in large-scale experiments and perform marginal
likelihood estimation every F = 1 epochs for small-scale
experiments or F = 5 to 10 epochs for larger experiments.
In contrast to MacKay (1995), these updates are continuous
during training, instead of a single update and re-training
which would be prohibitive.

We use ADAM for the gradient updates of the hyperparam-
eters in Eq. 7 and line 8 of Alg. 1. We can use a slightly
higher learning rate than default (γ between 0.01 and 1)
without divergence because the gradients are not stochas-
tic (Bottou, 2010). Similar to the approach by Lyle et al.
(2020), our marginal likelihood estimate can be used for
early stopping or to save models so that we end up using
the model that achieved the best marginal likelihood during
training in Alg. 1. Overall, we find that the online algorithm
is robust to different settings of K, F , B, and γ, and it is
not difficult to monitor convergence of the marginal likeli-
hood and hyperparameters, of which there are fewer than
model parameters. In our experiments, we reliably optimize
up to around 400 hyperparameters in the case of a ResNet.
Typically, our algorithm does not need more epochs to con-
verge than standard training. For further discussion of the
robustness to hyperparameters, see App. C.6.
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4. Experiments
We compare our method to model selection by cross-
validation and also to manually selected models. Depending
on the problem size, we use different variants of the Laplace-
GGN approximation. On smaller scale UCI (Dua & Graff,
2017) and toy examples, we use the full GGN and EF de-
terminants and the Kronecker-factored approximation. On
larger problems, we use the Kronecker-factored and the
diagonal Laplace-GGN and EF approximations.

We also compare the posterior predictive obtained by a
Laplace-GGN posterior approximation (Ritter et al., 2018;
Immer et al., 2021), defined in Eq. 11, to the MAP predic-
tion, defined in Eq. 12,

pdist(y
∗|x∗,D) = 1

S

∑S
s p(y

∗|fθ∗lin (x
∗,θs),M∗), (11)

pMAP(y
∗|x∗,D) = p(y∗|f(x∗,θ∗),M∗). (12)

Here, fθ∗lin (x,θs) = f(x,θ∗) + Jθ∗(x)(θ − θ∗) is the lin-
earized neural network at θ∗, and θs ∼ q(θ|D,M∗).

In all experiments, we optimize the precision parameter
δl > 0 of a Gaussian prior N (0, δ−1l Il) for the weights
and biases of each layer l individually and initialize all δ to
1. In regression experiments, we additionally optimize the
Gaussian observation noise. We use ADAM (Kingma & Ba,
2015) to optimize the hyperparameters during training with
default settings but a higher learning rate between 0.01 and
1 (cf. Sec. 3.4). We optimize the network parameters using
ADAM except for the ResNet experiments, where we follow
common practice and use SGD with momentum of 0.9. On
the image classification datasets, train for 300 epochs in
total and decay the learning rate by a factor of 0.1 (He et al.,
2016) after 150, 225, and 275 epochs, respectively.

4.1. Illustrative examples

First, we illustrate our model selection approach on simple
regression (Fig. 1) and classification (Fig. 3) examples.

Regression. For the regression example we consider the
modified Snelson dataset (Snelson, 2007; Khan et al., 2019),
see Fig. 1. We run Alg. 1 for two different architectures (1
and 3 hidden layers, 50 neurons per layer) with a step size of
0.01 for parameters and hyperparameters and recompute the
marginal likelihood after each epoch (F = 1) and with no
burn-in (B = 0) for 1000 epochs with K = 1 hyperparam-
eter updates per step. We use the Laplace-GGN with a full
GGN determinant and compute the Bayesian predictive in
Eq. 11 based on the optional Laplace-GGN approximation.

The larger network (P = 5221 parameters) fits the data
well and does not overfit due to the optimized regularization
(Fig. 1 (left)). In contrast, the smaller network (P = 151
parameters) underfits the data due to its limited capacity and
explains parts of the sinusoidal signal with a higher predic-
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Figure 4: Selection of the prior precision δ for a 3-layer
network using the marginal likelihood. Top: Three opti-
mization traces (init final) of the online algorithm
compared to a grid-search with fixed δ ( ). The online
algorithm is initialized with three different prior precisions
δinit ∈ {10−3( ), 1( ), 102( )} and converges to the opti-
mum as found by the grid-search within the same number
of steps. Bottom: Predictive distributions of an over- and
underfitting model, respectively. The predictive of the best
model is depicted in Fig. 1 (left). The marginal likelihood
correctly identifies the model that agrees with intuition.

tive uncertainty (Fig. 1 (right)). The marginal likelihood
identifies the better model. In App. C.1, we show in addi-
tion how the resulting Bayesian predictive decomposes into
epistemic and aleatoric uncertainty. Such a decomposition
is only possible with optimized hyperparameters and would
require a large grid-search without our online method (Khan
et al., 2019).

