
Compressed Maximum Likelihood

Yi Hao 1 Alon Orlitsky 1

Abstract
Maximum likelihood (ML) is one of the most
fundamental and general statistical estimation
techniques. Inspired by recent advances in esti-
mating distribution functionals, we propose com-
pressed maximum likelihood (CML) that applies
ML to compressed samples. We show that CML is
sample-efficient for several fundamental learning
tasks over both discrete and continuous domains,
including learning structural densities, estimat-
ing probability multisets, and inferring symmetric
distribution functionals.

1. Introduction
Maximum likelihood (ML) is a strikingly simple yet fun-
damental statistical inference paradigm for estimating pa-
rameters in probabilistic data generalization models. Over
the past century, it has been applied to derive numerous
important results in mathematics, statistics, and machine
learning (Friedman et al., 2001).

At its core, the ML principle favors the model that maxi-
mizes the observed data’s probability. Consider for example
flipping a coin with unknown heads probability p ten times
and observing six heads and four tails. The observed se-
quence’s probability is p6(1−p)4, and ML suggests that the
best guess of p is p̂ = 0.6 that maximizes this probability.

ML is so natural and intuitive that it may be stumbled upon
without realizing its depth and significance. Yet, it can be
shown to be near-optimal under relatively mild and general
regularity conditions (Van der Vaart, 2000). In particular, p̂
tends to the actual value of p as the number of observations
increases and enjoys both consistency and efficiency.

This paper concerns functional estimation, where P is a
distribution collection over a domain space Z , and f : P →
Q is a functional, mapping distributions in P into a space
Q equipped with a pseudo-metric d.
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An estimator for f is a function f̂ : Z → Q such that when
Z ∼ p, the loss d(f̂(Z), f(p)) is small. The ML plug-in
estimator of f first finds the ML distribution estimate

pz := arg max
p∈P

p(z)

and then estimates the functional’s value as f(p
Z

).

For example, if P is a parametric family indexed by Θ, and
f maps each pθ ∈ P to its index θ ∈ Θ, the task becomes
the classical parameter estimation problem, and ML maps
sample Z to the parameter θ maximizing pθ(Z).

1.1. Statistical Guarantees of ML Methods

ML is particularly significant in modern scientific applica-
tions that often involve complex structures in high dimen-
sions. Deriving a bespoke estimator for each application
may be an arduous task. Yet ML provides a simple universal
methodology that in principle can be applied to any problem.

Unfortunately, it is well-known that for finite samples, ML
estimators may be suboptimal, and other estimators often
concentrate faster around the true parameters. Hence, estab-
lishing finite-sample guarantees for ML-based methods is
of fundamental importance.

While the ML principle is quite natural, showing its finite-
sample efficiency is often not easy. Recent work Acharya
et al. (2017a) provided a simple argument for bypassing the
difficulty in analyzing ML methods. Their primary lemma,
stated next, relies only on the fact that pz(z) ≥ p(z) for any
z ∈ Z . For simplicity, we write df (p, q) for d(f(p), f(q)).

Lemma 1. For any Z , P , and accuracy ε > 0,

max
p∈P

Pr
Z∼p

(df (p, p
Z
)>2ε)≤|Z|max

p∈P
Pr
Z∼p

(
d(f(p), f̂(Z))>ε

)
.

Namely, the ML plug-in estimator is competitive with all
other estimators in that if any other estimator achieves loss at
most ε with probability 1− δ then the ML plug-in estimator
will achieve a 2ε loss with probability at least 1− |Z| · δ.

Leveraging this lemma, the paper showed that the ML-based
profile maximum likelihood (PML) probability-multiset esti-
mator in Orlitsky et al. (2004) is sample-optimal for several
symmetric functionals, including entropy and support size.
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The profile of a sample represents the number of elements ap-
pearing any given number of times, and hence is a sufficient
statistic for symmetric functionals. Therefore instead of
maximizing the sample’s probability, Acharya et al. (2017a)
maximized the probability of the sample’s profile.

