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Abstract
Learning curves model a classifier’s test error as a
function of the number of training samples. Prior
works show that learning curves can be used to
select model parameters and extrapolate perfor-
mance. We investigate how to use learning curves
to evaluate design choices, such as pretraining,
architecture, and data augmentation. We propose
a method to robustly estimate learning curves, ab-
stract their parameters into error and data-reliance,
and evaluate the effectiveness of different param-
eterizations. Our experiments exemplify use of
learning curves for analysis and yield several in-
teresting observations.

1. Introduction
The performance of a learning system depends strongly on
the number of training samples, but standard evaluations use
a fixed train/test split. While some works measure perfor-
mance using subsets of training data, the lack of a system-
atic way to measure and report performance as a function
of training size is a barrier to progress in machine learning
research, particularly in areas like representation learning,
data augmentation, and low-shot learning that specifically
address the limited-data regime. What gets measured gets
optimized, so we need better measures of learning ability to
design better classifiers for the spectrum of data availability.

In this paper, we establish and demonstrate use of learn-
ing curves to improve evaluation of classifiers (see Fig. 1).
Learning curves, which model error as a function of training
set size, were introduced nearly thirty years ago by Cortes
et al. (1993)) to accelerate model selection of deep networks,
and recent works have demonstrated the predictability of
performance improvements with more data (Hestness et al.,
2017; Johnson & Nguyen, 2017; Kaplan et al., 2020; Rosen-
feld et al., 2020) or more network parameters (Kaplan et al.,
2020; Rosenfeld et al., 2020). But such studies aim to ex-
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trapolate rather than evaluate and have typically required
large-scale experiments that are outside the computational
budgets of many research groups.

Experimentally, we find that the extended power law
etest(n) = α + ηnγ yields a well-fitting learning curve,
where etest is test error and n is the number of training sam-
ples (or “training size”), but that the parameters {α, η, γ}
are individually unstable under measurement perturbations.
To facilitate curve comparisons, we abstract the curve into
two key parameters, eN and βN , that have intuitive mean-
ings and are more stable under measurement variance. eN
is the test error at n = N , and βN is a measure of data-
reliance, how much a classifier’s error will change if the
training size changes. Our experiments show that learning
curves provide insights that cannot be obtained by single-
point comparisons of performance. Our aim is to promote
the use of learning curves as part of a standard learning
system evaluation.

Our key contributions:

• Investigate how to best model, estimate, characterize,
and display learning curves for use in classifier analysis

• Exemplify use of learning curves with analysis of im-
pact of error and data-reliance due to network archi-
tecture, optimization, depth, width, fine-tuning, data
augmentation, and pretraining.

Table 1 shows validated and rejected popular beliefs that
single-point comparisons often overlook. In the follow-
ing sections, we investigate how to model learning curves
(Sec. 2), how to estimate them (Sec. 3), and what they can
tell us about the impact of design decisions (Sec. 4), with
discussion of limitations and future work in Sec. 5.

2. Modeling Learning Curves
The learning curve measures test error etest as a function of
the number of training samples n for a given classification
model and learning method. Previous empirical observa-
tions suggest a functional form etest(n) = α + ηnγ , with
bias-variance trade-off and generalization theories typically
indicating γ = −0.5. We summarize what bias-variance
trade-off and generalization theories (Sec. 2.1) and empiri-
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(a) Typical classifier 
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(c) Model comparison via 
learning curves
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characterizes change in performance 
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samples as shown in (d)

1/ #

Er
ro

r (
%)

% # = ( + *#+

%̃-

1/ .
(# = .)

1/ 4.
(# = 4.)

2/ .
(# = ./4)

%̃1-

%̃-/1

%̃ 2. = %- + 3
4 − 1 6- where  6- = −2*7.+

Local Linear Approximation at .

%̃-/1 = %- + 6-

%̃1- = %- − 0.56-%̃; %̃; = %- − 6-%;
(

%̃- = %-

Figure 1: Evaluation with learning curves vs single-point comparison: Comparing error of models trained on the full
dataset, as shown in (a), is standard practice but provides an incomplete view of a classifier’s performance. We propose
a methodology to estimate and visualize learning curves that model a classifier’s performance with varying amounts of
training data (b,c). We also propose a succinct summary of a model’s curve in terms of error and data-reliance (b,d).

