
A. DeepMind Control Suite and Real-World
RL Experiments

For the continuous control experiments where the input is
1 dimensional (as opposed to 2 dimensional image inputs
in board games and Atari as used by MuZero), we used
a variation of the MuZero model architecture in which all
convolutions are replaced by fully connected layers.

The representation function processed the input via an in-
put block composed of a linear layer, followed by a Layer
Normalisation and a tanh activation. The resulting embed-
ding was then processed by a ResNet v2 style pre-activation
residual tower (He et al., 2016) coupled with Layer Normal-
isation (Ba et al., 2016) and Rectified Linear Unit (ReLU)
activations. We used 10 blocks, each block containing 2
layers with a hidden size of 512.

For the Real-World RL experiments, we additionally in-
serted an LSTM module (Hochreiter & Schmidhuber, 1997)
in the representation function between the input block and
the residual tower to deal with partial observability. We
trained the LSTM using truncated backpropagation through
time for 8 steps, initialised from LSTM states stored during
acting, each step having the last 4 observations concatenated
together, for an effective unroll step of 32 steps.

The dynamics function processed the action via an action
block composed of a linear layer, followed by a Layer Nor-
malisation and a ReLU activation. The action embedding
was then added to the dynamics function’s input embedding
and then processed by a residual tower using the same archi-
tecture as the residual tower for the representation function.

The reward and value predictions used the categorical repre-
sentation introduced in MuZero (Schrittwieser et al., 2020).
We used 51 bins for both the value and the reward predic-
tions with the value being able to represent values between
[−150.0, 150.0] and the reward being able to represent val-
ues between [−1.0, 1.0]. We used n-step bootstrapping with
n = 5 and a discount of 0.99 consistent with Acme (Hoff-
man et al., 2020).

We used the factored policy representation introduced by
(Tang & Agrawal, 2020) representing each dimension by
a categorical distribution over B = 7 bins for the policy
prediction.

To implement the network, we used the modules provided
by the Haiku neural network library (Hennigan et al., 2020).

We used the Adam optimiser (Kingma & Ba, 2015) with
decoupled weight decay (Loshchilov & Hutter, 2017) for
training. We used a weight decay scale of 2 · 10−5, a batch
size of 1024 an initial learning rate of 10−4, decayed to 0
over 1 million training batches using a cosine schedule:

lr = lrinit
1

2

(
1 + cosπ

step
max steps

)

where lrinit = 10−4 and max steps = 106.

For replay, we keep a buffer of the most recent 2000 se-
quences, splitting episodes into subsequences of length up
to 500. Samples are drawn from the replay buffer according
to prioritised replay (Schaul et al., 2016) using the same
priority and hyperparameters as in MuZero.

We trained Sampled MuZero using K = 20 samples and a
search budget of 50 simulations per move. At the root of the
search tree only, we evaluated all sampled actions before
the start of the search and used those to initialise the Q(s, a)
quantities in the PUCT formula (Appendix D). We evaluated
Sampled MuZero’s network checkpoints throughout training
playing 100 games with a search budget of 50 simulations
per move and picked the move with the highest number of
visits to act, consistent with previous work.

We used Acme (Hoffman et al., 2020) to produce the results
for DMPO (Hoffman et al., 2020) and D4PG (Barth-Maron
et al., 2018). Compared to Acme, we used bigger networks
(Policy Network layers = (512, 512, 256, 128), Critic Net-
work Layers = (1024, 1024, 512, 256)) and a bigger batch
size of 1024 for better comparison. Each task was run with
three seeds.

We provide full learning curve results on the DeepMind
Control Suite (Figure 7) and Real-World RL (Figure 8)
tasks.

A.1. Gaussian policy parameterisation

Even though a categorical policy representation was used
to compute the main results, Sampled MuZero can also be
applied working directly with continuous actions. Figure 9
shows results on the hard and manipulator tasks when the
policy prediction is parameterised by a Gaussian distribu-
tion.

The performance is similar across almost all tasks but we
found that Gaussian distributions are harder to optimise than
their categorical counterpart and that using entropy regu-
larisation was useful to produce better results (we used a
coefficient of 5e-3). It is possible that these results could be
improved with better regularisation schemes such as con-
straining the deviation of the mean and standard deviation
as in the MPO (Abdolmaleki et al., 2018) algorithm. In
contrast, we did not need to add any regularisation to train
the categorical distribution.