1.2. Compressed Maximum Likelihood

Motivated by the above rationale, our paper develops a gen-
eral framework for applying and analyzing ML for several
statistical and machine-learning problems. It does so by
adding a compressor between the sample and ML learner.

Specifically, given domain Z , a compressor is a function
ϕ that maps each z ∈ Z to an element ϕ(z) in some co-
domain Φ. In general, we will allow ϕ to possess random-
ness independent of the samples.

Given compressor ϕ, we define the ϕ-compressed maximum
likelihood (CML) estimator as

pϕ := arg max
p∈P

p(ϕ(Z)),

where for notational brevity, we suppress Z in pϕ(Z).

2. Main Results
2.1. Compression for Learning

Consider an arbitrary compressor ϕ, mapping elements in
Z to a co-domain Φ. We evaluate the compressor’s quality
for our learning objective via the following two criteria.

Typicality A compressor is (m, γ)-typical for an integer
m and probability threshold γ ∈ (0, 1), if for every p ∈ P ,
there is an m-element subset T ⊆ Φ with probability

p(T ) ≥ 1− γ.

Intuitively, smaller m corresponds to a better compressor.

Learnability Given error parameters ε, δ, we say that the
compressor enables (ε, δ)-learning under pseudo-metric d
if there is an algorithm A : Φ→ Q satisfying

Pr
Z∼p

(d(f(p), A(ϕ(Z))) > ε) ≤ δ, ∀p ∈ P.

Intuitively, the smaller the error parameters, the better the
compressor is for our learning tasks.

The theorem below shows that for any “good quality” com-
pressor, the respective CML plug-in estimate will also be
accurate, with high probability.

Theorem 1. For any compressor ϕ that is (m, γ)-typical
and enables (ε, δ)-learning, distribution p ∈ P , and Z ∼ p,

Pr
(
df (p, pϕ(Z)

)
> 2ε) ≤ γ +m · δ.

Proof. We prove the theorem by classifying all possible
patterns φ ∈ Φ into three categories.

Given any distribution p ∈ P , let T be the smallest set with
p(T ) ≥ 1− γ. By definition, |T | ≤ m.

For any pattern φ ∈ T that satisfies p(φ) > δ, since the
compressor enables (ε, δ)-learning with an algorithmA, we
must have d(f(p),A(φ)) ≤ ε. By the definition of CML,
pϕ(φ) ≥ p(φ) > δ, hence, d(f(pϕ),A(φ)) ≤ ε. The trian-
gle inequality combines both and yields df (pϕ, p) ≤ 2ε.

Consider φ ∈ T satisfying p(φ) ≤ δ. By |T | ≤ m, the total
probability of all such patterns is at most m · δ. In addition,
the total probability of patterns φ 6∈ T is at most γ since
p(T ) ≥ 1− γ. Therefore, the probability that df (pϕ, p) >
2ε is at most m · δ + γ, which completes the proof.

Similar to Acharya et al. (2017a), it suffices to obtain a CML
approximation for the competitive guarantees to hold.

Definition 1 (Approximate CML (ACML)). For any β ≤ 1,
z ∈ Z , and compressor ϕ, a distribution p̃ϕ(z) ∈ P is a
β-approximate CML if p̃ϕ(z)(ϕ(z)) ≥ β · pϕ(z)(ϕ(z)).

Corollary 1. For any (m, γ)-typical compressor ϕ that
enables (ε, δ)-learning, distribution p ∈ P , Z ∼ p, and a
β-approximate CML p̃ϕ(Z),

Pr
(
df (p, p̃ϕ(Z)

)
> 2ε) ≤ γ +m · δ/β.

Building on this framework, we design and analyze CML
estimators for various applications. For each, we add a
compressor between the samples and the estimator. The
main challenges are finding a good compressor ϕ that works
well with ML and an effective algorithm A for the task.