Popular beliefs Your
guess

Supp-
orted?

Exp.
figures

Pre-training on similar domains nearly always helps compared to training from scratch. Y 5a, 5b, 6
Pre-training, even on similar domains, introduces bias that would harm performance with a large enough training set. U 6
Self-/un-supervised training performs better than supervised pre-training for small datasets. N 6
Fine-tuning the entire network (vs. just the classification layer) is only helpful if the training set is large. N 5a, 5b
Increasing network depth, when fine-tuning, harms performance for small training sets, due to an overly complex model. N 7a
Increasing network depth, when fine-tuning, is more helpful for larger training sets than smaller ones. N 7a
Increasing network depth, if the backbone is frozen, is more helpful for smaller training sets than larger ones. N 7d
Increasing depth or width improves more than ensembles of smaller networks with the same number of parameters. Y 7f
Data augmentation is roughly equivalent to using a m-times larger training set for some m. Y 8

Table 1: Deep learning quiz! We encourage our readers to judge each claim as T (true) or F (false) and then see if our
experimental results support the claim (Yes/No/Unsure). In many cases, particularly regarding fine-tuning and network
depth, the results surprised the authors. Our experiments show that learning curve analysis provides a systematic way to
investigate these suppositions and others.

cal studies (Sec. 2.2) can tell us about learning curves, and
describe our proposed abstraction in Sec. 2.3.

2.1. Bias-variance Trade-off and Generalization
Theory

The bias-variance trade-off is an intuitive and theoretically
sound way to think about generalization. The “bias” is
error due to inability of the classifier to encode the opti-
mal decision function, and the “variance” is error due to
limited availability of training samples for parameter esti-
mation. This is called a trade-off because a classifier with
more parameters tends to have less bias but higher variance.
Geman et al. (1992) decompose mean squared regression
error into bias and variance and explore the implications
for neural networks, leading to the conclusion that “iden-
tifying the right preconditions is the substantial problem
in neural modeling”. This conclusion foreshadows the im-
portance of pretraining, though Geman et al. thought the

preconditions must be built in rather than learned. Domin-
gos (2000) extends the analysis to classification. Theoret-
ically, the mean squared error (MSE) can be modeled as
e2test(n) = bias2 + noise2 + var(n), where “noise” is ir-
reducible error due to non-unique mapping from inputs to
labels, and variance can be modeled as var(n) = σ2/n for
n training samples.

The ηnγ term in etest(n) appears throughout machine learn-
ing generalization theory, usually with γ = −0.5. For ex-
ample, the bounds based on hypothesis VC-dimension (Vap-
nik & Chervonenkis, 1971) and Rademacher Complex-
ity (Gnecco & Sanguineti, 2008) are both O(cn−0.5) where
c depends on the complexity of the classification model.
More recent work also follows this form, e.g. (Neyshabur
et al., 2018; Bartlett et al., 2017; Arora et al., 2018; Bousquet
& Elisseeff, 2002). One caveat is that the exponential term
γ can deviate from −0.5 if the classifier parameters depend
directly on n. For example, (Tsybakov, 2008) shows that
setting the bandwidth of a kernel density estimator based on
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n causes the dominant term to be bias, rather than variance,
changing γ in the bound. In our experiments, all training
and model parameters are fixed for each curve, except the
learning schedule, but we note that the learning curve de-
pends on optimization methods and hyperparameters as well
as the classifier model.

2.2. Empirical Studies

Some recent empirical studies (e.g. Sun et al. (2017)) claim
a log-linear relationship between error and training size, but
this holds only when asymptotic error is zero. Hestness et al.
(2017) model error as etest(n) = α+ ηnγ but often find γ
much smaller in magnitude than −0.5 and suggest that poor
fits indicate need for better hyperparameter tuning. This em-
pirically supports that data sensitivity depends both on the
classification model and on the efficacy of the optimization
algorithm and parameters. Johnson & Nguyen (2017) also
find a better fit with this extended power law model than by
restricting γ = −0.5 or α = 0.