The larger model has enough capacity to overfit on this
dataset. To illustrate the marginal likelihood’s ability to
select the right amount of regularization and to test the sta-
bility of our algorithm, we perform a grid search over the
prior precision for the larger network and compare the se-
lected hyperparameters. The online algorithm reliably con-
verges to the same optimum also identified by comparing
the marginal likelihood over the grid search after training
(optimization traces in Fig. 4 (top)). Moreover, the marginal
likelihood correctly identifies the value with the best gen-
eralization performance (test log likelihood in App. C.1);
choosing hyperparameter values that correspond to worse
marginal likelihoods results in overfitting or underfitting re-
spectively, see the predictive distributions in Fig. 4 (bottom)
and compare them to the optimal solution in Fig. 1 (left).

Classification. For binary classification, we consider a
subsampled (N = 265 data points) version of the synthetic
2D banana dataset (Rätsch et al., 2001). We train the same
neural network (1 hidden layer with 50 neurons) twice: once
with our online algorithm for 200 steps with otherwise same
settings as for the regression example above; and a second
time with a weakly regularized prior akin to regular deep
learning training. The optimization trace and the evolution
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cross-validation (CV) MargLik optimization
Dataset MAP VI Laplace GGN EF KFAC

boston 2.71±0.10 2.58±0.03 2.57±0.05 2.69±0.12 2.62±0.12 2.70±0.09

concrete 3.17±0.04 3.17±0.01 3.05±0.04 3.06±0.05 3.07±0.04 3.13±0.06

energy 1.02±0.05 1.42±0.01 0.82±0.03 0.55±0.11 0.73±0.15 0.53±0.02

kin8nm −1.09±0.01 −0.87±0.00 −1.23±0.01 −1.14±0.01 −1.14±0.01 −1.13±0.01

naval −5.75±0.05 −3.82±0.02 −6.40±0.06 −6.93±0.03 −6.92±0.04 −6.88±0.05

power 2.82±0.01 2.86±0.01 2.83±0.01 2.78±0.02 2.78±0.01 2.78±0.02

wine 0.98±0.02 0.96±0.01 0.97±0.02 0.93±0.02 0.93±0.01 0.94±0.02

yacht 2.30±0.02 1.67±0.01 1.01±0.05 5.89±1.25 2.43±0.61 1.48±0.07

Table 1: Negative test log likelihood (lower is better) on the UCI regression benchmark. Three leftmost columns: cross-
validation (CV) using MAP, VI and Laplace predictives; three rightmost columns: our proposed method with GGN, EF,
and GGN-KFAC approximation to the marginal likelihood and MAP predictive. Even compared to VI and Laplace with
CV (second and third column), the MAP predictions obtained with our method perform on par or better except on the
kin8nm and yacht datasets. The full GGN approximation performs the best, followed by the EF and Kronecker Laplace-GGN
approximations. The cross-validation results are taken from Foong et al. (2019). Results within one standard error of the
best performance are in bold. Additional results with diagonal GGN and EF as well as Bayesian predictive are in App. C.

of the hyperparameters (softmax temperature as well as
prior precision per layer) for our online algorithm is shown
in Fig. 3 (left).

The weakly regularized model overfits and has a large gen-
eralization gap with a very high accuracy of almost 100%
on the train set but only 86% on the test set (Fig. 3, Step
2 (right)). In contrast, our online method reduces this gap
and increases the test accuracy to 89% by optimizing the
hyperparameters during training using the marginal likeli-
hood (Fig. 3, Step 2 (left)). The optional Bayesian predictive
also profits from the optimized hyperparameters (Fig. C.1b).
A comparison of the marginal likelihood estimates after
training correctly identifies the model with smaller general-
ization gap and better test performance.

4.2. UCI regression

We compare our method to cross-validation on eight
UCI (Dua & Graff, 2017) regression datasets following
Hernández-Lobato & Adams (2015) and Foong et al. (2019).
In this setup, each dataset is split into 90% training and 10%
testing data and a neural network with a single hidden layer,
50 neurons, and a ReLU activation is used. We use the hand-
tuned and cross-validated results reported by Foong et al.
(2019) who compare MAP, variational inference, and the
Laplace approximation. They use 10% of the training data
for validation and optimize hyperparameters by grid-search.
We run Alg. 1 for 10, 000 epochs until convergence with the
standard learning rate of ADAM for both hyperparameters
and parameters, and set frequency F = 1, K = 1 hyperpa-
rameter gradient steps, and do not use burn-in. We compute
standard errors over 10 random splits.

