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Abstract
Collecting and aggregating information from sev-
eral probability measures or histograms is a fun-
damental task in machine learning. One of the
popular solution methods for this task is to com-
pute the barycenter of the probability measures
under the Wasserstein metric. However, approxi-
mating the Wasserstein barycenter is numerically
challenging because of the curse of dimension-
ality. This paper proposes the projection robust
Wasserstein barycenter (PRWB) that has the po-
tential to mitigate the curse of dimensionality, and
a relaxed PRWB (RPRWB) model that is com-
putationally more tractable. By combining the
iterative Bregman projection algorithm and Rie-
mannian optimization, we propose two algorithms
for computing the RPRWB, which is a max-min
problem over the Stiefel manifold. The complex-
ity of arithmetic operations of the proposed al-
gorithms for obtaining an ε-stationary solution
is analyzed. We incorporate the RPRWB into a
discrete distribution clustering algorithm, and the
numerical results on real text datasets confirm that
our RPRWB model helps improve the clustering
performance significantly.

1. Introduction
The Wasserstein barycenter (WB) problem is attracting a lot
of interest recently due to its wide applications in statistics
and machine learning, including but not limited to image
processing (Rabin et al., 2011), multi-level clustering (Ho
et al., 2017), and text mining (Ye et al., 2017a;b). The WB
serves as a geodesic interpolation between two or more
distributions. It aggregates the underlying geometric struc-
tures of the input distributions under the Wasserstein metric.
Therefore, the WB model provides deep insight when col-
lecting information from probability distributions.
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However, computing the WB for a set of probability dis-
tributions is notoriously hard. The hardness comes from
two aspects: the representation of the measure support and
the potential curse of dimensionality. In many applications,
the underlying distributions are unknown and we only have
sampled data from these distributions. We wish to estimate
the WB using the sampled data only. Therefore, the task
reduces to compute WB from sampled discrete measures
on a fixed number of support points. However, solving the
free-support discrete WB is still very difficult (Borgwardt
& Patterson, 2019). In this paper, we mainly consider the
fixed-support WB problem. On the other hand, comput-
ing fixed-support WB can be challenging if the dimension
of the problem is high. Recent theoretical developments
have revealed that the sample complexity of approximat-
ing Wasserstein distances grows exponentially in dimension
(Dudley, 1969; Weed & Bach, 2019). For the WB problem,
(Altschuler & Boix-Adsera, 2021) has proved that comput-
ing WB is NP-hard since its runtime scales exponentially
in the dimension. However, the sample complexity of origi-
nal WB is still not well understood. Since the WB model
minimizes a sum of Wasserstein distances, we conjecture
that the WB problem would also have the issue of curse of
dimensionality. To overcome this difficulty, we adopt a tech-
nique used in computing the Wasserstein distance (Paty &
Cuturi, 2019) to the WB problem. The resulting projection
robust WB (PRWB) model is an inf-sup-inf problem, which
is computationally intractable. We further propose a relax-
ation of PRWB that is computationally more tractable. The
idea of the new technique is to project the sampled data to a
common low dimensional subspace and compute the WB of
the projected data as an approximation to the original WB.
The resulting problem is a max-min problem with Stiefel
manifold constraint, and we propose two algorithms that
can find an ε-stationary point of it efficiently.

Related work: Most existing works for fixed-support WB
focus on designing efficient algorithms. (Cuturi & Doucet,
2014) proposed to add an entropy regularizer and solve its
dual problem that is smooth. This idea was further stud-
ied by (Benamou et al., 2015) under the name of iterative
Bregman projection (IBP) algorithm. The convergence be-
havior of IBP was studied in (Kroshnin et al., 2019). There
exist some other algorithms for computing fixed-support
WB, including the dual accelerated gradient descent method
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(Kroshnin et al., 2019; Lin et al., 2020b), the stochastic
gradient descent method (Claici et al., 2018), the Bregman
ADMM method (Ye et al., 2017b) and the interior-point
method (Ge et al., 2019). On the other hand, people have
proposed some efficient ways to mitigate the curse of dimen-
sionality of the optimal transport (OT) problem (Niles-Weed
& Rigollet, 2019). Specifically, (Bonneel et al., 2015) pro-
posed the sliced Wasserstein distance and applied it to the
WB problem. The sliced OT projects the sampled data to a
random line and reduces the problem to a one-dimensional
OT, which can be solved very efficiently by sorting. This
idea motivated the work of (Paty & Cuturi, 2019; Niles-
Weed & Rigollet, 2019) that suggest projecting the data
to a low dimensional subspace. This leads to the projec-
tion robust Wasserstein (PRW) distance, and algorithms for
computing it include (Lin et al., 2020a; Huang et al., 2020).

Contributions: Our main contributions are below.