2.2. CML Estimators

The previous sections presented the general CML frame-
work, and Theorem 1 demonstrated its statistical compet-
itiveness. The remaining sections describe concrete CML
estimators for four statistical inference tasks, over both con-
tinuous and discrete domains, described below.

Continuous distributions Section 4 applies the CML
method to learn structured continuous i.i.d. distributions.

We consider a broad distribution class P where the differ-
ence p − q between any two distributions p, q ∈ P has
essentially at most s sign changes. This class encompasses
numerous essential distributions such as log-concave, piece-
wise polynomials, and Gaussian mixtures.

Theorem 2 shows that for any p ∈ P , with sample size
Θ(s log(s/ε)/ε3), the CML estimator achieves

Pr(‖p− pϕ‖1 > ε) ≤ O(ε).
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Note that Yatracos’ method, described in Section 3, finds the
approximate minimizer to the empirical distribution in Ak-
distance, and achieves better sample efficiency. However, in
general, no efficient algorithm is known for finding such a
minimizer, e.g., Theorem 6.4 in Devroye & Lugosi (2012).

By contrast, the CML approach transforms the learning
task to a maximum likelihood problem. This establishes
the efficiency of ML methods for learning structured distri-
butions, and enables the use of numerous ML optimization
algorithms. Some of these algorithms, like the EM algo-
rithm (Bishop, 2006) are heuristic, while others are rigorous.

Learning distributions with bounded crossings was also
considered in Acharya et al. (2017b). However, they assume
access to anAk-projection oracle that finds the approximate
Ak-distance minimizers to the empirical distribution.

Discrete distributions Section 5 applies CML to learn
discrete i.i.d. distributions where as above, every two distri-
butions cross values at most s times.

We present two different CML formulations.

The first formulation in Section 5.1 applies the compressor
in Section 4 along with a random mapping that transforms
the sample from a discrete distribution to a continuous ana-
log while maintaining the structural properties.

The second formulation constructs CML directly from the
discrete sample. The approach essentially performs max-
imum likelihood on the quantized empirical distribution,
with a well-tuned quantization level. The resulting ML ob-
jective, presented in Section 5.2, resembles that of the PML
estimator in Acharya et al. (2017a).

Theorem 3 shows that for any distribution p with support
{1, . . . , N} satisfying N ≥ s/ε, given a sample from p of
size n = Θ(s log(N)/ε3), with probability at least 1− e−s,

‖p− pϕ‖1 ≤ O(ε).

Probability multisets Section 6 is geared towards the
original PML method, a special CML whose compressor ϕ
maps samples to profiles (Orlitsky et al., 2004; 2011; Das,
2012; Acharya et al., 2012; 2017a; Hao & Orlitsky, 2019a;
2020b; Charikar et al., 2019a;b; Han & Shiragur, 2021).

PML yields a natural estimate for the distribution probability
multiset. Given support bound N and desired accuracy ε, it
is necessary (in the worst case) to obtain Θ(N/(ε2 logN))
observations from the distribution to estimate its probability
multiset under the sorted `1-distance (Valiant & Valiant,
2011c; 2013; Han et al., 2018; Hao & Orlitsky, 2019a).

Over the years, a sequence of works established the opti-
mality of PML for multiset learning in sorted `1 distance
with different accuracy levels (Das, 2012; Hao & Orlitsky,

2019a; Han & Shiragur, 2021). A different multiset learning
guarantee stated in terms of the earth-mover’s distance was
considered in Valiant & Valiant (2016).

Theorem 4 shows that PML also enjoys this learning guaran-
tee, hence is sample-optimal for both sorted `1-distance and
τ -truncated relative earth-mover distance. For any level
τ ∈ [0, 1], the latter metric is

Rτ (p, q) := inf
γ∈Γp,q

E
(X,Y )∼γ

∣∣∣∣log
max{p(X), τ}
max{q(Y ), τ}

∣∣∣∣ ,
where Γp,q represents all possible couplings of p and q. Sec-
tion 6.2 shows that with probability at least 1−O(1/n), for
any w ∈ [1, log n], the compressed estimator pϕ achieves

R w
n logn

(pϕ, p) = O
(

1√
w

)
.