The results in Table 1 indicate that our online algorithm over-
all performs better than cross-validated baselines in terms
of the test log likelihood. Using the simple and efficient

MAP predictive, our method outperforms or matches the
Bayesian predictions with cross-validated hyperparameters
on 6 out of 8 datasets. Our algorithm performs similarly
using the full GGN or EF, and the Kronecker-factored GGN
performs almost as good as the full GGN. See App. C.2 and
App. C.3 for further details and results on UCI classification
datasets, including diagonal GGN and EF approximations.
Perhaps surprisingly, the diagonal approximations are effec-
tive and also competitive with cross-validation. We further
find that our method can alleviate the need for the posterior
predictive as it achieves the same performance using only
the MAP predictive (performance comparison in App. C.2).

4.3. Image classification

We benchmark our online model selection against cross-
validation on standard image classification datasets (MNIST,
FMNIST, CIFAR-10, CIFAR-100) and use the resulting
marginal likelihood estimate to compare architectures. We
compare fully-connected (MLP), convolutional (CNN), and
residual (ResNet) networks. Our algorithm is robust to the
selection of its hyperparameters (F,K,B, γ, see Sec. 3 and
App. C.6). Here, we use our online model selection step
every F = 10 epochs for K = 100 hyperparameter steps
without burn-in and with step size γ = 1 to keep compu-
tational overhead low. Due to the size of the datasets and
models, we use the Kronecker-factored GGN approximation
and the diagonal EF and GGN variants. For the baseline,
we use the results and architectures by Immer et al. (2021)
who optimized the prior precision using cross-validation,
except for the ResNet on CIFAR-10 where we use the hy-
perparameters of Zhang et al. (2019b). For ResNets, we use
fixup (Zhang et al., 2019b) instead of batchnorm because
batchnorm conflicts with a Gaussian prior (Zhang et al.,
2019a). To estimate standard errors, we run for 5 different
random initializations.
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cross-validation marginal likelihood optimization
KFAC diagonal EF

Dataset Model accuracy logLik accuracy logLik MargLik accuracy logLik MargLik

MNIST MLP 98.22 −0.061 98.38 −0.053 −0.158 97.05 −0.095 −0.553
CNN 99.40 −0.017 99.46 −0.016 −0.064 99.45 −0.019 −0.134

FMNIST MLP 88.09 −0.347 89.83 −0.305 −0.468 85.72 −0.400 −0.756
CNN 91.39 −0.258 92.06 −0.233 −0.401 91.69 −0.233 −0.570

CIFAR10 CNN 77.41 −0.680 80.46 −0.644 −0.967 80.17 −0.600 −1.359
ResNet 83.73 −1.060 86.11 −0.595 −0.717 85.82 −0.464 −0.876

Table 2: Model selection by marginal likelihood compared with cross-validation on image classification. We report the test
accuracy, test log likelihood (logLik), and log marginal likelihood (MargLik). Higher is better for all metrics. Generally,
models selected by our method perform better than the cross-validated models, in particular on CIFAR-10. More importantly,
higher accuracies correspond to higher marginal-likelihood. The marginal likelihood agrees with the intuition that CNNs are
better than MLPs and ResNets are better than CNNs. Performance reported over 5 random initializations, best performance
per dataset within one standard error in bold. Cross-validation results on CNN and MLP are taken from Immer et al. (2021).
Results with standard errors and performance of diagonal GGN are reported in App. C.4.
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Figure 5: Comparison to a baseline on the ResNet-20 architecture with and without data augmentation (DA) on CIFAR-10.
We report test log-likelihood (logLik), test accuracy, expected calibration error (ECE), and out-of-distribution (OOD)
detection performance in terms of area under the ROC (OOD-AUC) using the SVHN validation set as OOD data. Arrows
indicate if higher (↑) or lower (↓) values are better. Even without data augmentation, our MargLik-based method achieves a
logLik, ECE, and OOD-AUC better than the baseline with data augmentation. Our approach paired with data augmentation
slightly improves on that and matches the accuracy obtained by the baseline with data augmentation.

The results in Table 2 show that our method improves
the performance over baselines on the considered archi-
tectures with the largest improvement on CIFAR-10. We
find that the Kronecker-factored version is well-suited for
fully-connected networks but the diagonal variants are often
sufficient, on CIFAR-10 even slightly better, for convolu-
tional neural networks. The resulting marginal likelihood
estimates of any method suggest that CNNs are better suited
for image classification than MLPs, and on CIFAR-10 we
further see that ResNets are superior to standard CNNs with-
out residual connections. In App. C.4, we additionally show
the outcome with the diagonal GGN and list standard errors.