(i) We propose a projection robust Wasserstein barycenter
(PRWB) model. The PRWB model has the potential to miti-
gate the curse of dimensionality by projecting the probability
measures onto a low dimensional subspace. Since PRWB is
still numerically challenging to solve, we further propose a
relaxation of PRWB (RPRWB) that is more tractable. Our
numerical results indicate that RPRWB is more robust to
noise compared with the WB.

(ii) We propose two algorithms: Riemannian block coordi-
nate descent (RBCD) and Riemannian gradient ascent with
IBP algorithm (RGA-IBP), to compute the RPRWB. The
RGA-IBP incorporates the IBP algorithm to a Riemannian
gradient ascent algorithm, and the RBCD is based on a refor-
mulation of the max-min problem that is suitable for BCD
type algorithms. The complexities of arithmetic operations
of both algorithms for obtaining an ε-stationary point are
analyzed.

(iii) We conduct extensive numerical experiments to show
the robustness and the practicality of the RPRWB model.
We adopt RPRWB to the discrete distribution (D2) cluster-
ing algorithm, which we call the projected D2 clustering.
We test this new algorithm on the real text datasets, and
the numerical results show that the projected D2 clustering
achieves better performance than the D2 clustering.

2. Optimal Transport and Wasserstein
Barycenter

In this section, we review some background in optimal
transport and Wasserstein barycenter.

Denote P(Rd) as the set of Borel probability measures in
Rd and P2(Rd) as a subset of P(Rd) whose elements have
finite second moment. The 2-Wasserstein distance between

probability measures µ, ν ∈P2(Rd) is defined as

W(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
‖x− y‖2dπ(x, y)

)1/2

, (1)

where Π(µ, ν) is the set of all joint distributions with
marginals µ and ν. We denote ∆q = {u ∈ Rq+|u>1q = 1}
as the probability simplex in Rq . The WB of m probability
measures µµµ := {µl}l∈[m] is the solution of the following
problem:

inf
ν∈P2(Rd)

WB(µµµ,ωωω) :=

m∑
l=1

ωlW2(µl, ν), (2)

where ωωω ∈ ∆m is a given weighting vector and [m] :=
{1, . . . ,m}. We use ProjE to denote the orthogonal pro-
jector onto E for any E ∈ Gk, where the Grassman-
nian Gk := {E ∈ Rd|dim(E) = k} is the set of all k-
dimensional subspaces of Rd. For Wasserstein distance,
(Paty & Cuturi, 2019) proposed the projection robust Wasser-
stein distance as follows:

Pk(µ, ν) := sup
E∈Gk

W(ProjEµ,ProjEν). (3)

That is, the probability measures µ and ν are projected onto
the k-dimensional subspace E, and the Wasserstein distance
between the projected measures is computed as an approx-
imation to the original Wasserstein distance. Moreover,
to measure the worst case approximation, the subspace E
that maximizes this Wasserstein distance is sought. The
study in (Niles-Weed & Rigollet, 2019) shows that the pro-
jection robust Wasserstein distance is able to improve the
sample complexity fromO(n−1/d) for Wasserstein distance
to O(n−1/k), where n denotes the nubmer of sampled data.
This is a significant improvement since usually k � d
for high dimensional OT. Therefore, the projection robust
Wasserstein distance can mitigate the curse of dimensional-
ity.

3. Projection Robust Wasserstein Barycenter
Our projection robust Wasserstein barycenter is motivated
by the success of the projection robust Wasserstein distance
and the sliced Wasserstein barycenter proposed in (Bon-
neel et al., 2015). By replacing the Wasserstein distance in
(2) with the PRW distance (3), the fixed-support PRWB is
defined as the solution of the following problem:

inf
ν∈P2(Rd)

m∑
l=1

ωlP2
k(µl, ν). (4)
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Plugging (3) into (4), we have

inf
ν∈P2(Rd)

m∑
l=1

ωl sup
E`∈Gk

W2(ProjE`µ
l,ProjE`ν)

= inf
ν∈P2(Rd)

m∑
l=1

ωl sup
U`∈St(d,k)

inf
πl∈Π(µl,ν)∫

‖U>` (xl − y)‖2dπl(xl, y).

(5)

According to (Paty & Cuturi, 2019)[Proposition 1], PRW
is a well defined distance over P2(Rd) and can be formu-
lated as a sup-inf problem. Moreover, the support of the
barycenter is fixed and our target barycenter ν lies on a prob-
ability simplex. Our PRWB formulation (5) is a inf-sup-inf
problem over m Stiefel manifolds. Solving (5) directly
is extremely difficult, because of the complex inf-sup-inf
structure and also the existence of m Stiefel manifolds con-
straints. Therefore, we propose the following relaxation to
RPWB (5) that is more computationally tractable:

sup
E∈Gk

inf
ν∈P2(Rd)

m∑
l=1

ωlW2(ProjEµ
l,ProjEν)

= sup
U∈St(d,k)

inf
ν∈P2(Rd)

m∑
l=1

ωl inf
πl∈Π(µl,ν)∫

‖U>(xl − y)‖2dπl(xl, y).