Distribution functionals Section 7 explores the applica-
tion of CML to functional estimation. The compressor maps
each sample sequence to the multiset of multiplicities that
are small relative to n, leading to a unified algorithm that
optimally learns several symmetric functionals.

3. Preliminaries
General notation The rest of the paper considers two
types of univariate domains X , continuous, R, and discrete,
[N ] := {1, . . . , N}. We consider distributions p over X .
Given a domain partition I, the quantized distribution pI
assigns to each part I ∈ I probability p(I).

More generally, I can be any collection of disjoint measur-
able subsets of X = R, and f can be any real measurable
function over R. Then, fI becomes the quantized function
that assigns any I ∈ I a value of

∫
x∈I f(x) dx and the

remaining set X \ ∪
I∈II a probability mass of 0. Slightly

abusing notation, we use fI also to represent the flattened
distribution that assigns to every x in any I ∈ I of positive
measure |I| > 0, the value

fI (x) :=
fI (I)

|I|
.

Finally, write a ∧ b for min{a, b}, and a ∨ b for max{a, b}.

Function norms We utilize a few norms of functions. The
`1-norm that evaluates ‖f‖1 :=

∫∞
−∞ |f(x)| dx. Another

norm that will come in handy is the Ak-norm. Specifically,
for any positive integer k, let Ik denote the collection of
all unions of k disjoint intervals. Then, for any measurable
function f : R→ R, the Ak-norm of f is

‖f‖Ak := sup
I∈Ik
‖fI‖1.

Note that the above notations naturally extend to X = [N ]
if we replace the integrals with the respective finite sums.
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VC inequality A well-known convergence bound asso-
ciated with the Ak-norm is the VC inequality (Devroye &
Lugosi, 2012). Often, the inequality appears as an upper
bound on the expected Ak-norm of the difference between
the empirical and actual distributions.

We leverage the following variant in Acharya et al. (2017b),
making the error probability explicit.
Lemma 2 (VC inequality). For any ε, δ > 0, and continu-
ous distribution p, draw a sample Xn ∼ p and let p̂ denote
the empirical distribution. For n = Θ((k + log(1/δ))/ε2),
with probability at least 1− δ,

‖p− p̂‖Ak ≤ ε.

4. Structured Continuous Distributions
A distribution collection C is an ε-cover for P under `1-
distance if every distribution in P is within `1-distance ε
from some distribution in C. The crossing number of two
real functions f and g is the number of times they cross
each other, or equivalently, the number of sign changes
of f(x) − g(x). The crossing number of a distribution
collection is the largest crossing number of any pair of
distributions in the collection.

Numerous important distribution families have ε-covers
whose crossing number grows moderately as ε decreases.
For example, t-piecewise, degree-d polynomials have 0-
covers with crossing number O(t(d+ 1)), and t-mixtures
of univariate Gaussians have ε-covers with crossing number
O(t log(1/ε)) growing only logarithmically in ε.

4.1. Compressor

Let P have an ε-cover with crossing number s. Draw a sam-
ple Y n from an unknown p ∈ P and let q̂ be the empirical
distribution. Partition the real line into t := s/ε intervals,
I := (Ii)

t
i=1, such that q̂I is uniform, where for simplicity,

we assume that s/ε is an integer.

Next, draw an independent sample Xn ∼ p. Let p̂ denote
the empirical distribution, and let the compressor ϕ be its
flattened version over I,

ϕ(Xn) := p̂I .

Note that ϕ(Xn) depends implicitly on Y n, and its defi-
nition consists of both the Y n partition and the empirical
probabilities of each part according to Xn.

4.2. CML Estimator

Given a sample Y n and the corresponding interval partition
I, the respective CML estimator is

pϕ := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn) | I).

Note that the probability term corresponds to a multinomial
distribution. We can rewrite the CML estimator as

pϕ = arg min
p∈P

H(p̂I , pI ).