In the language domain, learning curves are used in a fasci-
nating study by Kaplan et al. (2020). For natural language
transformers, they show that a power law relationship be-
tween logistic loss, model size, compute time, and dataset
size is maintained if, and only if, each is increased in tan-
dem. We draw some similar conclusions to their study,
such as that increasing model size tends to improve perfor-
mance especially for small training sets (which surprised
us). However, the studies are largely complementary, as we
study convolutional nets in computer vision, classification
error instead of logistic loss, and a broader range of design
choices such as data augmentation, pretraining source, ar-
chitecture, and optimization. Also related, Rosenfeld et al.
(2020) model error as a function of both training size and
number of model parameters with a five-parameter function
that accounts for training size, model parameter size, and
chance performance. A key difference in our work is that
we focus on how to best draw insights about design choices
from learning curves, rather than on extrapolation. As such,
we propose methods to estimate learning curves and their
variance from a relatively small number of trained models.

2.3. Proposed Characterization of Learning Curves for
Evaluation

Our experiments in Sec. 4.1 show that the learning curve
model e(n) = α+ ηnγ results in excellent leave-one-size-
out RMS error and extrapolation. However, α, η, and γ
cannot be meaningfully compared across curves because the
parameters have high covariance with small data perturba-
tions, and comparing η values is not meaningful unless γ
is fixed and vice-versa. This would prevent tabular compar-
isons and makes it harder to draw quantitative conclusions.

To overcome this problem, we propose to report error and

sensitivity to training size in a way that can be derived from
various learning curve models and is insensitive to data
perturbations. The curve is characterized by error eN =
α+ ηNγ and data-reliance βN , and we typically choose N
as the full dataset size. Noting that most learning curves
are locally well approximated by a model linear in n−0.5,
we compute data-reliance as βN = N−0.5 ∂e

∂n−0.5

∣∣
n=N

=

−2ηγNγ . When the error is plotted against n−0.5, βN is
the slope at N scaled by N−0.5, with the scaling chosen to
make the practical implications of βN more intuitive. This
yields a simple predictor for error when changing training
size by a factor of d:

ẽ(d ·N) = eN +

(
1√
d
− 1

)
βN . (1)

This is a first order Taylor expansion of e(n) around n = N
with respect to n−0.5. By this linearized estimate, asymp-
totic error is eN −βN , a 4-fold increase in data (e.g. 400→
1600) reduces error by 0.5βN , and using only one quarter
of the dataset (e.g. 400 → 100) increases the error by βN .
For two models with similar eN , the one with a larger βN
would outperform with more data but underperform with
less. (eN , βN , γ) is a complete re-parameterization of the
extended power law, with γ + 0.5 indicating the curvature
in n−0.5 scale. See Fig. 1d for illustration.

3. Estimating Learning Curves
We now describe the method for estimating the learning
curve from error measurements with confidence bounds
on the estimate. Let eij denote the random variable corre-
sponding to test error when the model is trained on the jth

fold of ni samples (either per class or in total). We assume
{eij}Fi

j=1 are i.i.d according to N (µi, σ
2
i ). We want to esti-

mate learning curve parameters α (asymptotic error), η, and
γ, such that eij = α+ηnγi + εij where εij ∼ N (0, σ2

i ) and
µij = E[eij ] = µi. Sections 3.1 and 3.2 describe how to
estimate mean and variance of α and η for a given γ, and
Sec. 3.3 describes our approach for estimating γ.

3.1. Weighted Least Squares Formulation

We estimate learning curve parameters {α, η} by optimizing
a weighted least squares objective:

G(γ) = min
α,η

S∑
i=1

Fi∑
j=1

wij (eij − α− ηnγ)
2 (2)

where wij = 1/(Fiσ
2
i ). Fi is the number of models trained

with data size ni and is used to normalize the weight so
that the total weight for observations from each training size
does not depend on Fi. The factor of σ2

i accounts for the
variance of εij . Assuming constant σ2

i and removing the Fi
factor would yield unweighted least squares.
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The variance of the estimate of σ2
i from Fi samples is

