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Abstract
The Wasserstein distance has become increasingly
important in machine learning and deep learning.
Despite its popularity, the Wasserstein distance
is hard to approximate because of the curse of
dimensionality. A recently proposed approach to
alleviate the curse of dimensionality is to project
the sampled data from the high dimensional prob-
ability distribution onto a lower-dimensional sub-
space, and then compute the Wasserstein distance
between the projected data. However, this ap-
proach requires to solve a max-min problem over
the Stiefel manifold, which is very challenging
in practice. In this paper, we propose a Rieman-
nian block coordinate descent (RBCD) method
to solve this problem, which is based on a novel
reformulation of the regularized max-min prob-
lem over the Stiefel manifold. We show that the
complexity of arithmetic operations for RBCD to
obtain an ε-stationary point is O(ε−3), which is
significantly better than the complexity of exist-
ing methods. Numerical results on both synthetic
and real datasets demonstrate that our method is
more efficient than existing methods, especially
when the number of sampled data is very large.

1. Introduction
The Wasserstein distance measures the closeness of two
probability distributions on a given metric space. It has a
broad range of applications in machine learning problems,
including the latent mixture models (Ho & Nguyen, 2016),
representation learning (Ozair et al., 2019), reinforcement
learning (Bellemare et al., 2017) and stochastic optimization
(Nagaraj et al., 2019). Intuitively, the Wasserstein distance
is the minimum cost of turning one distribution into the
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other. To calculate the Wasserstein distance, one is required
to solve an optimal transport (OT) problem, which has been
widely adopted in machine learning and data science.

However, it is known that the sample complexity of ap-
proximating Wasserstein distances using only samples can
grow exponentially in dimension (Dudley, 1969; Fournier
& Guillin, 2015; Weed & Bach, 2019; Lei, 2020). This
leads to very large-scale OT problems that are challenging
to solve using traditional approaches. As a result, this has
motivated research on mitigating this curse of dimension-
ality when approximating Wasserstein distance using OT.
One approach for reducing the dimensionality is the sliced
approximation of OT proposed by (Rabin et al., 2011). This
approach projects the clouds of points from two probability
distributions onto a given line, and then computes the OT
cost between these projected values as an approximation
to the original OT cost. This idea has been further stud-
ied in (Kolouri et al., 2016; Bonneel et al., 2015; Kolouri
et al., 2019; Deshpande et al., 2019; Nguyen et al., 2021a;b)
for defining kernels, computing barycenters, and training
generative models. Recently, motivated by the sliced ap-
proximation of OT, (Paty & Cuturi, 2019) and (Niles-Weed
& Rigollet, 2019) proposed to project the distance measures
onto k-dimensional subspaces. The k-dimensional subp-
saces are obtained by maximizing the Wasserstein distance
between two measures after projection. The approach is
called Wasserstein projection pursuit (WPP), and the largest
Wasserstein distance between the two measures after projec-
tion onto the k-dimensional subspaces is called the projec-
tion robust Wasserstein distance (PRW). As proved in (Niles-
Weed & Rigollet, 2019) and (Lin et al., 2020b), WPP/PRW
indeed reduces the sample complexity and resolves the issue
of curse of dimensionality for the spiked transport model.
However, computing PRW requires solving a nonconvex
max-min problem over the Stiefel manifold, which demands
efficient algorithms. In this paper, we propose a novel algo-
rithm that can compute PRW efficiently and faithfully.

In the case of discrete probability measures, one is given
two sets of finite number atoms, {x1, x2, . . . , xn} ⊂ Rd
and {y1, y2, . . . , yn} ⊂ Rd, and two probability distribu-
tions µn =

∑n
i=1 riδxi and νn =

∑n
j=1 cjδyj . Here r =

(r1, r2, . . . , rn)> ∈ ∆n and c = (c1, c2, . . . , cn)> ∈ ∆n,
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∆n denotes the probability simplex in Rn and δx denotes
the Dirac delta function at x. Computing the Wasserstern
distance between µn and νn is equivalent to solving an OT
problem (Villani, 2008):

W2(µn, νn) = min
π∈Π(µn,νn)

〈C, π〉, (1)

where the transporation polytope Π(µn, νn) := {π ∈
Rn×n+ | π1 = r, π>1 = c}, and 1 denotes the n-
dimensional all-one vector. Throughout this paper, C ∈
Rn×n denotes the matrix whose (i, j)-th component is
Cij = ‖xi − yj‖2. Computing the PRW can be cast as
the following max-min problem (Paty & Cuturi, 2019):

P2
k(µn, νn) := max

U∈M
min

π∈Π(µn,νn)
f(π, U) :=

n∑
i,j=1

πij‖U>xi − U>yj‖2.
(2)