(6)

More specifically, we first use a common projector ProjE(·)
for all PRW distances, and then we switch the order of sup
and the first inf . The relaxed model (6) searches for a com-
mon low-dimensional subspace, the union of all subspaces
of m PRW distances, that maximizes the barycenter objec-
tive. Roughly speaking, we solve an easier problem in a
low-dimensional subspace to approximate the original WB
problem. We call (6) the Relaxed PRWB (RPRWB) and
focus on solving this relaxed version in the rest of the paper.
We first study some properties of RPRWB. The following
proposition shows the existence of the optimal subspace E∗.

Proposition 1 Given a probability measure set µµµ, the sup-
port of the barycenter ν, the weight vector ωωω, and k ∈ [d],
there exists an optimal E∗ for the problem (6).

Notice that the target barycenter ν lies on a probability
simplex. This combined with Proposition 1 indicates that
the fixed-support RPRWB problem can be written as a max-
min problem. Using U ∈ St(d, k) to denote an orthonormal
basis of E, the RPRWB can be formulated as

max
U∈St(d,k)

min
πl∈Π(µl,ν)

m∑
l=1

ωl
∫
‖U>(xl − y)‖2dπl(xl, y),

(7)
where St(d, k) denotes the Stiefel manifold, xl is the support
of µl and y is the support of ν.

Remark 2 We remark here that analyzing the sample com-
plexity PRWB is highly nontrivial and the analysis in (Niles-
Weed & Rigollet, 2019) for PRW does not apply here. In fact,
we are not aware of any results for the sample complexity
of the empirical discrete WB problem. There are only some
computational hardness results (Altschuler & Boix-Adsera,
2021) showing WB is NP-hard because of the “curse of di-
mensionality”. Since the WB problem minimizes the sum of
a set of Wasserstein distances, we conjecture that the “curse
of dimensionality” should be inherited by WB. Deriving the
sample complexity of WB and PRWB is an important future
topic.

In this paper, we consider solving WB for a set of discrete
distributions. Specifically, we denote X l = [xl1; · · · ;xln] ∈
Rd×n as the support of each µl and write µl =

∑n
i=1 p

l
iδxli ,

where pl ∈ ∆n and δx denotes the Dirac function at x.
The support of the barycenter ν is given and denoted as
Y = {y1, . . . , yn} ∈ Rd×n. Therefore, the barycenter
can be written as ν =

∑n
i=1 qjδyj with q ∈ ∆n. De-

note πππ = {πl}l∈[m]. Throughout this paper, we denote
M = St(d, k). Computing the fixed-support RPRWB is
equivalent to solving

max
U∈M

min
q∈∆n

m∑
l=1

ωlW2(ProjEµ
l,ProjEν)

= max
U∈M

min
π∈Π(ppp)

f(πππ, U),

(8)

where f(πππ, U) :=
∑m
l=1 ω

l
∑n
i,j=1 π

l
i,j‖U>(xli − yj)‖2,

and Π(ppp) = {πππ | πl ∈ Rn×n+ , πl1 = pl, (πl)>1 =
(πl+1)>1, l ∈ [m]}.

4. The Riemannian Gradient Ascent and
Riemannian BCD Algorithms

In this section, we propose two algorithms for solving (8):
RGA-IBP and RBCD. We can show that both algorithms
find an ε-stationy point of (8) defined as follows.

Definition 3 We call (π̂̂π̂π, Û) ∈ Π(ppp)×M an ε-stationary
point of the fixed-support RPRWB problem (8), if the follow-
ing two inequalities hold:

‖gradUf(π̂̂π̂π, Û)‖F ≤ ε, (9)

f(π̂̂π̂π, Û)− f(πππ∗(Û), Û) ≤ ε, (10)

where gradUf(π̂̂π̂π, Û) is the Riemannian gradient w.r.t. U ,
πππ∗(Û) is the optimal solution of the inner minimization
problem of (8) when fixing U as Û . The corresponding
ε-approximate barycenter q ∈ ∆n can be computed as
q = (π̂l)>1,∀l ∈ [m].

Before we present the algorithms, we define some useful
notation first.
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Algorithm 1 The RGA-IBP Algorithm
1: Input: {µl = (X l, pl)}l∈[m], {Y }, accuracy tolerance
ε > 0. Set parameters τ , η, and ρ as in (24).

2: Initialization: U0 ∈ St(d, k).
3: for t = 0, 1, 2, . . . , do
4: πππt+1 = IBPsolver(µµµ, Y , Ut, η, ε);
5: ξt+1 = ProjTUtM(2Vπππt+1

Ut);
6: Ut+1 = RetrUt(τξt+1);
7: if ‖ξt+1‖F ≤ ε then
8: break;
9: end if

10: end for
11: Output: Û = Ut, π̂ππ = πππt+1.