2σ4
i /Fi, which can lead to over- or under-weighting data

for particular i if Fi is small. Recall that each sample eij
requires training an entire model, so Fi is always small in
our experiments. We would expect the variance to have
the form σ2

i = σ2
0 + σ̂2/ni, where σ2

0 is the variance due
to random initialization and optimization and σ̂2/ni is the
variance due to randomness in selecting ni samples. We
validated this variance model by averaging over the vari-
ance estimates for many different network models on the
CIFAR-100 (Krizhevsky, 2012) dataset. We use σ2

0 = 0.02
in all experiments and then use a least squares fit to esti-
mate a single σ̂2 parameter from all samples e in a given
learning curve. This attention to wij may seem fussy, but
without such care we find that the learning curve often fails
to account sufficiently for all the data in some cases.

3.2. Solving for Learning Curve Mean and Variance

Concatenating errors across dataset sizes (indexed by i)
and folds results in an error vector e of dimension D =∑S
i=1 Fi. For each d ∈ {1, · · · , D}, e[d] is an observation

of error at dataset size nid that follows N (µid , σ
2
id

) with id
mapping d to the corresponding i.

The weighted least squares problem can be formulated as
solving a system of linear equations denoted by W 1/2e =
W 1/2Aθ, where W ∈ RD×D is a diagonal matrix
of weights Wdd = wd, A ∈ RD×2 is a matrix with
A[d, :] = [1 nγd ], and θ = [α η]

T are the parameters
of the learning curve, treating γ as fixed for now. The
estimator for the learning curve is then given by θ̂ =
(W 1/2A)+W 1/2e = Me, where M ∈ R2×D and + is
pseudo-inverse operator.

The covariance of the estimator is given by Σθ̂ = MΣeM
T ,

where Σθ̂ ∈ R2×2 and Σe ∈ RD×D is the diagonal covari-
ance of e with Σe[d, d] = σ2

id
. We compute our empirical

estimate of σ2
i as described in Sec. 3.1.

Since the estimated curve is given by ê(n) = [1 nγ ] θ̂,
the 95% bounds at any n can be computed as
ê(n)± 1.96× σ̂(n) with

σ̂2(n) =
[
1 nγ

]
Σθ̂

[
1
nγ

]
(3)

For a given γ, these confidence bounds reflect the variance in
the estimated curve due to variance in error measurements.

3.3. Estimating γ

We search for γ that minimizes the weighted least squares
objective with an L1-prior that slightly encourages values
close to 0.5. Specifically, we solve

min
γ∈(−1,0)

G(γ) + λ|γ + 0.5| (4)

by searching over γ ∈ {−0.99, ...,−0.01}with λ = 5 (with
error on 100 point scale) for our experiments.

4. Experiments
We validate our choice of learning curve model and estima-
tion method in Sec. 4.1 and use the learning curves to ex-
plore impact of design decisions on error and data-reliance
in Sec. 4.2.

Setup: Each learning curve is fit to test errors measured
after training the classifier on various subsets of the training
data. When less than the full training set is used, we train
multiple classifiers using different partitions of data (e.g.
four classifiers on four quarters of the data). We avoid use
of benchmark test sets, since the curves are used for analysis
and ablation. Instead, training data are split 80/20, with 80%
of data used for training and validation and remaining 20%
for testing. For each curve, all models are trained using
an initial learning rate that is selected using one subset of
training data, and the learning rate schedule is set for each
n based on validation. Unless otherwise noted, models are
pretrained on ImageNet. Other hyperparameters are fixed
for all experiments. Unless otherwise noted, we use the
Ranger optimizer (Wright, 2019), which combines Rectified
Adam (Liu et al., 2020), Look Ahead (Zhang et al., 2019),
and Gradient Centralization (Yong et al., 2020), as prelim-
inary experiments showed its effectiveness. For “linear”,
we train only the final classification layer with the other
weights frozen to initialized values. All weights are trained
when “fine-tuning”. Tests are on Cifar100 (Krizhevsky,
2012), Cifar10, Places365 (Zhou et al., 2017), or Caltech-
101 (L. Fei-Fei; Fergus, 2006). See supplemental materials
(Appendix A) for more implementation details.

4.1. Evaluation of Learning Curves Model and Fitting

We validate our learning curve model using leave-one-size-
out prediction error, e.g. predicting empirical mean perfor-
mance with 400 samples per class based on observing error
from models trained on 25, 50, 100, and 200 samples.