Throughout this paper, M denotes the Stiefel manifold
M ≡ St(d, k) := {U ∈ Rd×k | U>U = Ik×k}. Here
integer k ∈ [d], where [d] denotes the set of integers
{1, 2, . . . , d}. Note that ‖U>xi − U>yj‖2 is the distance
between the projected xi and yj and U denotes a basis of
the k-dimensional subspace. Due to its nonconvex nature,
solving (2) is not an easy task. In fact, (Paty & Cuturi, 2019)
concluded that the PRW (2) is difficult to compute, and
they proposed to solve its corresponding dual problem – the
subspace robust Wasserstein distance (SRW):

S2
k(µn, νn) := min

π∈Π(µn,νn)
max
U∈M

f(π, U), (3)

where f is defined in (2). It is shown in (Paty & Cuturi,
2019) that the SRW (3) is equivalent to:

S2
k(µn, νn) = max

0�Ω�I,Tr(Ω)=k
s(Ω) :=

min
π∈Π(µn,νn)

∑
ij

πij(xi − yj)>Ω(xi − yj),

(4)
which can be viewed as maximizing the concave function
s(Ω) over the convex set {Ω | 0 � Ω � I,Tr(Ω) = k},
where Tr(Ω) denotes the trace of matrix Ω. Problem (4) is
a convex optimization problem and thus numerically more
tractable. (Paty & Cuturi, 2019) proposed a projected sub-
gradient method for solving (3), and in each iteration com-
puting the subgradient of s requires solving an OT problem
in the form of (1). To improve the computational efficiency,
they also proposed a Frank-Wolfe method for solving the
following entropy-regularized SRW:

max
0�Ω�I,Tr(Ω)=k

sη(Ω) :=

min
π∈Π(µn,νn)

∑
ij

πij(xi − yj)>Ω(xi − yj)− ηH(π),
(5)

where H(π) = −
∑
ij(πij log πij − πij) is the entropy reg-

ularizer and η > 0 is a weighting parameter. Each iteration
of the Frank-Wolfe method requires solving a regularized
OT (REGOT) problem in the following form:

min
π∈Π(µn,νn)

〈M,π〉 − ηH(π), (6)

for a given matrix M ∈ Rn×n. Solving (6) can be done
more efficiently using the Sinkhorn’s algorithm (Cuturi,
2013). However, note that solving (3) does not yield a
solution to (2) because there exists a duality gap.

More recently, (Lin et al., 2020a) proposed a Riemannian
gradient method to compute the PRW (2). More specifically,
they proposed the RGAS (Riemannian Gradient Ascent with
Sinkhorn Iteration) algorithm for computing the PRW with
entropy regularization:

max
U∈M

p(U) := min
π∈Π(µn,νn)

fη(π, U) :=∑
ij

πij‖U>xi − U>yj‖2 − ηH(π).
(7)

(Lin et al., 2020a) proved that the RGAS algorithm com-
bined with a rounding procedure (will be discussed later)
gives an ε-stationary point to the PRW problem (2). A typi-
cal iteration of RGAS can be described as:

πt+1 := REGOT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], U
t, η)

ξt+1 := grad p(U t)

U t+1 := RetrUt(τξ
t+1).

Here grad p denotes the Riemannian gradient of function
p, Retr denotes a retraction operator on the manifold M,
and πt+1 is the optimal solution to the REGOT problem
(6) with Mij = ‖(U t)>(xi − yj)‖22. Note that computing
ξt+1 in fact requires πt+1, and the latter further requires to
solve a REGOT problem (6). This can be costly because an
iterative solver for REGOT is needed in every iteration.

Our contributions. Motivated by the demand for efficient
algorithms for computing PRW (2), we design a novel Rie-
mannian block coordinate descent (RBCD) algorithm for
solving this problem, and analyze its convergence behavior.
Our main contributions of this paper lie in several folds. (i)
We propose an equivalent formulation of (7), which con-
sists a minimization problem only and thus is much easier
to solve than the max-min problem (7). (ii) We propose
a RBCD algorithm for solving the equivalent formulation
of (7). The per-iteration complexity of RBCD is much
lower than the existing methods in (Paty & Cuturi, 2019)
and (Lin et al., 2020a), as it does not need to solve OT or
REGOT problems. This makes our algorithm suitable for
large-scale problems. (iii) We propose a variant of RBCD
(named RABCD) in the supplementary material that adopts
an adaptive step size for the Riemannian gradient step. This
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stategy helps speed up the convergence of RBCD in practice.
(iv) We prove that the complexity of arithmetic operations
of RBCD and RABCD are both O(ε−3) for obtaining an ε-
stationary point of problem (2). This significantly improves
the corresponding complexity of RGAS, which is O(ε−12).

Notation. We denote the tangent space of a Riemann-
nian manifold M as TUM. The Riemannian metric in-
duced from the Euclidean inner product is 〈ξ, η〉U =
Tr(ξ>η),∀ξ, η ∈ TUM.