Figure 7. Results in DM Control Suite tasks. Performance of Sampled MuZero (3 seeds per experiment) throughout training compared
to DMPO (Hoffman et al., 2020) and D4PG (Barth-Maron et al., 2018). The x-axis shows millions of environment frames, the y-axis
mean episode return. Tasks are grouped into easy, medium and hard as proposed by (Hoffman et al., 2020). Plot titles include the task
name and the dimensionality of the action space.

Figure 8. Sampled MuZero results for the Real-Word RL benchmark. Performance of Sampled MuZero (3 seeds per experiment)
throughout training on the easy, medium and hard variations of difficulty. The x-axis shows millions of environment frames, the y-axis
mean episode return. Tasks are grouped into easy, medium and hard. Plot titles include the task name.

Figure 9. Comparison between a Categorical and Gaussian parameterisation of the policy prediction for Sampled MuZero.
Performance of Sampled MuZero (3 seeds per experiment) throughout training on the DM Control Hard and Manipulator tasks.

Tasks Dreamer SMuZero

acrobot.swingup 365.26 417.52
cartpole.balance 979.56 984.86
cartpole.balance sparse 941.84 998.14
cartpole.swingup 833.66 868.87
cartpole.swingup sparse 812.22 846.91
cheetah.run 894.56 914.39
ball in cup.catch 962.48 977.38
finger.spin 498.88 986.38
finger.turn easy 825.86 972.53
finger.turn hard 891.38 963.07
hopper.hop 368.97 528.24
hopper.stand 923.72 926.50
pendulum.swingup 833.00 837.76
quadruped.run 888.39 927.13
quadruped.walk 931.61 959.03
reacher.easy 935.08 982.26
reacher.hard 817.05 971.53
walker.run 824.67 931.06
walker.stand 977.99 987.79
walker.walk 961.67 975.46

Table 2. Performance of Sampled MuZero compared to the
Dreamer agent. Sampled MuZero equals or outperforms the
Dreamer agent in all tasks. Dreamer results from (Hafner et al.,
2019).

A.2. Sampled MuZero from Pixels

In addition to Sampled MuZero’s results on the hard and
manipulator tasks when learning from raw pixel inputs, we
compared Sampled MuZero to the Dreamer agent (Hafner
et al., 2019) in Table 2. We used the 20 tasks and the 5
million environment steps experimental setup defined by
(Hafner et al., 2019). Sampled MuZero equalled or sur-
passed the Dreamer agent’s performance in all 20 tasks,
without any action repeat (Dreamer uses an action repeat
of 2), observation reconstruction, or any hyperparameter
re-tuning.

A.3. Ablation on the number of samples

We trained multiple instances of Sampled MuZero with vary-
ing number of action samples K ∈ {3, 5, 10, 20, 40} on the
humanoid.run task for which the action is 21 dimensional.
We ran six seeds for each instance. SurprisinglyK = 3 is al-
ready sufficient to learn a good policy and performance does
not seem to be improved by sampling more than K = 10
samples (see Figure 10).

A.4. Reproducibility

In order to evaluate the reproducibility of Sampled MuZero
from state inputs and raw pixel inputs, we show the indi-

Figure 10. Performance of Sampled MuZero with different
number of samples on the humanoid.run task. Performance
of Sampled MuZero (6 seeds per experiment) throughout training
on the DM Control Humanoid Run task.

vidual performance of 3 seeds on the hard and manipulator
tasks in Figure 11. Overall, the variation in performance
across seeds is minimal.

In addition, we show the individual performance of 6 seeds
when sampling K = 3, 5, 10, 20, 40 actions on the hu-
manoid.run task. We observe that even when the number
of samples is small, performance stays very reproducible
across runs.

A.5. Ablation on using π̂β vs π

We evaluated the practical importance of using π̂β = β̂/βπ
instead of just π in Sampled MuZero’s PUCT formula and
ran experiments on the humanoid.run task.