Weighting Schemes. In the Fig. 2 table, learning curve
prediction error is averaged for 16 Cifar100 classifiers with
varying design decisions. We compare three weighting
schemes (w’s in Eq. 2): wij = 1 is unweighted; wij = 1/σ2

i

is weighted by estimated size-dependent standard devia-
tion; wij = 1/(Fiσ

2
i ) makes the total weight for a given

dataset size invariant to the number of folds. On average our
proposed weighting performs best with high significance
compared to unweighted. The p-value is paired t-test of
difference of means calculated across all dataset sizes.

Model Choice. We consider other parameterizations that
are special cases of e(n) = α+ ηnγ + δn2γ . Setting δ = 0
(top row of table) yields the model described in Sec. 2.3
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RMSE

Params Weights R2 25 50 100 200 400 avg p-value

α, η, γ

1
σ2
iFi

0.998 2.40 0.86 0.54 0.57 0.85 1.04 -
1
σ2
i

0.999 2.38 0.83 0.69 0.54 1.08 1.10 0.06
1 0.998 2.66 0.86 0.79 0.50 1.26 1.21 0.008

α, η 1
σ2
iFi

0.988 3.41 1.09 0.69 0.72 1.21 1.42 <0.001

α, η, δ 1
σ2
iFi

0.999 2.89 0.74 0.68 0.56 0.94 1.16 0.05
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α, η, γ (0.16, 0.72, 0.05)

α, η (0.15, 0.2, 0.0)

Figure 2: Learning curve model and weights validation. See Sec. 4.1 for explanation.

and used in our experiments. The table in Fig. 2 shows that
our model outperforms the others, in most cases with high
significance, and achieves a very good fit with R2 of 0.998.

Model Stability. Each data point requires training a clas-
sifier, so we want to verify whether the curves can be esti-
mated from few points. We test stability and sample require-
ments by repeatedly fitting curves to four resampled data
points for a model (Resnet-18, no pretraining, fine-tuned,
tested on Places365). Based on estimates of mean and stan-
dard deviation, one point each at n = {50, 100, 200, 400} is
sampled and used to fit a curve, repeated 100 times. Paren-
theses in legend show standard deviation of estimates of
eN , βN , and γ. Our preferred model extrapolates best to
n = 1600 and n = 25 (plotted as white circles) while
retaining stable estimates of of eN and βN , but predicted
asymptotic error α varies widely. Supplemental material
(Appendix D) shows similar estimates of eN and βN by
fixing γ = −0.5 and fitting only α and η on the three
largest sizes (typically n = {100, 200, 400}), indicating
that a lightweight approach of training a few models can
yield similar conclusions.

4.2. Learning Curve Comparisons

We explore a broad range of design decisions, aiming to
exemplify the use of learning curves and demonstrate that
such analysis leads interesting observations. Most of these
design decisions warrant more complete investigation in
separate papers to draw more general conclusions.

Figures: We plot the fitted learning curves and confidence
bounds, with observed test errors as circles. The legend
displays γ, error eN , and data reliance βN with N = 400
for Cifar100 and Places365 and N = 4000 for Cifar10. The
x-axis is in scale n−0.5 (n in parentheses is the number of
samples per class), but γ is fit for each curve. A vertical bar
indicates n = 1600, which we consider the limit of accurate
extrapolation from curves fit to n ≤ 400 samples. All points
are used for fitting, except in Fig. 5b n = 1600 is held out
to test extrapolation. Best viewed in color.
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e(n) = α + η · nγ

AlexNet (e400 = 26.89; β400 = 12.4; γ = −0.32)

VGG-16(bn) (e400 = 19.1; β400 = 9.79; γ = −0.38)

ResNet-50 (e400 = 18.33; β400 = 4.32; γ = −0.67)

ResNeXt-50(32x4d) (e400 = 16.45; β400 = 4.91; γ = −0.65)

ResNet-101 (e400 = 14.97; β400 = 5.03; γ = −0.62)

Figure 3: Architecture (Cifar100 w/ finetuning)

Network architecture: Advances in CNN architectures
have reduced number of parameters while also reducing
error over the range of training sizes. On Cifar100, AlexNet
has 61M parameters; VGG-16, 138M; ResNet-50, 26M;
ResNeXt-50, 25M; and ResNet-101, 45M. The landmark
architecture papers do not examine effect of training data
size, so it is interesting to see in Fig. 3 that each major
advance through ResNet reduces both data reliance and e400.
ResNeXt appears to slightly reduce e400 without change to
data reliance.