2. A Riemannian Block Coordinate Descent
Algorithm for Computing the PRW

In this section, we present our RBCD algorithm for com-
puting the PRW (2). Our algorithm is based on a new re-
formulation of the entropy-regularized problem (7). First,
we introduce some notation for the ease of the presenta-
tion. We denote ϕ(π) := π1, and κ(π) := π>1. The inner
minimization problem in (7) can be equivalently written as

min
π

∑
ij

πij‖U>xi − U>yj‖2 − ηH(π),

s.t., ϕ(π) = r, κ(π) = c,

(8)

which is a convex problem with respect to π. The La-
grangian dual problem of (8) is given by:

max
α,β

min
π

∑
ij

πij‖U>xi − U>yj‖2 − ηH(π)

+ α>(ϕ(π)− r) + β>(κ(π)− c),
(9)

where α and β denote the Lagrange multipliers of the two
equality constraints. It is easy to verify that the optimality
conditions of the minimization problem in (9) are given by:

0 = ‖U>xi−U>yj‖2+η log πij+αi+βj , ∀1 ≤ i, j ≤ n,

from which we know that

πij = exp((−αi − βj − ‖U>xi − U>yj‖2)/η). (10)

Substituting (10) into (9), we know that (9) is equivalent to

max
α,β

− η
∑
ij

exp

(
−αi + βj + ‖U>xi − U>yj‖2

η

)
−
∑
i

riαi −
∑
j

cjβj .

(11)
By combining (11) and (7), we know that (7) is equivalent
to the following maximization problem:

max
U∈M,α,β

− η
∑
ij

exp

(
−αi + βj + ‖U>xi − U>yj‖2

η

)
−
∑
i

riαi −
∑
j

cjβj .

(12)

We now define u = −α/η, v = −β/η, and function
π(u, v, U) ∈ Rn×n with

[π(u, v, U)]ij := exp

(
−1

η
‖U>(xi − yj)‖2 + ui + vj

)
.

(13)
Then (12) is equivalent to the following problem:

min
U∈M,u,v∈Rn

g(u, v, U) :=
∑
i,j

[π(u, v, U)]ij − r>u− c>v.

(14)

There are three block variables (u, v, U) in (14), and the
objective function g is a smooth function with respect to
(u, v, U). Moreover, for fixed v and U , minimizing g with
respect to u can be done analytically, and similarly, for fixed
u and U , minimizing g with respect to v can also be done
analytically. For fixed u and v, minimizing g with respect
to U is a Riemannian optimization problem with smooth
objective function. Therefore, we propose a Riemannian
block coordinate descent method for solving (14), whose
t-th iteration updates the iterates as follows:

ut+1 := min
u

g(u, vt, U t) (15a)

vt+1 := min
v

g(ut+1, v, U t) (15b)

Vπ(ut+1,vt+1,Ut) :=
∑
ij

[π(ut+1, vt+1, U t)]ij (15c)

· (xi − yj)(xi − yj)>

ξt+1 :=grad Ug(ut+1, vt+1, U t) = (15d)

ProjTUtM

(
−2

η
Vπ(ut+1,vt+1,Ut)U

t

)
U t+1 :=RetrUt(−τξt+1), (15e)

where the notation Vπ is defined as: Vπ =
∑
ij πij(xi −

yj)(xi − yj)> ∈ Rd×d. Note that (15a) and (15b) admit
closed-form solutions given by

ut+1 = ut + log(r./ϕ(π(ut, vt, U t))) (16)

vt+1 = vt + log(c./κ(π(ut+1, vt, U t))), (17)

where a./b denotes the component-wise division ofvectors
a and b. Moreover, it is easy to verify:

∇Ug(u, v, U) = −2

η
Vπ(u,v,U)U. (18)

Therefore, (15c)-(15e) give a Riemannian gradient step of
g with respect to variable U . Also note that (15c) requires
to compute π(ut+1, vt+1, U t), which can be computed us-
ing (13). The algorithm is terminated when the following
stopping criterion is satisfied:

‖ξt+1‖F ≤
ε1
4η
, ‖r − ϕ(π(ut, vt, U t))‖2 ≤

ε2
8‖C‖∞

,

‖c− κ(π(ut+1, vt, U t))‖1 ≤
ε2

8‖C‖∞
,

(19)



A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

where ε1, ε2 are pre-given accuracy tolerances. The reason
of using this stopping criterion will be clear in the conver-
gence analysis later.

It should be pointed out that the optimal transportation plan
π of (2) is not directly computed by RBCD, because the se-
quence π(ut+1, vt+1, U t) generated in (15) does not satisfy
the constraints in (2). Therefore, a procedure is needed to
compute an approximate solution π to the original problem
(2). Here we adopt the rounding procedure proposed in
(Altschuler et al., 2017), which is outlined in Algorithm 1,
where the notation a ∧ b picks the smaller value between a
and b. Our final transportation plan is computed by rounding
π(ut+1, vt, U t) using Algorithm 1. Combining this round-
ing procedure and the RBCD outlined above, we arrive at
our final algorithm for solving the original PRW problem
(2), which is detailed in Algorithm 2.