In Fig. 5, we show results with additional data augmenta-
tion on CIFAR-10 and ResNet architecture and report two
additional performance metrics. Here, we display the diago-
nal EF approximation due to its effectiveness (performance
of Kronecker-factored variant in App. C.4). Additionally
to accuracy and negative log likelihood, we show the ex-
pected calibration error (ECE, Guo et al. (2017)) and out-of-
distribution detection performance in terms of area under the
receiver-operator curve (OOD-AUC). With and without data

augmentation, the models trained with our method achieve
better test log-likelihood (NLL), expected calibration error
(ECE), and out-of-distribution detection performance. Com-
pared to the baseline, the performance can be up to 2× better
using our method. Notably, our method achieves a better
NLL, ECE, and similar OOD-AUC without data augmen-
tation than the baseline with data augmentation. However,
the baseline can mitigate the difference in accuracy by data
augmentation and match the performance on our method.
Following Osawa et al. (2019), we upweight the likelihood
by a factor of 5 to account for the data augmentation.

In Fig. 6, we show that the proposed online model selection
can improve over a baseline with weight decay by greatly
reducing overfitting and the generalization gap on CIFAR-
10. Compared to a single training run that uses fixed hy-
perparameters, our online method only takes around twice
the time for training when using the Kronecker-factored
Laplace-GGN every F = 10 epochs. Cross-validation would
only be able to explore two parameter settings in this time.

Finally, we conduct a larger-scale study for architecture
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Figure 6: Train ( ) vs. test ( ) performance of our
method ( ) compared to a baseline with default weight
decay ( ) for a CNN on CIFAR-10. Online marginal like-
lihood optimization leads to a smaller generalization gap
( ). While the test error rate matches, the baseline has
a significantly worse negative log likelihood. The Laplace-
GGN marginal likelihood estimate in the bottom indicates
that as well. The Kronecker-factored Laplace-GGN approxi-
mation increases the training time only by a factor of 2. For
cross-validation, this would only suffice to retrain for two
different hyperparameters.

selection after training (step 2 in Sec. 3) by applying our
algorithm to various architectures and comparing the result-
ing marginal likelihood estimates. We use the algorithm
with the diagonal EF approximation due to its efficiency
and optimize the prior precision hyperparameter for each
layer.1 After training, we use the final marginal likelihood
estimates to rank the different architectures. On CIFAR-10
and CIFAR-100, we train CNNs and ResNets of varying
width (between 2 and 64) and depth (between 1 and 110).
On FashionMNIST, we compare CNNs and MLPs. For
each data set, we compare around 40 models. In Fig. 2, each
trained model with our method is represented by a marker
whose size and color depends on the number of parameters.
On CIFAR-10/100, ResNets achieve higher marginal like-
lihoods than CNNs despite, in some cases, exponentially
more parameters. In terms of architecture, width tends to
improve marginal likelihood more than depth (see Fig. 7
and App. C.5). This is in line with improved ResNet archi-
tectures that use increased width (Zagoruyko & Komodakis,
2016). On both data sets, the rank correlation between
test accuracy and marginal likelihood is 97% in terms of
Spearman’s ρ. Spearman’s ρ measures the correlation of the
model rankings that test accuracy and marginal likelihood
induce (Kendall, 1948). CNNs achieve consistently higher
marginal likelihoods than MLPs on FMNIST. Especially
at similar performance, CNNs achieve a higher marginal

1Similar results can be obtained with the Kronecker-factored
variant but at a higher cost.
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Figure 7: Wider ResNets give both higher marginal-
likelihoods and accuracy (left) while there is no clear trend
seen by varying depths (right). Results are on CIFAR-100.
Each plot contains 30 models. Details in App. C.5

likelihood than MLPs, potentially due to the reduced model
complexity. On FMNIST, the rank correlation is 69%. The
correlation is likely lower because the marginal likelihood
often selects significantly smaller instead of slightly bet-
ter performing models (see top right in Fig. 2). For more
detailed results and the architectures, see App. C.5.

5. Conclusion
In this paper, we present the marginal likelihood as a viable
tool for model selection in deep learning. Even after mak-
ing approximations for scalability, the marginal likelihood
faithfully reflects the model quality based on the training
data alone. Estimation requires only a mild increase in com-
putation, but allows us to compare models and even select
hyperparameters during training. Ultimately, the marginal
likelihood and similar methods make use of the neighbor-
hood of a solution to improve their robustness. We believe
this is important to design models for applications where
little is known about deployment and future usage. Remov-
ing dependence on validation data can widen the impact of
deep learning and open up new application areas.

Many interesting research directions remain open for ex-
ploration. It is important to explore ways to further im-
prove Hessian approximations and computation, and con-
sider other approximate inference methods. Online model
selection for discrete hyperparameters is another interest-
ing direction. Finally, extending this work beyond super-
vised learning, e.g., to bandits, Bayesian optimization, active
learning, or continual learning, is an important avenue for
future research. We hope that this work encourages others
to pursue new ideas based on Bayesian model selection.
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