Optimization method: In Fig. 4, we show results on
Cifar10 when training ResNet-18 using four different opti-
mization methods: Ranger (Wright, 2019), Adam (Kingma
& Ba, 2015), stochastic gradient descent (SGD) w/ mo-
mentum, and SGD w/o momentum. With pretraining, all
methods perform similarly, but when training from scratch
Ranger outperforms with lower e4000 and β4000. SGD with-
out momentum performs the worst and is least consistent
across folds. Optimization papers routinely show error as
a function of training iterations, but not the relationship to
training size, so it is interesting to see empirically how the
optimizer matters most with small data sizes and/or no pre-
training, likely because better optimizers reduce variance of
parameter estimation.
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Figure 4: Optimization on Cifar10 with ResNet-18. Without pretraining on left; with ImageNet pretraining on right.

Pretraining and fine-tuning: Some prior works examine
the effectiveness of pretraining. Kornblith et al. (2019) show
that fine-tuned pretrained models outperform randomly ini-
tialized models across many architectures and datasets, but
the gap is often small and narrows as training size grows.
For object detection, He et al. (2019) find that, with long
learning schedules, randomly initialized networks approach
the performance of networks pretrained for classification,
even on smaller training sizes, and Zoph et al. (2020) show
that pretraining can sometimes harm performance when
strong data augmentation is used.

Compared to prior works, our use of learning curve models
enables extrapolation beyond available data and numerical
comparison of data reliance. In Fig. 5 we see that, without
fine-tuning (“linear”), pretraining leads to a huge improve-
ment in e400 for all training sizes. When fine-tuning, the
pretraining greatly reduces data-reliance β400 and also re-
duces e400, providing strong advantages with smaller train-
ing sizes that may disappear with enough data.

Pretraining data sources: In Fig. 6, we test on Ci-
far100 and Caltech-101 to compare different pretrained
models: randomly initialized, supervised on ImageNet or
Places365 (Zhou et al., 2017), and self-supervised on Im-
ageNet (MOCO by He et al. (2020)). The strongest im-
pact is on data-reliance, which leads to consistent orderings
of models across training sizes for both datasets. Super-
vised ImageNet pretraining has lowest eN and βN , then
self-supervised MOCO, then supervised Places365, with
random initialization trailing far behind all pretrained mod-
els. The original papers excluded either analysis of training
size (MOCO) or fine-tuning (Places365), so ours is the first
analysis on image benchmarks to compare finetuned models
from different pretraining sources as a function of training
size. Newly proposed methods for representation learning
would benefit from further learning curve analysis.

Network depth, width, and ensembles: The classical
view is that smaller datasets need simpler models to avoid

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R18; No Pretr; Linear (e400 = 79.29; β400 = 1.32; γ = −0.84)

R18; No Pretr; Finetune (e400 = 27.91; β400 = 18.23; γ = −0.41)

R18; Pretr; Linear (e400 = 32.42; β400 = 5.61; γ = −0.35)

R18; Pretr; Finetune (e400 = 18.86; β400 = 7.28; γ = −0.57)

(a) Transfer: ImageNet to Cifar100

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R18; No Pretr; Linear (e400 = 92.79; β400 = 0.96; γ = −0.5)

R18; No Pretr; Finetune (e400 = 57.89; β400 = 12.86; γ = −0.26)

R18; Pretr; Linear (e400 = 59.91; β400 = 4.16; γ = −0.38)

R18; Pretr; Finetune (e400 = 54.0; β400 = 7.33; γ = −0.28)

(b) Transfer: ImageNet to Places365

Figure 5: Pretraining and fine-tuning with ResNet-18.

overfitting. In Figs. 7a, 7d, we show that, not only do deeper
networks have better potential at higher data sizes, their data
reliance does not increase (nearly parallel and drops a little
for fine-tuning), making deeper networks perfectly suitable
for smaller datasets. For linear classifiers (Fig. 7d), the
deeper networks provide better features, leading to consis-
tent drop in e400. The small jump in data reliance between
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Figure 6: Pretraining sources: test on Cifar100 (left) and Caltech-101 (right).