Algorithm 1 Round(π, r, c)

1: Input: π ∈ Rn×n, r ∈ Rn, c ∈ Rn.
2: X = Diag (x) with xi = ri

ϕ(π)i
∧ 1

3: π′ = Xπ
4: Y = Diag (y) with yj = ci

κ(π′)j
∧ 1

5: π′′ = π′Y
6: errr = r − ϕ(π′′), errc = c− κ(π′′)
7: Output: π′′ + errrerr

>
c /‖errr‖1.

Algorithm 2 Riemannian Block Coordinate Descent Algo-
rithm (RBCD)

1: Input: {(xi, ri)}i∈[n] and {(yj , cj)}j∈[n], U0 ∈ M,
u0, v0 ∈ Rn, and accuracy tolerance ε1 ≥ ε2 > 0. Set
parameters (L1 and L2 are defined in Proposition A.3)
τ = 1

4L2‖C‖∞/η+ρL2
1

, η = ε2
4 log(n)+2 , ρ = 2‖C‖∞

η +

4
√
k‖C‖2∞
η2 .

2: for t = 0, 1, 2, . . . , do
3: Compute ut+1 by (16)
4: Compute vt+1 by (17)
5: Compute Vπ(ut+1,vt+1,Ut), ξt+1 and U t+1 by (15c)-

(15e)
6: if (19) is satisfied then
7: break
8: end if
9: end for

10: Output: û = ut+1, v̂ = vt, Û = U t, and π̂ =
Round(π(û, v̂, Û), r, c).

Remark 2.1 We remark that (16) and (17) are the steps in
the Sinkhorn’s algorithm (Cuturi, 2013). It is easy to verify
the following identities for any t ≥ 0:

ϕ(π(ut+1, vt, U t)) = r, κ(π(ut+1, vt+1, U t)) = c, (20)

‖π(ut+1, vt, U t)‖1 = ‖π(ut+1, vt+1, U t)‖1 = 1. (21)

3. Convergence Analysis
In this section, we show that (π̂, Û) returned by Algorithm
2 is an ε-stationary point of the PRW problem (2). We
will also analyze its iteration complexity and complexity of
arithmetic operations for obtaining such a point. We include
all proofs in the supplementary material. The ε-stationary
point for problem (2) is defined as follows.

Definition 3.1 We call (π̂, Û) ∈ Π(µ, ν)×M an (ε1, ε2)-
stationary point of the PRW problem (2), if the following
inequalities hold:

‖gradUf(π̂, Û)‖F ≤ ε1, (22a)

f(π̂, Û)− min
π∈Π(µ,ν)

f(π, Û) ≤ ε2. (22b)

Remark 3.2 (Lin et al., 2020a) defined the ε-stationary
point of PRW (2) as the pair (π̂, Û) ∈ Π(µ, ν) ×M that
satisfies:

dist(0, subdiff f(Û)) ≤ ε (23a)

f(π̂, Û)− min
π∈Π(µ,ν)

f(π, Û) ≤ ε, (23b)

where subdiff denotes the Riemannian subgradient, and

f(U) := min
π∈Π(µn,νn)

f(π, U) :=

n∑
i,j=1

πij‖U>xi−U>yj‖2.

In the appendix, we will show that our (22) implies (23) up
to a constant factor when ε1 = ε2 = ε.

We now present the complexity of RBCD.

Theorem 3.3 The RBCD returns an (ε1, ε2)-stationary
point of the PRW problem (2) in

O

(
(n2dk + dk2 + k3) log(n)

√
k

(
1

ε32
+

1

ε21ε2

))
(24)

arithmetic operations, where the O(·) hides constants re-
lated to L1, L2 and ‖C‖∞ only.

Remark 3.4 Note that the complexity of arithmetic oper-
ations of our RBCD is significantly better than the corre-
sponding complexity of RGAS, which is

O(n2d‖C‖4∞ε−4 + n2‖C‖8∞ε−8 + n2‖C‖12
∞ε
−12).

When ε1 = ε2 = ε, our complexity bound (24) reduces to

O((n2dk + dk2 + k3) log(n)
√
kε−3).

Since k = O(1), we conclude that our complexity bound is
significantly better than that of RGAS (Lin et al., 2020a).
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Figure 1. Computation of PRW value P2
k(µ̂, ν̂) depending on the dimension k ∈ [d] and k∗ ∈ {2, 4, 7, 10}, where µ̂ and ν̂ stand for the

empirical measures of µ and ν with n = 100, d = 30. The solid and dash curves are the computation of P2
k(µ̂, ν̂) with the RBCD and

RGAS algorithms, respectively. Each curve is the mean over 100 samples with shaded area covering the min and max values.