Hence, CML minimizes the cross entropy between the quan-
tized empirical distribution and the actual one.
Theorem 2. For any ε and p ∈ P , draw (Xn, Y n) ∼ p. If
n = Θ(t log(t/ε)/ε2), with probability at least 1− 2ε,

‖p− pϕ‖1 ≤ 34ε.

Note that by traditional VC theory, the empirical Ak-norm
minimizer based on Y n alone achieves sample complexity
of Θ(t/ε). However, this method is usually not used for
learning structured densities. The theorem on the other hand
shows that the practically ubiquitous ML technique can also
be applied to learn structured continuous distributions with
a rigorous guarantee. It thereby demonstrates a different,
continuous, application of Theorem 1 beyond the original
application to discrete domains. The use of the samples Xn,
while not strictly necessary, facilitates the application of the
competitive argument.

The rest of the section is devoted to the theorem’s proof.

4.3. Typical Events

First, we leverage standard concentration inequalities to
establish several claims, each holds with high probability.
The subsequent analysis will assume all claims hold.

By construction, each interval Ii ∈ I carries an empirical
probability mass of q̂(Ii) = ε/s. The respective probability
mass under the actual density, p(Ii), turns out to follow a
Beta(n/t, n(1− 1/t)) distribution. The following inequal-
ity (Hao et al., 2020) shows the typical values of p(Ii).
Lemma 3. For any α ∈ [0, 1] and 1 ≤ t ≤ n,

Pr

(∣∣∣∣p(Ii)− 1

t

∣∣∣∣ ≥ α√
t

)
≤ e−nα

2

2 + e
− nα2

2(1+α
√
t) .

For any γ ∈ (0, 1) and n ≥ 12t log(2t/γ), choosing α =
1/(2
√
t) in the lemma yields

Pr

(
∃i ∈ [t], p(Ii) 6∈

(
1

2t
,

3

2t

))
≤ γ.

Henceforth, we assume that n ≥ 12t log(2t/γ) and for each
i, the actual probability mass of Ii falls in (1/(2t), 3/(2t)).

Next, consider the second sample Xn and an arbitrary index
i ∈ [t]. By independence, np̂(Ii) ∼ bin(n, p(Ii)), where
p(Ii) > 1/(2t) as above. From the binomial Chernoff and
union bounds, for all i ∈ [k], with probability at least 1− γ,

|p̂(Ii)− p(Ii)| ≤

√
3p(Ii)

n
log

2t

γ
.
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Our lower bounds on n and p(Ii) also imply that for all i,

p̂(Ii) ≤ p(Ii) +

√
3p(Ii)

n
log

2t

γ
≤ 1 +

√
2√

2
· p(Ii) <

3

t
.

Below we assume that p̂ satisfies these inequalities.

4.4. Guarantees of CML

Given Y n’s empirical distribution q̂, hence also I , there are
finitely many flattened Xn-distributions p̂I over I. Given
a probability threshold δ, we consider two disjoint cases
according to the probability of a particular distribution p̂I .

Likely p̂I : The probability p(p̂I ) > δ. We show that for
such p̂I , with high probability, the CML distribution pϕ is
close to p. The following argument assumes that the claims
made in Section 4.3 hold.

First, since p̂(Ii) = p̂I (Ii) < 3/t for all i, then for any
distribution p satisfying ‖p− p̂I‖As> 7ε,

‖p− p̂‖As ≥ ‖p− p̂I‖As −‖p̂I − p̂‖As> 7ε−2s · 3
t

= ε.

By the VC inequality, this event happens with probability at
most δ/2 for a sample size of n = Θ((s + log(2/δ))/ε2),
contradicting our assumption that p(p̂I ) > δ. Therefore,

‖p− p̂I‖As ≤ 7ε.

On the other hand, a fundamental attribute of the ML method
is that pϕ(p̂I ) ≥ p(p̂I ) ≥ δ. Hence,

‖pϕ − p̂I‖As≤ 7ε.