Resnet-34 and Resnet-50 may be due to the increased last
layer input size from 512 to 2048 nodes. When increasing
width, the fine-tuned networks (Fig. 7b) have reduced e400
without much change to data-reliance. With linear classi-
fiers (Fig. 7e), increasing the width leads to little change or
even increase in e400 with slight decrease in data-reliance.

An alternative to using a deeper or wider network is forming
ensembles. Figure 7c shows that, while an ensemble of
six ResNet-18’s (each 11.7M parameters) improves over
a single model, it has higher e400 and data-reliance than
ResNet-101 (44.5M), Wide-ResNet-50 (68.9M), and Wide-
ResNet-101 (126.9M). Three ResNet-50’s (each 25.6M)
underperforms Wide-ResNet-50 on e400 but outperforms
for small amounts of data due to lower data reliance. Fig. 7f
tabulates data reliance and error to simplify comparison.

Rosenfeld et al. (2020) show that error can be modeled
as a function of either training size, model size, or both.
Modeling both jointly can provide additional capabilities
such as selecting model size based on data size, but requires
many more experiments to fit the curve. Our experiments
show more clearly the effect on data reliance due to different
ways of changing model size.

Data Augmentation: We are not aware of previous stud-
ies on interaction between data augmentation and training
size. For example, a large survey (Shorten & Khoshgoftaar,
2019) compares different augmentation methods only on
full training size. One may expect that data augmentation
acts as a regularizer with reduced effect for large training
sizes, or even possibly negative effect due to introducing
bias. However, Fig. 8 shows that data augmentation on
Places365 reduces error for all training sizes with little or
no change to data-reliance when fine-tuning. e(n) with aug-
mentation roughly equals e(1.8n) without it, supporting the
view that augmentation acts as a multiplier on the value of
an example. For the linear classifier, data augmentation has
little apparent effect due to low data-reliance, but the results
are still consistent with this multiplier.

5. Discussion
Evaluation methodology is the foundation of research, im-
pacting how we choose problems and rank solutions. Large
train and test sets now serve as the fuel and crucible to refine
machine learning methods. We now discuss the need for
learning curves, limitations of our experiments, and direc-
tions for future work.

Case for learning curve models. Compared to individual
runs, learning curves often provide more accurate or confi-
dent conclusions, which is crucial, as any misleading/partial
conclusions can block progress. For example, in Fig. 5b,
comparison at N = 1600 may indicate that pretraining
has little impact on error when fine-tuning, but the curves
show large differences in data-reliance leading to a large
gap when less data is available. In Fig. 6 (left), compari-
son at N = 400 may indicate that MOCO and supervised
ImageNet pretraining are equally effective, but the curves
show that the supervised ImageNet pretrained classifier has
lower data-reliance (β = 4.32 vs. β = 11.21) and thus
outperforms with less data. Generally, individual runs can-
not reveal the sample efficiency of a learner. One curve
may dominate another because it has less bias (leading to
uniformly lower error, as with “linear” classifiers of increas-
ing depth in Fig. 7) or less variance (leading to different
curve slopes, as in different pretrained models in Fig. 6),
and distinguishing helps understand and improve.

Compared to a piecewise affine fit (i.e., plotting a line
through observed error points), our modeling and character-
ization in terms of error@N and data-reliance has important
advantages. First, our two-parameter characterization can be
tabulated (Fig. 7f) facilitating comparison within and across
papers. We can learn from object detection research, where
the practice of reporting PR/ROC curves gave way to report-
ing AP, making it easier to average and compare within and
across works when working with multiple datasets. Second,
a piecewise affine fit is less stable under measurement er-
ror, leading to significantly poorer extrapolations. Finally,
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Model #params 𝒆𝟒𝟎𝟎 𝜷𝟒𝟎𝟎
Resnet 18 11.7M 18.86 7.28