Figure 2. Left: The mean estimation error (MEE); Right: The mean subspace estimation error against the number of samples n ∈
{25, 50, 100, 250, 500, 1000}. We set k∗ = 2, d = 30 and calculate the mean estimation error as MEE = |P2

k(µ̂, ν̂) − 4k∗| for the
PRW distance and MEE = |W2

k(µ̂, ν̂)− 4k∗| for the Wasserstein distance. The subspace projection is calculated as Ω̂ = Û Û> in each
run. The shaded areas represent the 10%-90% and 25%-75% quantiles over 500 samples. The shaded areas for two PRW algorithms are
almost the same.

4. Numerical Experiments
In this section, we evaluate the performance of our proposed
RBCD algorithm on calculating the PRW distance for both
synthetic and real datasets1. We mainly focus on the com-
parison of the computational time between the RBCD algo-
rithm and the RGAS algorithm (Lin et al., 2020a), which
is currently the state of the art algorithm for solving the
PRW problem. We use QR factorization as the retraction
operation: RetrU (ξ) = qf(U + ξ) where qf(Z) denotes the
Q-factor of the QR factorization of Z. All experiments in
this section are implemented in Python 3.7 on a Linux server
with an 32-core Intel Xeon CPU (E5-2667, v4, 3.20GHz per
core).

1Code available at https://github.com/mhhuang95/
PRW_RBCD.

4.1. Synthetic Dataset

We first focus on a synthetic example, which is adopted
from (Paty & Cuturi, 2019; Lin et al., 2020a) and its ground
truth Wasserstein distance can be computed analytically.

Fragmented Hypercube: We consider a uniform dis-
tribution over an hypercube µ = U([−1, 1]d) and a
pushforward ν = T#µ defined under the map T (x) =

x+ 2sign(x)� (
∑k∗

k=1 ek), where sign(·) is taken element-
wise, k∗ ∈ [d] and ei, i ∈ [d] is the canonical basis of Rd.
The pushforward T splits the hypercube into 2k

∗
different

hyper rectangles. Since T can be viewed as the subgradi-
ent of a convex function, (Brenier, 1991) has shown that
T is an optimal transport map between µ and ν = T#µ
withW(µ, ν)2 = 4k∗. In this case, the displacement vec-
tor T (x)− x lies in the k∗-dimensional subspace spanned
by {ej}j∈[k∗] and we should have P2

k = 4k∗ for any

https://github.com/mhhuang95/PRW_RBCD
https://github.com/mhhuang95/PRW_RBCD
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Figure 3. Fragmented hypercube with (n, d) = (100, 30) (above) and (n, d) = (250, 30) (bottom). Optimal transport plan obtained by
the Wasserstein distance (left), the PRW distance calculated by the RGAS algorithm (middle) and the PRW distance calculated by the
RBCD algorithm (right). Geodesics in the PRW space are robust to statistical noise.

k ≥ k∗. Moreover, in this case we have U∗ ∈ St(d, k∗)
with U∗(1 : k∗, 1 : k∗) = Ik∗ . For all experiments
in this subsection, we set the parameters as η = 0.2,
εRGAS = ε1 = ε2 = 0.1, τRGAS = τRBCD/η and
τRBCD = 0.005. Figure 1 shows the computation of
P2
k(µ̂, ν̂) on different k with k∗ ∈ {2, 4, 7, 10}. After set-

ting n = 100, d = 30 and generating the Fragmented Hy-
percube data with different k∗, we run both the RBCD and
the RGAS (Lin et al., 2020a) algorithms for calculating the
PRW distance. We see that the PRW value P2

k(µ̂, ν̂) grows
more slowly after k = k∗ for both algorithms, which is
reasonable since the last d− k∗ dimensions only represent
noise. Furthermore, P2

k(µ̂, ν̂) ≈ 4k∗ holds when k = k∗.
Finally, we see that the solutions of both the RBCD and the
RGAS algorithms achieve almost the same quality.

Table 1. CPU time for calculating PRW of the fragmented hyper-
cube problem. We set n = 100.

DIMENSION d 20 50 100 250 500

RBCD 0.14 0.20 0.39 1.70 4.41
RGAS 0.37 0.42 0.66 1.92 4.55
RABCD 0.10 0.09 0.16 0.77 3.14
RAGAS 0.27 0.23 0.23 0.85 3.20
SRW(FW) 1.42 1.82 2.71 8.88 24.25

We present in Figure 2 the mean estimation error (MEE)
for the sampled PRW distance P2

k(µ̂, ν̂) and the sampled
Wasserstein distance W2(µ̂, ν̂) for different choices of
n ∈ {25, 50, 100, 250, 500, 1000}. Theoretically, the MEE
of both the PRW distance and the Wasserstein distance de-
creases as n increases. However, (Niles-Weed & Rigollet,

Table 2. CPU time for calculating PRW of the fragmented hyper-
cube problem. We set d = 50.

n 50 100 250 500 1000

RBCD 0.18 0.18 0.50 1.83 8.51
RGAS 0.33 0.40 1.13 2.90 10.25
RABCD 0.08 0.09 0.23 0.81 3.85
RAGAS 0.17 0.21 0.61 1.48 5.39
SRW(FW) 1.24 1.81 4.58 15.42 64.65

Table 3. CPU time for calculating PRW of the fragmented hyper-
cube problem. We set n = d.