Definition 4 (Cost and Correlation Matrices) Given the
support vectors {X l}l∈[m] and Y , the cost matrices, de-
noted as {Cl}l∈[m], are defined as Cli,j = ‖xli − yj‖2,∀l ∈
[m]. The correlation matrix, denoted as Vπππ, is defined as
Vπππ =

∑m
l=1 ω

l
∑n
i,j=1 π

l
i,j(x

l
i − yj)(xli − yj)> ∈ Rd×d.

4.1. The Riemannian Gradient Ascent with IBP
Iterations

The RGA-IBP algorithm is a natural extension of the RGAS
algorithm (Riemannian gradient ascent with Sinkhorn’s iter-
ation) that was proposed by (Lin et al., 2020a) for computing
the projection robust Wasserstein distance. Here we extend
it to solve the RPRWB problem (8). The RGA-IBP algo-
rithm solves the following problem, which is obtained by
adding an entropy regularization to (8).

max
U∈M

min
πππ∈Π(ppp)

fη(πππ, U) :=

m∑
l=1

ωl
n∑

i,j=1

πli,j‖U>(xli − yj)‖2 − ηH(πl),
(11)

where H(π) := −
∑n
i,j=1(πi,j log πi,j − πi,j) is the en-

tropy regularizer, and η > 0 is a weighting parameter. By
further defining

fη(U) := min
πππ∈Π(ppp)

fη(πππ, U), (12)

we know that (11) is equivalent to the following Riemannian
optimization problem with smooth objective fη(U):

max
U∈M

fη(U). (13)

Problem (13) can be naturally solved by a Riemannian gra-
dient ascent algorithm whose t-th iteration is:

Ut+1 := RetrUt(τgrad fη(Ut))

where Retr denotes the retraction operation, grad fη denotes
the Riemannian gradient of fη, and τ > 0 is a step size.

Moreover, it is easy to verify that

gradfη(U) = ProjTUM(2Vπππ∗η(U)U), (14)

where TUM denotes the tangent space of M at U , and
πππ∗η(U) is the optimal solution of (12) that can be found by
the IBP algorithm (see details in Algorithm 4).

The RGA-IBP algorithm is detailed in Algorithm 1, where
the IBP solver solves (12) up to an accuracy ε (see Algo-
rithm 4 in the supplementary material).

4.2. The Riemannian Block Coordinate Descent
Algorithm

Notice that the RGA-IBP requires to solve an optimiza-
tion problem (12) in each iteration using an iterative solver.
This can be quite expensive in practice. In this section, we
propose the RBCD algorithm that can alleviate this compu-
tational burden. The RBCD algorithm presented here can be
regarded as an extension of the algorithm recently proposed
in (Huang et al., 2020) for computing the projection robust
Wasserstein distance.

First, note that the optimization problem in (12) is convex
and we have the following result about its dual.

Lemma 5 The dual problem of (12) is equivalent to the
following problem:

max
u,vu,vu,v∈Rm×n,

∑m
l=1 ω

lvl=0
−

m∑
l=1

ωl


n∑

i,j=1

πlij − 〈ul, pl〉

 ,

(15)
where πlij = [π(ul, vl, U)]ij is given by:

π(ul, vl, U)ij = exp

(
−‖U

>(xli − yj)‖2

η
+ uli + vlj

)
.

(16)
As a result, we know that (11) is equivalent to:

min
u,vu,vu,v∈Rm×n, U∈M,∑m

l=1 ω
lvl=0

g(uuu,vvv, U) :=

m∑
l=1

ωl


n∑

i,j=1

πli,j − 〈ul, pl〉

 .

(17)

Note that (17) has three block variables and it is suitable for
block coordinate descent method. Our RBCD for solving
(17) updates the iterates as follows:

uuut+1 := argmin
uuu

g(uuu,vvvt, Ut) (18)

vvvt+1 := argmin
vvv:
∑m
l=1 ω

lvl=0

g(uuut+1, vvv, Ut) (19)

Ut+1 := RetrUt(−τgradUg(uuut+1, vvvt+1, Ut)). (20)
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Algorithm 2 The RBCD Algorithm
1: Input: {µl = (X l, pl)}l∈[m], {Y }, accuracy tolerance
ε > 0. Set parameters τ , η and ρ as in (27).

2: Initialization: U0 ∈ St(d, k), uuu0, vvv0 ∈ Rm×n,
3: for t = 0, 1, 2, . . . , do
4: Compute ut+1ut+1ut+1, vt+1vt+1vt+1 by (21)-(22);
5: Compute Ut+1 by (20);
6: if

∑m
l=1 ω

l‖qlt − q̄t‖1 ≤ w3/2ε/(12c̄), and
η‖gradUg(uuut+1, vvvt+1, Ut)‖F ≤ ε/3 then

7: break;
8: end if
9: end for

10: Output: q = q̄t =
∑m
l=1 ω

lqlt, Û = Ut, and π̂l =
Round(πl(ult+1, v

l
t, Ut), p

l, q),∀l ∈ [m].