Resnet 50 25.6M 18.33 4.32

Resnet 101 44.5M 14.97 5.03

2x Wide Resnet 50 68.9M 14.04 6.00

2x Wide Resnet 101 126.9M 13.37 5.81

6x Ensemble Resnet 18 70.2M 15.96 7.09

3x Ensemble Resnet 50 76.8M 15.96 4.15

(f) Ensemble vs Depth vs Width: finetune

Figure 7: Depth, width, and ensembles on Cifar100. The table (f) compactly compares several curves.
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Figure 8: Data augmentation on Places365.

the parametric model helps to identify poor hyperparameter
selection, indicated by poor model fit or extreme values
of γ.

Cause and impact of γ: We speculate that γ is largely de-
termined by hyperparameters and optimization rather than
model design. This presents an opportunity to identify poor
training regimes and improve them. Intuitively, one would
expect that more negative γ values are better (i.e. γ = −1
preferable to γ = −0.5), since the error is O(nγ), but we
find the high-magnitude γ tends to come with high asymp-
totic error, indicating that the efficiency comes at cost of

over-commitment to initial conditions. We speculate (but
with some disagreement among authors) that γ ≈ −0.5
is an indication of a well-trained curve and will generally
outperform curves with higher or lower γ, given the same
classification model.

Small training sets: Error is bounded and classifier perfor-
mance with small training sets may be modeled as transi-
tioning from random guess to informed prediction, as shown
by Rosenfeld et al. (2020). For simplicity, we do not model
performance with very small training size, but studying the
small data regime could be interesting, particularly to deter-
mine whether design decisions have an impact at the small
size that is not apparent at larger sizes.

Losses and Prediction types: We analyze multiclass clas-
sification error, but the same analysis could likely be ex-
tended to other prediction types. For example, Kaplan et al.
(2020) analyze learning manifolds of cross-entropy loss of
language model transformers. Learning curve models of
cross-entropy loss could also be used for problems like ob-
ject detection or semantic segmentation that typically use
more complex aggregate evaluations.

More design parameters and interactions: The interac-
tion between data scale, model scale, and performance is
well-explored by Kaplan et al. (2020) and Rosenfeld et al.
(2020), but it could also be interesting to explore interac-
tions, e.g. between class of architecture (e.g. VGG, ResNet,
EfficientNet (Tan & Le, 2019)) and some design parameters,
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to see the impact of ideas such as skip-connections, residual
layers and bottlenecks. More extensive evaluation of data
augmentation, representation learning, optimization, and
regularization would also be interesting.

Unbalanced class distributions: In most of our experi-
ments, we use equal number of samples per class. Our
experiments on Caltech-101 in Fig. 6 (right) and Pets and
Sun397 (Fig. 10 in supplemental) use the original imbal-
anced distributions, demonstrating that the same learning
curve model applies, but further experiments are needed to
examine the impact of class imbalance.

Limits to extrapolation: Our experiments indicate good
extrapolation up to 4x the observed training size. However,
we caution against drawing conclusions about asymptotic
error, since estimation of α is highly sensitive to data per-
turbations. eN − βN provides a more stable indicator of
large-sample performance.

The supplemental material contains implementation de-
tails (Appendix A); a user guide to fitting, displaying, and
using learning curves (Appendix B); experiments on addi-
tional datasets (Appendix C); and a table of learning curve
parameters for all experiments, also comparing eN and βN
produced by two learning curve models (Appendix D). Code
is currently available at prior.allenai.org/projects/lcurve.

6. Conclusion
Performance depends strongly on training size, so size-
variant analysis more fully shows the impact of innovations.
A reluctant researcher may protest that such analysis is too
complicated, too computationally expensive, or requires too
much space to display. We show that learning curve mod-
els can be easily fit (Sec. 3) from a few trials (Fig. 2) and
compactly summarized (Fig. 7f), leaving our evasive experi-
menter no excuse. Our experiments serve as examples that
learning curve analysis can yield interesting observations.
Learning curves can further inform training methodology,
continual learning, and representation learning, among other
problems, providing a better understanding of contributions
and ultimately leading to faster progress in machine learn-
ing.
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