DIMENSION d 20 50 100 250 500

RBCD 0.06 0.16 0.35 2.62 12.75
RGAS 0.18 0.30 0.61 3.20 13.12
RABCD 0.06 0.08 0.12 1.14 7.97
RAGAS 0.16 0.16 0.21 1.40 8.22
SRW(FW) 0.56 1.32 2.84 14.09 50.72

2019) showed that for spiked transport model the conver-
gence rates of the estimation error are different. Specifically,
when d > 4, we have for the sampled Wasserstein distance,
E|W(µ, ν)−W(µ̂, ν̂)| = O(n−1/d), and for the PRW dis-
tance, E|W(µ, ν)−Pk(µ̂, ν̂)| = O(n−1/k), which signifi-
cantly alleviate the curse of dimensionality because k � d.
We set k∗ = 2, d = 20 and generate (µ̂, ν̂) from (µ, ν)
with n points. We calculate the estimation error in each run
as MEE = E|P2

k(µ̂, ν̂)− 4k∗| for the PRW distance and
MEE = E|W2(µ̂, ν̂)− 4k∗| for the Wasserstein distance.
For the PRW distance, we further show the mean subspace
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Table 4. CPU time for calculating PRW of the fragmented hyper-
cube problem. We set n = 10d.

DIMENSION d 10 20 50 100 250

RBCD 0.16 0.45 1.92 11.97 354.91
RGAS 0.66 1.75 4.66 16.58 427.24
RABCD 0.18 0.35 0.92 4.35 129.90
RAGAS 0.79 1.26 2.35 7.22 157.07
SRW(FW) 1.86 3.88 18.47 90.83 1355.86

estimation error ‖Ω̂ − Ω∗‖F in Figure 2. The subspace
projection can be calculated as Ω̂ = Û Û>, where Û is the
output of the algorithm. From Figure 2 we see that as n
increases, both the MEE and the mean subspace estimation
error decrease for both RBCD and RGAS algorithms. More-
over, we see that Wasserstein distance estimation behaves
much worse than the PRW distance when the same number
of samples are used.

We also plot the optimal transport plans between (µ̂, ν̂)
generated by the Wasserstein distance and the PRW distance
calculated by the RGAS and RBCD algorithms. The results
are shown in Figure 3, where we considered the case when
k∗ = 2, d = 30 and n ∈ {100, 250}. From Figure 3 we
see that in both cases, our RBCD algorithm can generate
almost the same transport plans as the RGAS algorithm,
which are also similar to the transportation plan generated
by the Wasserstein distance.

Computational Time Comparison. We compare the
computational time of five different algorithms on com-
puting the PRW distance for the fragmented hypercube
synthetic dataset mentioned above. The algorithms are:
the Frank-Wolfe (FW) algorithm for computing the SRW
distance (Paty & Cuturi, 2019), the RGAS and the RA-
GAS algorithms proposed in (Lin et al., 2020a), and our
RBCD and RABCD algorithms, which is a variant of RBCD
introduced in the supplementary material. The RGAS
and the RAGAS algorithms are terminated when the stop-
ping criteria (19) and (71) are satisfied, respectively. The
RGAS and the RAGAS algorithms are terminated when
‖gradp(U t)‖F ≤ ε. The FW algorithm is terminated when
‖Ωt − Ωt−1‖F < (ε · τRBCD)2.

We fix k∗ = k = 2, and generate the Fragmented Hy-
percube with varying n, d. We further set the thresholds
εRGAS = εRAGAS = ε1 = ε = 0.1 and ε2 = ε21. We
set η = 0.2 when d < 250 and η = 0.5 otherwise. For
fair comparison, we set the step size τRGAS = τRAGAS =
τRBCD/η = τRABCD/η and τRBCD = 0.001. Tables 1
- 4 show the computational time comparison for different
algorithms with different (n, d) pairs. All the reported CPU
times are in seconds.We run each n, d pair for 50 times

and take the average. From Tables 1 - 4, we see that our
RBCD algorithm runs faster than the RGAS algorithm and
our RABCD algorithm runs faster than the RAGAS algo-
rithm in all cases. Moreover, we found that the advantage of
RBCD (resp. RABCD) over RGAS (resp. RAGAS) is more
significant when n is relatively larger than d. Moreover, the
four algorithms for the PRW model are faster than the FW
algorithm for computing the SRW distance.