According to (Benamou et al., 2015)[Propositions 1, 2], uuu
and vvv steps in (18) and (19) are the same as the steps in the
IBP algorithm, and they admit closed-form solutions below:

ult+1 = ult + log
pl

π(ult, v
l
t, Ut)1

, ∀l ∈ [m], (21)

vlt+1 = vlt + log
qt+1

qlt
, ∀l ∈ [m], (22)

where we denote qlt = (π(ult+1, v
l
t, Ut))

>1 and qt+1 =
exp(

∑m
l=1 ω

l log qlt). Notice that (21)-(22) renormalize the
sum of rows and columns of each πl to be pl and qt+1,
which yields 〈qlt,1〉 = 1,∀l ∈ [m]. Moreover, the update
(20) requires to compute gradUg, and from (16) and (17)
we know that

gradUg(uuu,vvv, U) = ProjTUM(−2

η
Vπππ(uuu,vvv,U)U). (23)

By combining (18)-(23), we can summarize the details of
the RBCD in Algorithm 2, in which we have adopted the
following notation for the simplicity of presentation:

c̄ := max
l
‖Cl‖∞, ω = min

l
ωl.

Note that in Algorithm 2 we adopted a rounding procedure
for the output. This is because that π computed according to
(16) does not necessarily lie in the constraint set Π(ppp). The
rounding procedure proposed in (Altschuler et al., 2017)
and outlined in Algorithm 3 can help round the solution to
set Π(ppp). Note that this rounding procedure is also adopted
in the IBP algorithm and thus in the RGA-IBP algorithm.

5. Convergence Analysis
In this section, we give the complexities of both the iteration
number and the arithmetic operations for both RGA-IBP and
RBCD for obtaining an ε-stationary point of (8) as defined in

Algorithm 3 Round(π, p, q)

1: Input: π ∈ Rn×n, p ∈ Rn, q ∈ Rn.
2: X = Diag (x) with xi = pi

[π1]i
∧ 1

3: π′ = Xπ
4: Y = Diag (y) with yj = qi

[(π′)>1]j
∧ 1

5: π′′ = π′Y
6: errp = p− π′′1, errq = q − (π′′)>1
7: Output: π′′ + errperr

>
q /‖errp‖1.

Definition 3. The proofs are provided in the supplementary
materials.

The next theorem and corollary are for RGA-IBP algorithm.

Theorem 6 Choose parameters

τ =
1

8L2c̄+ 2ρL2
1

, η =
ε

4 log(n) + 2
, ρ = 2c̄+

4c̄2

η
.

(24)
The Algorithm 1 returns an ε-stationary point defined in
Definition 3 in

T = O(log(n)2L2
1c̄

4kε−4) (25)

iterations.

Corollary 7 The per iteration arithmetic operations com-
plexity of Algorithm 1 is O(mn2dk +mn2c̄6 log(n)2ε−6).
Therefore, the total arithmetic operations complexity of Al-
gorithm 1 is

O(mn2dk +mn2c̄6 log(n)2ε−6) ·O(log(n)2L2
1c̄

4kε−4)

= log(n)2L2
1c̄

4kO(mn2dkε−4 +mn2c̄6 log(n)2ε−10).
(26)

The next theorem and corollary are for RBCD algorithm.

Theorem 8 Choose parameters

τ =
1

4L2c̄/η + ρL2
1

, η =
ε

4 log(n) + 2
, ρ =

2c̄

η
+

4
√
kc̄2

η2
.

(27)
The Algorithm 2 returns an ε-stationary point defined in
Definition 3 in

T = O
(
L2

1c̄
5 log(n)

√
kω−3ε−3

)
(28)

iterations.

Corollary 9 The per iteration arithmetic operations com-
plexity of Algorithm 2 isO(mn2d).Therefore, the total arith-
metic operations complexity of Algorithm 2 is

O
(
mn2 log(n)dL2

1c̄
5k

3
2ω−3ε−3

)
. (29)
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Remark 10 Comparing (26) with (29), we see that RBCD
has a better complexity dependence on ε and c̄. However,
RBCD has an extra term ω ≤ 1

m . Therefore, RGA-IBP has
a better theoretical complexity when m is large.

6. Numerical Experiments
In this section, we conduct numerical experiments on both
synthetic datasets and real datasets to evaluate the proposed
RPRWB model (8)1. For the synthetic dataset, we consider
solving RPRWB for a set of Gaussian distributions, which
has closed-form solutions (Agueh & Carlier, 2011). We
compare the convergence rate of WB and RPRWB to the
ground truth for the sampled discrete distributions, as well as
the robustness against noise for the RPRWB model. For real
datasets, we incorporate the RPRWB model to the discrete
distribution (D2) clustering algorithm (Ye et al., 2017b) and
test it on text datasets. All experiments are conducted on a
Linux server with a 32-core Intel Xeon CPU (E5-2667, v4,
3.20GHz per core).