For any distribution q ∈ P , we denote by q′ the closest dis-
tribution in the ε-cover mentioned above under `1 distance.
From the above and the triangle inequality,

‖pϕ − p‖1 ≤ ‖p′ϕ − p′‖1 + 2ε

≤ 2 (‖p− p̂I‖As + ‖pϕ − p̂I‖As) + 6ε

≤ 34ε,

where the second inequality follows as

‖q1 − q2‖1 = 2 sup
A∈R
|q1(A)− q2(A)|.

Unlikely p̂I : The probability p(p̂I ) ≤ δ. Note that the
number of possible p̂I ’s is at most(

t+ n− 1

t

)
≤
(
e(t+ n− 1)

t

)t
≤ et log(e(1+n

t )).

Denote by Lt,n the exponent of the last term. Setting δ =
e−2Lt,n and n = Θ(t log(t/ε)/ε2), the total probability of
p̂I ’s falling into this category is at most

eLt,n · e−2Lt,n = e−Lt,n ≤ ε−t,

where the last step follows by choosing a sufficiently large
absolute constant in the above asymptotic expression for n.

Summary Choosing γ = ε/2 in Section 4.3, if n =
Θ(t log(t/ε)/ε2), the union bound implies that with proba-
bility at least 1− 2ε,

‖pϕ − p‖1 ≤ 34ε.

5. Structured Discrete Distributions
Moving from R to the discrete domain [N ], we apply CML
to learn structured discrete distributions. Again, we assume
that P has an ε-cover C with a crossing number at most s.

5.1. Reduction from Continuous CML

First, we present a concrete random mapping from discrete
to continuous domains that enables the use of the continuous
CML estimator.

For any distribution p over [k], we define by p̃ its flattened
version, a continuous distribution that assigns

p̃(x) := p(dxe), ∀x ∈ (0, k],

and p̃(x) := 0 for x 6∈ (0, k]. This notation yields a bijective
mapping that maintains the number of sign changes of the
difference between any two distributions.

Note that we only have sample access to the underlying
distribution p. To apply the CML estimator in Section 4,
we need to simulate a sample from p̃ from Xn ∼ p. A
random mapping S for this purpose counts the number of
times each symbol i ∈ [N ] observed in Xn, say ni, and
respectively draws ni independent sample points from the
uniform distribution over (i− 1, i].

Now, it is straightforward to apply the continuous CML.
Specifically, draw samples (Xn, Y n) ∼ p, define the com-
pressor ϕ based on S(Y n), and let the CML estimate be

pϕ := arg max
p∈P

Pr
Xn∼p

(ϕ(S(Xn)) | I).

5.2. Discrete CML

Next, we present an alternative CML method that applies
directly to discrete samples.

Compressor Draw a size-n sample Xn ∼ p, and denote
by p̂ the empirical distribution. Then, sort elements in Xn

in a non-descending order, say, X(1), . . . , X(n), such that

X(i) ≤ X(j), ∀i < j.

Without loss of generality, assume that t := s/ε is an integer
and n is divisible by t. Sequentially partition the sequence
into t sub-sequences, such that the i-th sub-sequence con-
tains observations with indices from (i− 1)n/t+ 1 to in/t.



Compressed Maximum Likelihood

The compressor ϕ maps every sample Xn to the boundary
symbols that of these sub-sequences. Specifically,

ϕ(Xn) :=
(
X(in/t)

)t
i=1

,

which is essentially p̂I with I := (Ii)
t
i=1 and

Ii := [X((i−1)n/t) : X(in/t)], ∀i ∈ [t].

CML estimator Consequently, the CML estimator for
the above compressor takes the form

pϕ := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn) | I).

Equivalently, the CML estimator can be written as

pϕ := arg max
p∈P

∑
yn:ϕ(yn)=ϕ(Xn)

n∏
i=1

p(yi).

The estimator often performs well, as described below.