4.2. Real Datasets

In this section, we conduct experiments on two real datasets.
The first one is a dataset with movie scripts that was used
in (Paty & Cuturi, 2019; Lin et al., 2020a). More specif-
ically, we first compute the PRW distances between each
pair of movies in a corpus of seven movie scripts (Paty
& Cuturi, 2019; Lin et al., 2020a), where each script is
transformed into a list of words. We then use word2vec
(Mikolov et al., 2018) to transform each script into a mea-
sure over R300 with the weights corresponding to the fre-
quency of the words. We then compute the PRW dis-
tances between a preprocessed corpus of six Shakespeare
operas. For both experiments, we set the parameters as
η = 0.1, τRBCD = 0.1, ε = 0.001, τRGAS = τRBCD/η
and project each point onto a 2-dimensional subspace. We
run each experiments for 10 times and take the average
running time. In Tables 5 and 6, the upper right half is
the running time in seconds for RGAS/RBCD algorithms
and the bottom left half is the P2

k distance calculated by
RGAS/RBCD algorithms. We highlight the smaller com-
putational time in each upper right entry and the minimum
PRW distance in each bottom left row. We see that the PRW
distances are consistent and the RBCD algorithm runs faster
than the RGAS algorithm in almost all cases. Moreover,
the results indeed provide very useful information about
the datasets. For example, from Table 5 we know that the
movies “Dunkirk” and “Titanic” are close, and “Kill Bill
Vol.1” and “Kill Bill Vol. 2” are close, because their PRW
distances are small.

We then conduct further experiments on the MNIST dataset.
Specifically, we extract the 128-dimensional features of
each digit from a pre-trained convolutional neural network,
which achieves an accuracy of 98.6% on the test set. Our
task here is to compute the PRW distance by the RGAS and
RBCD algorithms. We set parameters as η = 8, τRBCD =
0.004 and τRGAS = τRBCD/η, ε = 0.1 and compute the
2-dimensional projection distances between each pair of
digits. All the distances are divided by 1000. We run the
experiments for 10 times and take the average running time.
In Table 7, the upper right half is the running time in seconds
for RGAS/RBCD algorithms and the bottom left half is
the P2

k distance calculated by RGAS/RBCD algorithms.
We highlight the smaller computational time in each upper
right entry and the minimum PRW distance in each bottom
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Table 5. Each entry of the Bottom Left half is the P2
k distance calculated by RGAS/RBCD algorithms between different movie scripts.

Each entry of the Upper Right half is the running time in seconds for RGAS/RBCD algorithms between different movie scripts. D =
Dunkirk, G = Gravity, I = Interstellar, KB1 = Kill Bill Vol.1, KB2 = Kill Bill Vol.2, TM = The Martian, T = Titanic.

D G I KB1 KB2 TM T

D -/- 7.13/6.01 8.64/9.03 6.15/5.52 8.69/7.99 7.62/6.60 11.05/10.24
G 0.129/0.129 -/- 14.79/12.68 7.15/5.95 8.48/7.13 13.42/11.06 18.36/16.24
I 0.135/0.135 0.102/0.102 -/- 37.98/32.06 9.47/7.99 17.46/14.80 54.54/49.46
KB1 0.151/0.151 0.146/0.146 0.195/0.155 -/- 7.83/6.87 10.47/8.91 30.83/21.55
KB2 0.161/0.161 0.157/0.157 0.166/0.166 0.088/0.088 -/- 9.69/8.47 11.25/9.23
TM 0.137/0.137 0.098/0.098 0.099/0.099 0.146/0.146 0.152/0.152 -/- 27.15/25.13
T 0.103/0.103 0.128/0.128 0.135/0.135 0.136/0.136 0.138/0.138 0.134/0.134 -/-

Table 6. Each entry of the Bottom Left half is the P2
k distance calculated by RGAS/RBCD algorithms between different Shakespeare

plays. Each entry of the Upper Right half is the running time in seconds for RGAS/RBCD algorithms between different Shakespeare
plays. H5 = Henry V, H = Hamlet, JC = Julius Caesar, TMV = The Merchant of Venice, O = Othello, RJ = Romeo and Juliet. (Note that
the PRW distances are different from those reported in (Lin et al., 2020a). This is because we use a smaller η.)