6.1. Synthetic Dataset

Multi-variable Gaussian Distributions: It is well-
known that the Wasserstein barycenter of a set of multi-
variable Gaussian distributions {µl}l∈[m] with µl =

N (al,Σl), where al is the mean and Σl is the covariance
matrix, has a closed-form formula (Agueh & Carlier, 2011).
Specifically, we have the following theorem.

Theorem 11 ((Agueh & Carlier, 2011)) Let µ1, ..., µm

be Gaussian distributions with respective means a1, . . . , am

and covariance matrices Σ1, ...,Σm. The barycenter of
µ1, ..., µm with weights ω1, ..., ωm is the Gaussian distri-
bution with mean ā =

∑m
l=1 ω

lal and covariance matrix Σ
defined as the only positive definite matrix satisfying the
equation

S =

m∑
l=1

ωl
(
S1/2ΣlS1/2

)1/2

. (30)

In this subsection, we compute the WB and RPRWB of a
given set of zero-mean multi-variable Gaussian distributions
{µl}l∈[m], µl = N (0,Σl). We set ωl = 1

m ,∀l ∈ [m] in all
experiments.

The dependence of RPRWB on k. We first explore the
dependence of the objective function value on k. For each
µl, we sample an empirical measure µln. Specifically, we
sample n points according to the Gaussian distribution
µl = N (0,Σl) to form the support matrix X l ∈ Rd×n and
set pli = 1

n , i ∈ [n]. We set each of the covariance matrices

1Code available at https://github.com/mhhuang95/
PRWB.

Σl to be a SPD matrix with rank k∗. Therefore, X l lies in a
k∗-dimensional subspace and the barycenter of {µln}l∈[m]

should be in a (m × k∗)-dimensional subspace. The sup-
port of the barycenter Y ∈ Rd×n is obtained by applying
k-means clustering on X = [X1; · · · ;Xm] ∈ Rd×mn.
We set parameters as d = 100,m = 3, n = 10. We
further set the step size τ = 0.0005 for both RBCD and
RGA-IBP algorithms and η = 0.5 ·mid({Cl}l∈[m]), where
mid({Cl}l∈[m]) is the median of the entries of {Cl}l∈[m].

Figure 1. RPRWB function value versus projection dimension k.
We run Algorithms 2 and 1 on different k and averaging over 100
runs,

We run both RBCD and RGA-IBP for solving (8) with
different k∗ and k, and report the results in Figure 1. From
Figure 1 we see that the RPRWB values computed by the
two algorithms are almost the same. We also notice that the
RPRWB value increases when k < m× k∗ and remains as
a constant when k ≥ m × k∗, which verifies the fact that
the barycenter of {µln}l∈[m] lies in a (m× k∗)-dimensional
subspace.

Robustness Against Noise. We further conduct experi-
ments on comparing the robustness of WB and RPRWB
against noise. Specifically, we add Gaussian noise
σN (0, I), where σ is the noise level, to the discrete support
{X l}l∈[m]. We compare the relative error of the objective
function value for WB and RPRWB under different noise
level σ. The relative error for WB and RPRWB is defined
as

Relative Error =
OBJ({µln}σ)−OBJ({µln}0))

OBJ({µln}0)
,

where {µln}σ denotes the distributions after adding noise
σN (0, I) and OBJ denotes the objective function of
WB (the discrete version of (2)) or RPRWB (8). We
set parameters as d = 100,m = 3, n = 10, σ ∈
[0.01, 0.1, 1, 2, 4, 7, 10]. We choose the step size τ = 0.001
when σ < 7 and τ = 0.0005 otherwise for both RBCD

https://github.com/mhhuang95/PRWB
https://github.com/mhhuang95/PRWB
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and RGA-IBP algorithms and η = 0.5 · mid({Cl}l∈[m]).
The results are shown in Figure 2, which shows that the
proposed RPRWB model is more robust to noise compared
to the WB.

Figure 2. Relative error of the WB and RPRWB function value on
different noise level σ. The results are averaged on 100 runs.

Convergence rate to the ground truth. We further con-
sider approximating the Wasserstein barycenter for a set
of continuous distributions by sampling data. Note that
(Niles-Weed & Rigollet, 2019) proved that for a so-called
spiked transport model, the mean projection robust Wasser-
stein distance between the sampled empirical distributions
is O(n−1/k), which improves the corresponding complex-
ity of O(n−1/d). We conjecture that similar results hold
for WB and RPRWB and give some numerical evidence in
this section. We set d = 10,m = 2, k = 2. The covari-
ance matrices Σ1,Σ2 ∈ Rd×d are diagonal matrices with
Σ1(1, 1) = 10.1, Σ2(2, 2) = 10.1 and the rest of diagonal
elements are all 0.1. In this case, a 2-dimensional subspace
catches most of the information about the barycenter. We
then sample n points as the support for each of µl. To
have a better estimation, the probability for xli is computed
according to the Gaussian PDF:

Prob(xli) =
1

(2π)d/2det(Σl)1/2
e−

1
2 (xli)

T (Σl)−1(xli).