We expect that as the number of samples increases, the differ-
ence will go away as limK→∞ π̂β = limK→∞ β̂/βπ = π.
We therefore looked at the difference in performance when
drawing K = 5 or K = 20 samples.

Furthermore, evaluating the Q values of all sampled actions
at the root of the search tree before the start of the search
puts more emphasis on the values and less on the prior in
the PUCT formula. We therefore also show the difference
in performance with and without Q evaluations (no Q in the
figure).

The experiments in Figure 13 confirm that it is much better
to use π̂β when the number of samples is small and not
evaluating the Q values. The performance drop of using π
is attenuated by evaluating the Q values at the root of the
search tree, but it is still better to use π̂β even in that case.

B. Go Experiments
For the Go experiments, we mostly used the same neural net-
work architecture, optimisation and hyperparameters used
by MuZero (Schrittwieser et al., 2020) with the following
differences. Instead of using the outcome of the game to
train the value network, we used n-step bootstrapping with

Figure 11. Reproducibility of Sampled MuZero from state and raw pixel inputs on the hard and manipulator tasks. Performance of
Sampled MuZero (3 seeds per experiment) throughout training on the DM Control Humanoid Run task.

Figure 12. Reproducibility of Sampled MuZero on the humanoid.run task with 3, 5, 10, 20 and 40 action samples. Performance of
Sampled MuZero (6 seeds per experiment) throughout training on the DM Control Humanoid Run task.

Figure 13. Performance of Sampled MuZero using π̂β vs π on
the humanoid.run task. Performance of Sampled MuZero (3 seeds
per experiment) throughout training on the DM Control Humanoid
Run task evaluated with K = 5 or K = 20 samples and with or
without (no Q) evaluating the Q values of all sampled actions at
the root of the search tree. It is much more robust to use π̂β over π
in Sampled MuZero.

n = 25 where the value used to bootstrap was the averaged
predictions of a target network applied to 4 consecutive
states at indices n+ i for i ∈ [0, 3]. We averaged multiple
consecutive target network value predictions due to the al-
ternation of perspective for value prediction in two-player
games; using the average of multiple estimates ensures that
learning is based on the estimates for both sides. We ob-
served that this reduced value overfitting and allowed us to
train MuZero while generating less data. In addition, we
used a search budget of 400 simulations per move instead
of 800 in order to use less computation.

We evaluated the network checkpoints of MuZero and Sam-
pled MuZero throughout training playing 100 matches with
a search budget of 800 simulations per move. We anchored
the Elo scale to a final MuZero baseline performance of
2000 Elo.

C. Atari Experiments
For the Atari experiments, we used the same architecture,
optimisation and hyperparameters used by MuZero (Schrit-
twieser et al., 2020).

We evaluated the network checkpoints of MuZero and Sam-
pled MuZero throughout training playing 100 games with a

search budget of 50 simulations per move.

D. Search
The full PUCT formula used in Sampled MuZero is:

argmaxaQ(s, a) + c(s) · (β̂
β
π)(s, a)

√∑
bN(s, b)

1 +N(s, a)

where

c(s) = c1 + log
1 + c2 +

∑
bN(s, b)

c2

with c1 = 1.25 and c2 = 19652 in the experiments for this
paper. Note that at visit counts N(s) =

∑
bN(s, b)� c2,

the log in the exploration term is approximately 0 and the
formula can be written:

argmaxaQ(s, a) + c1 · (
β̂

β
π)(s, a)

√∑
bN(s, b)

1 +N(s, a)

E. Sample-based Policy Improvement and
Evaluation Proofs

Lemma. Ẑβ and Z are linked by:

lim
K→∞

Ẑβ = Z

Proof Ẑβ(s) is defined such that∑
a∈A(β̂/β)(a|s)f(s, a, Ẑβ(s)) = 1.

Therefore

1 = lim
K→∞

∑
a∈A

(β̂/β)(a|s)f(s, a, Ẑβ(s))

= lim
K→∞

∑
a∈A

f(s, a, Ẑβ(s))

where we used limK→∞ β̂ = β to go from line 1 to 2.

We therefore have

lim
K→∞

∑
a∈A

f(s, a, Ẑβ(s)) = 1 =
∑
a∈A

f(s, a, Z(s))

which shows by the uniqueness of Z that limK→∞ Ẑβ = Z.