H5 H JC TMV O RJ

H5 -/- 56.5/44.48 6.63/4.81 19.87/15.69 25.91/20.13 14.06/4.96
H 0.123/0.123 -/- 18.97/15.19 22.11/20.54 14.65/9.22 17.53/20.34
JC 0.117/0.117 0.127/0.126 -/- 5.67/4.72 6.92/5.35 4.35/4.10
TMV 0.134/0.134 0.112/0.112 0.094/0.093 -/- 8.43/6.65 13.75/10.67
O 0.125/ 0.124 0.091/ 0.091 0.086/ 0.086 0.090/0.090 -/- 4.88/4.17
RJ 0.239/0.239 0.249/0.249 0.172/0.172 0.226/0.226 0.185/0.185 -/-

left row. We again observe that the PRW distances are
consistent and the RBCD algorithm runs faster than the
RGAS algorithm in almost all cases. Moreover, results in
Table 7 also show some useful information that is consistent
with our intuitation. For example, it indicates that digits
1 and 7 are easily confused, and digits 5 and 6 are easily
confused, because they have small PRW distances.

More numerical results are provided in the supplementary
materials.

Remark 4.1 In our numerical experiments, we found that
both RBCD and RGAS are sensitive to parameter η. This
phenomenon was also observed when the Sinkhorn’s algo-
rithm was applied to solve the REGOT problem (Cuturi,
2013). Roughly speaking, if η is too small, then it may cause
numerical instability, and if η is too large, then the solution
to REGOT is far away from the solution to the original OT
problem. Moreover, the adaptive algorithms RABCD and
RAGAS are also sensitive to the step size τ , though they
are usually faster than their non-adative versions RBCD
and RGAS. We have tried our best to tune these parame-
ters during our experiments so that the best performance is
achieved for each algorithm. How to tune these parameters
more systematically is left as a future work.

5. Conclusion
In this paper, we have proposed RBCD and RABCD al-
gorithms for computing the projection robust Wasserstein
distance. Our algorithms are based on a novel reformulation
of the regularized OT problem. We have analyzed the iter-
ation complexity of both RBCD and RABCD algorithms,
and this kind of complexity result seems to be new for BCD
algorithm on Riemannian manifolds. Moreover, the com-
plexity of arithmetic operations of our RBCD and RABCD
algorithms is significantly better than that of the RGAS and
RAGAS algorithms. We have conducted extensive numer-
ical experiments and the results showed that our methods
are more efficient than existing methods. Future work in-
cludes better tuning strategies of some parameters used in
the algorithms.
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Table 7. Each entry of the Bottom Left half is the P2
k distance calculated by RGAS/RBCD algorithms for different pair of digits in the

MNIST dataset. Each entry of the Upper Right half is the running time in seconds for RGAS/RBCD algorithms for different pair of
digits in the MNIST dataset. (Note that the PRW distances are different from those reported in (Lin et al., 2020a). This is because we use
a different stopping criteria and our results are more accurate.)

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D0 -/- 15.50/13.64 24.74/ 23.82 12.95/8.91 21.91/7.05 11.50/6.99 15.66/9.49 12.93/17.29 14.82/12.36 12.30/8.19
D1 0.98/0.98 -/- 21.70/30.00 30.09/20.91 17.09/13.72 31.06/30.21 31.31/37.00 45.75/29.92 46.56/44.88 20.12/18.19
D2 0.80/ 0.80 0.67/ 0.66 -/- 24.56/35.84 26.15/7.78 13.28/8.58 20.43/12.54 22.89/9.40 23.78/18.52 12.55/8.19
D3 1.21/1.21 0.87/0.87 0.73/0.72 -/- 28.42/18.37 15.81/11.74 13.57/ 9.77 14.08/9.94 17.01/15.09 32.50/19.92
D4 1.24/1.24 0.67/0.67 1.09/1.09 1.21/1.21 -/- 14.01/11.15 28.69/13.04 18.45/12.14 13.07/7.77 31.79/22.33
D5 1.04/1.04 0.85/0.85 1.09/1.09 0.59/ 0.59 1.01/1.01 -/- 14.40/13.54 19.82/9.33 20.92/13.51 18.58/13.83
D6 0.81/0.81 0.80/0.80 0.91/0.91 1.24/1.24 0.85/0.85 0.72/ 0.72 -/- 13.89/11.11 12.75/8.46 14.14/8.91
D7 0.86/0.85 0.57/ 0.58 0.70/0.71 0.73/0.73 0.80/0.80 0.92/0.92 1.11/1.11 -/- 12.67/7.43 28.14/17.75
D8 1.06/1.06 0.88/0.88 0.68/ 0.68 0.89/0.89 1.10/1.10 0.72/0.72 0.92/0.92 1.08/1.08 -/- 30.87/10.15
D9 1.09/1.09 0.86/0.86 1.07/1.07 0.84/0.84 0.50/ 0.50 0.78/0.78 1.11/1.11 0.61/0.61 0.87/0.87 -/-

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. Princeton University
Press, 2009.

Altschuler, J., Niles-Weed, J., and Rigollet, P. Near-linear
time approximation algorithms for optimal transport via
Sinkhorn iteration. In Advances in neural information
processing systems, pp. 1964–1974, 2017.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449–458,
2017.
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