We sampled the support of the barycenter Y according to
a uniform distribution over [−2, 2]d. The barycenter Mean
Estimation Error is defined as

MEE = |OBJ({µl})−OBJ({µln})|,

where the ground truth objective function OBJ({µl}) is
calculated by solving (30) and OBJ({µln}) is the sampled
barycenter objective function value of the WB or RPRWB
model. We set the step size τ = 0.05 for both RBCD and
RGA-IBP algorithms and η = 0.5 · mid({Cl}l∈[m]) and
select n ∈ {20, 50, 100, 250, 500, 1000}. The results are
shown in Figure 3, which shows that the proposed RPRWB
model converges to the ground truth much faster than the
WB.

Figure 3. Mean Estimation Error (MEE) on different n. The results
are averaged on 500 runs.

Computational time comparison. We compare the
mean computational time of the WB solved by the IBP
algorithm (Benamou et al., 2015) and the proposed RPRWB
solved by RBCD and RGA-IBP. We set d = 100,m =
3, k = 2 and select n ∈ {20, 50, 100, 250, 500, 1000}.
We generate the support matrices X l ∈ Rd×n from
µl = N (0,Σl) by empirical sampling. The support
of the barycenter Y ∈ Rd×n is obtained by k-means
clustering. We further set the step size τ = 0.01 for
both RBCD and RGA-IBP algorithms and η = 0.5 ·
mid({Cl}l∈[m]). We stop the RBCD algorithm when
η‖gradUg(uuut+1, vvvt+1, Ut)‖F ≤ ε, 1

m

∑m
l=1 ‖qlt−q̄t‖1 ≤ ε,

and the RGA-IBP algorithm when ‖gradUf(ξt+1)‖F ≤ ε,
and we set ε = 10−4. The results are shown in Figure 4,
which shows that RBCD always runs faster than RGA-IBP.
Note that the IBP for solving WB runs much faster than the
other two algorithms, and this is because the latter two solve
a more difficult problem.

Figure 4. Computational time of the WB model solved by the IBP
algorithm and the RPRWB model solved by RBCD and RGA-IBP
algorithms on different n. The results are averaged on 100 runs.

6.2. Real Dataset: text data

We consider the discrete distributions (D2) clustering model
proposed in (Ye et al., 2017b), which requires to solve the
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Figure 5. AMI scores for each iteration. Left: the “Reuters Subset” dataset, Middle: the “BBCsport Abstract” dataset, Right: the
“BBCnews Abstract” dataset. The results are averaged on 5 runs.

free-support discrete Wasserstein barycenter model:

min
ν

1

m

m∑
l=1

W(µl, ν)

= min
πππ∈Π(ppp),Y ∈Rd×n

1

m

m∑
l=1

n∑
i,j=1

πli,j‖xli − yj‖2,
(31)

Note that there are two block variables: πππ and Y . (Ye
et al., 2017b) proposed to solve (31) using an alternating
mimization algorithm. That is, one alternatingly minimizes
the objective function (31) with respect to one variable
and with the other one fixed. This procedure is repeated
until no progress can be made. When Y is fixed, prob-
lem (31) becomes a fixed-support WB problem. When
Π = [π1; · · · ;πm] is fixed, we have the following closed-
form solution for Y :

yi =
1

mqi

m∑
l=1

n∑
j=1

πli,jx
l
j , (32)

which can be written more compactly as Y =
1
mXΠ>diag(1/q).

Since we have numerically demonstrated that RPRWB
might be a better model than WB, we propose to replace
the WB problem in D2 clustering by RPRWB. We call the
resulting algorithm projection robust D2 clustering (PD2
clustering). More details of the D2 and PD2 clusterings
can be found in the supplementary material. We compare
the performance of D2 and PD2 clusterings on three text
datasets listed in Table 1. The “Reuters Subset” is a 5-class
subset of the “Reuters” dataset 2. The “BBCnews Abstract”
and “BBCsport Abstract”3 (Greene & Cunningham, 2006)
are truncated versions of 2,225 and 737 posts. Each doc-
ument retains only the title and the first sentence of the
original post.

Preprocessing. We follow the idea of treating each doc-
ument as a bag of word-vectors. For all three datasets in

2https://www.nltk.org/book/ch02.html
3http://mlg.ucd.ie/datasets/bbc.html

Table 1. Text Datasets. N is the number of data, n is the number
of samples, and K is the number of clusters.