Theorem 3. For p ∈ P and Xn ∼ p, if n = Θ((t ∧
N) log(t ∨N)/ε2), with probability at least 1− e−t∧N ,

‖p− pϕ‖1 = O(ε).

5.3. Hypothesis Selection Algorithm

First, we utilize the assumptions and the standard VC in-
equality to show the existence of a hypothesis selection
algorithm that, with high probability, finds an accurate esti-
mate of the underlying distribution.

By the VC inequality, for any ε, δ > 0, and n = Θ((s +
log(2/δ))/ε2), with probability at least 1− δ/2,

‖p̂− p‖As ≤ ε.

Denote by Is the set of unions of at most s disjoint intervals
in I. By our construction, for any set I ∈ Is,

‖p̂
I
‖1 ≤

1

t
· s = ε.

For any q ∈ Ps,ε, let q′ be a distribution in the ε-cover
C with minimal `1-distance to q. For any distribution pair
q1, q2 ∈ Ps,ε, define the following variant of the Scheffé
set (Devroye & Lugosi, 2012) as

S′12 := {x ∈ R : q′1(x) > q′2(x)},

and the original Scheffé set as S12.

Given the previous inequality and distribution p̂I , we can
approximate p̂(q1 ≥ q2) := p̂(S12) to a 3ε additive error by
summing up p̂I (Ii) over indices i satisfying Ii ∈ S′12. Note
that we assumed that q′1 − q′2 has at most s sign changes.

Next, we show that if the VC inequality holds, there exists
a selection algorithm that uses p̂I to find a density p? ∈ C
satisfying ‖p? − p‖ ≤ O(ε). In addition, this algorithm is a
variant of that in Theorem 6.4 of Devroye & Lugosi (2012).

Let S ′ denote the collection of all the modified Scheffé sets
induced by distributions in C. Let p? be the distribution q
in C minimizing supS∈S |p̂I (S)− q(S)| up to an additive
4ε error, where we enlarged the error bound by ε to guaran-
tee the existence of such a distribution. Then, the triangle
inequality yields

‖p− p?‖1 ≤ ‖p− p′‖1 + ‖p′ − p?‖1.

For any pair (q1, q2) of distributions, define

DS(q1, q2) := sup
S∈S
|q1(S)− q2(S)|.

Consider the last term in the above inequality. By a recur-
sive application of the triangle inequality and properties
embedded in the prior constructions,

‖p′ − p?‖1 = 2DS(p′, p?)

≤ 2DS(p′, p̂) + 2DS(p̂, p?)

≤ 2DS(p′, p̂I ) + 2DS(p̂I , p
?) +O(ε)

≤ 4DS(p′, p̂I ) +O(ε)

≤ 4DS(p′, p̂) +O(ε)

≤ 4DS(p′, p) + 4DS(p, p̂) +O(ε)

≤ 2‖p′ − p‖1 + 4DS(p, p̂) +O(ε).

Recall that C is an ε-cover of Ps,ε, we have ‖p′ − p‖1 ≤ ε.
In addition, the collection S ′ of modified Scheffé sets has
a VC dimension of at most 2s + 2. Therefore by the VC
inequality, for a sample size of n = Θ((s+ log(2/δ))/ε2),
with probability at least 1− δ/2,

DS(p, p̂) ≤ ε.

Consolidating these results shows that with probability at
least 1− δ, the selected hypothesis p? achieves

‖p− p?‖1 = O(ε).

Note, however, that the above selection algorithm does not
provide a method for finding p?.

5.4. Guarantees of CML

There are only finitely many possible p̂I , or equivalently,
ϕ(Xn). Below, we consider two disjoint cases according to
the probability of observing a particular pattern of ϕ(Xn)
under the actual distribution.

Likely pattern: Pattern φ whose probability p(φ) :=
PrXn∼p(ϕ(Xn) = φ) > δ. By the argument in Section 5.3,
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there exists a selection algorithm that maps this pattern to a
distribution p? whose error probability in achieving

‖p− p?‖1 = O(ε)

is at most δ. Since p(φ) > δ by assumption, the selected
hypothesis must satisfy the error bound above.