Theorem. For a given random variable X , we have

Ea∼Iπ[X|s] = lim
K→∞

∑
a∈A
Îβπ(a|s)X(s, a)

Furthermore,
∑
a∈A Îβπ(a|s)X(s, a) is approximately nor-

mally distributed around Ea∼Iπ[X|s] as K →∞:∑
a∈A
Îβπ(a|s)X(s, a) ∼ N (Ea∼Iπ[X|s], σ

2

K
)

where σ2 = V ara∼β [f(s,a,Z(s))
β X(s, a)|s].

Proof. We have

Ea∼Iπ[X(s, a)|s]
= Ea∼β [(Iπ/β)(a|s)X(s, a)|s]
= Ea∼β [f(s, a, Z(s))/β(a|s)X(s, a)|s]

= lim
K→∞

∑
a∈A

(β̂/β)(a|s)f(s, a, Z(s))X(s, a)

= lim
K→∞

∑
a∈A

(β̂/β)(a|s)f(s, a, Ẑβ(s))X(s, a)

= lim
K→∞

∑
a∈A
Îβπ(a|s)X(s, a)

where we used the law of large numbers to go from line 2
to 3, replacing the expectation with the limit of a sum, and
the lemma to go from line 3 to 4.

Using the central limit theorem from line 2, we can also
show that as K →∞,∑
a∈A

(β̂/β)(a|s)f(s, a, Z(s))X(s, a)→ N (Ea∼Iπ[X|s], σ
2

K
)

in distribution with σ2 = V ara∼β [f(s,a,Z(s))
β X(s, a)|s].

Making the approximation of swapping in Ẑβ for Z based
on the lemma, we obtain that as K →∞:∑

a∈A
Îβπ(a|s)X(s, a) ∼ N (Ea∼Iπ[X|s], σ

2

K
)

Corollary. The sample-based policy improvement operator
converges in distribution to the true policy improvement
operator:

lim
K→∞

Îβπ = Iπ

Furthermore, the sample-based policy improvement oper-
ator is approximately normally distributed around the true
policy improvement operator as K →∞:

Îβπ(a|s) ∼ N (Iπ(a|s), σ
2

K
)

where σ2 = V ara∼β [f(s,a,Z(s))
β 1(a)|s].

Proof. We obtain the corollary by using X(s, a) =
1(a) in conjunction with Iπ(a|s) = Ea∼Iπ[1(a)|s] and
Îβπ(a|s) =

∑
b∈A Îβπ(s, b)1(a)

F. The MuZero Policy Improvement Operator
Recent work (Grill et al., 2020) showed that MuZero’s visit
count distribution was tracking the solution π̄ of a regu-
larised policy optimisation problem:

π̄ = argmaxΠQ
TΠ− λNKL(π,Π)

where KL is the Kullback–Leibler divergence and λN is a
constant dependent on c and the total number N of simula-
tions.

π̄ can be computed analytically:

π̄(a|s) = λN
π(s, a)

Z(s)−Q(s, a)

where Z(s) is a normalising factor such that ∀a ∈
A, π̄(a|s) ≥ 0 and

∑
a∈A π̄(a|s) = 1.

In other words, using the terminology introduced in Sec-
tion 4, MuZero’s policy improvement can be approximately
written:

Iπ(a|s) ≈ f(s, a, Z(s))

where

f(s, a, Z(s)) = λN
π(a|s)

Z(s)−Q(s, a)

and is therefore action-independent.

Let’s consider the visit count distribution Iπ̂β obtained by
searching using prior π̂β = β̂/βπ.

Using (Grill et al., 2020), we can write:

Iπ̂β(s, a) ≈ λN
π̂β(a|s)

Ẑβ(s)−Q(s, a)

= λN
(β̂/βπ)(a|s)

Ẑβ(s)−Q(s, a)

= (β̂/β)(a|s)f(s, a, Ẑβ(s))

where Ẑβ(s) is such that ∀a ∈ A, Iπ̂β(s, a) ≥ 0 and∑
a∈A Iπ̂β(s, a) = 1.

This shows that Iπ̂β is the action-independent sample-based
policy improvement operator associated to Iπ.