Dataset N d n K

Reuters Subset 1209 300 16 5
BBCnews Abstract 2225 300 16 5
BBCsport Abstract 737 300 16 5

Table 1, we use the pre-trained word-vector dataset GloVe
(Pennington et al., 2014) to transform a list of words to a
measure over R300. The weight of each word is the normal-
ized frequency modified by the TF-IDF scheme. We use
the GloVe 300d (word vectors ∈ R300) that was trained on
6 billion tokens and contains a 400,000 lower case vocabu-
lary. Before we transform words into vectors, we lower the
capital letters, remove all punctuations and stop words and
lemmatize each document. Finally, we restrict the number
of support points to n by recursively merging the closest
words. Specifically, when the number of different words in
µl is larger than n, we solve the following discrete optimiza-
tion problem:

min
i,j

plip
l
j‖xli − xlj‖2/(pli + plj), (33)

and merge pli, p
l
j as p̄l = pli + plj , x̄ = (plix

l
i − pljxlj)/p̄l.

Parameter setting and initialization. In each iteration
of PD2 clustering, we run the RBCD algorithm with the
step size τ = 0.05, the regularization parameter η = 1.
We choose k = 2 for the “BBCsport Abstract” dataset
and k = 3 for the “Reuters Subset” and the “BBCnews
Abstract” datasets. The initial K barycenters are chosen
randomly from documents with more than n different words
and recursively merged so the number of support points
remains n.

The Adjusted Mutual Information. To measure the
performance of the clustering results, we use the Ad-
justed Mutual Information (AMI) (Vinh et al., 2010).
Denote PV (i) = |Vi|/N as the probability of clus-
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ter i in the partition V . The entropy H(V ) is de-
fined as H(V ) = −

∑SV
i=1 PV (i) logPV (i), where SV

is the number of clusters in V . The mutual infor-
mation between the two partitions V1, V2 is defined
as MI(V1, V2) =

∑SV1 ,SV2
i,j=1 PV1,V2

(i, j) log
PV1,V2 (i,j)

PV1 (i)PV2 (j) ,

where PV1,V2
(i, j) = |V1,i ∪ V2,j |/N . The AMI score be-

tween two partitions V1, V2 is computed by

AMI(V1, V2) =
MI(V1, V2)− EMI(V1, V2)

(H(V1) +H(V2))/2− EMI(V1, V2)
.

The AMI score lies in the interval [0, 1], and it remains
unchanged when we permute the cluster labels. In our
experiments, we present the AMI scores between the ground
truth labels and the predicted labels.

Clustering results. We run D2 and PD2 on the two real
datasets in Table 1. The final AMI score and the average
number of iterations for different datasets are given in Tables
2 and Table 3 respectively. We apply k-means clustering
on the raw TF-IDF vectors as a baseline. Each result is
averaged over five runs with different initialization. We
stop the D2 and PD2 algorithms when the labels for each
cluster are stable. Comparing the AMI scores in Table 2,
we see that the proposed RPRWB model improves the per-
formance of text clustering. One possible reason is that for
many real high dimensional datasets, a low dimensional
subspace catches most of the information. Notice that the
D2 clustering AMI scores reported here are smaller than
those in (Ye et al., 2017a). This is because the clustering
performance highly depends on the barycenter initialization,
and we are reporting the average AMIs with different ini-
tialization while (Ye et al., 2017a) reported the best AMI
they obtained. We further see that the average number of
iterations of the PD2 algorithm is smaller. Moreover, we
plot the AMI scores for the first ten iterations of the D2
and PD2 clustering algorithm in Figure 5. We see that the
PD2 clustering algorithm gives better AMI scores than the
D2 clustering algorithm, which shows the advantage of the
proposed RPRWB model.

Table 2. AMI scores for clustering results.

Dataset k-means D2 PD2

Reuters Subset 0.4627 0.4200 0.4713
BBCnews Abstract 0.3877 0.6095 0.6557
BBCsport Abstract 0.4276 0.6510 0.6892

7. Conclusion
In this paper, we have proposed a novel WB model called
the projection robust Wasserstein barycenter, which has the
potential to mitigate the curse of dimensionality for the WB

Table 3. Average number of clustering iteration.

Dataset D2 PD2

Reuters Subset 24.2 23.2
BBCnews Abstract 23.8 22.4
BBCsport Abstract 29.8 14.4

problem. To resolve the computational issue of the PRWB,
we have proposed a relaxed PRWB model: RPRWB. We
have proposed two algorithms, the RBCD algorithm and the
RGA-IBP algorithm for solving the fixed-support RPRWB
problem. We have analyzed the iteration complexity and
complexity of arithmetic operations for both algorithms. Nu-
merical results on synthetic datasets have demonstrated the
robustness and the better sample complexity of the proposed
RPRWB model comparing with the WB model. Moreover,
we have incorporated the RPRWB model to the D2 clus-
tering algorithm, and proposed the projection robust D2
clustering algorithm. Numerical results on real text datasets
show that the PD2 clustering improves the performance of
the D2 clustering. Future directions include deriving sample
complexity for WB, PRWB and RPRWB.
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