It is straightforward to combine these error bounds through
Theorem 1 and the triangle inequality,

|p− pϕ| ≤ |pϕ − p?|+ |p− p?| = O(ε).

Unlikely pattern: Pattern φ whose probability p(φ) ≤ δ.
Since φ can only be a sorted integer sequence with values in
[N ], the number of possible patterns equals the number of
ways to pick t elements from [N ] with repetition, which is(
t+N−1

t

)
≤
(
e(t+N)

t

)t∧(
e(N + t)

N

)k
≤ exp

(
(t ∧N) log

(
e

(
1 +

N

t
∨ t

N

)))
.

Denote by Lt,n the exponent of the last term. Setting
δ = e−2Lt,n and n = Θ(Lt,n/ε

2), the total probability
of patterns falling into this category is at most

eLt,n · e−2Lt,n = e−Lt,n ≤ e−t∧N ,

where the last step follows by choosing a sufficiently large
absolute constant in the expression for n.

6. Probability Multisets
In this section, we address probability multiset estimation
under permutation invariance.

6.1. Compressor and PML

For any discrete distribution p and sample Xn ∼ p, let com-
pressor ϕ map the sequence to its profile ϕ(Xn), defined
as the multiplicity multiset of symbols appearing in Xn.
The respective CML estimator, introduced in Orlitsky et al.
(2004) as the PML estimator. Specifically, PML computes

pϕ := arg max
p∈P

∑
yn:ϕ(yn)=ϕ(Xn)

n∏
i=1

p(yi).

For any τ ∈ [0, 1], define the τ -truncated relative earth-
mover distance (Valiant & Valiant, 2015) between two dis-
crete distributions p and q as

Rτ (p, q) := inf
γ∈Γp,q

E
(X,Y )∼γ

∣∣∣∣log
p(X) ∨ τ
q(Y ) ∨ τ

∣∣∣∣ ,
where Γp,q represents all the possible couplings of these
two distributions. In the following, we show that the PML
distribution estimator satisfies

Theorem 4. For any discrete distribution p, draw a sample
Xn ∼ p. With probability at least 1− 4 exp(−Ω(n

1
3 )), for

any w ∈ [1, log n],

R w
n logn

(pϕ, p) = O
(

1√
w

)
.

For any τ ∈ [0, 1], define the τ -truncated sorted `1-distance
between two distributions p, q ∈ ∆X as

˜̀
τ (p, q) := min

p′∈∆X :{p′}={p}

∑
x

|p′(x) ∨ τ − q(x) ∨ τ | ,

where {p} denotes the probability multiset of p. By Fact 1
in Valiant & Valiant (2015), for any distributions p, q ∈ ∆X ,
˜̀
τ (p, q) ≤ 2Rτ (p, q), implying

Corollary 2. Under the same conditions as Theorem 4,

˜̀ w
n logn

(pϕ, p) = O
(

1√
w

)
.

6.2. Proof of Theorem 4

This section provides a sketch for the proof of Theorem 4.
We relegate most technical details to Appendix A. Part of
the proof is adapted from Theorem 2 in Valiant & Valiant
(2015). The original reasoning is not sufficient for our pur-
pose as the error probability derived is too large to invoke
the competitiveness of PML. For this reason, we modify the
linear program used in the paper, carefully separate the anal-
ysis of the estimators for large and small probabilities, and
provide a refined analysis with tighter probability bounds
by reducing union-bound arguments.

First, we define histograms and the relative earth-moving
cost and give operational meaning to Rτ . For a distribu-
tion p, the histogram of a multiset A ⊆ {p} is a mapping,
denoted by hA : (0, 1] → Z≥0, that maps each number
y ∈ (0, 1] to the number of times it appears in A. Note
that every y corresponds to a probability mass of y · hA(y).
More generally, we also allow generalized histograms h
with non-integral values h(y) ∈ R≥0.

For any y1, y2 ∈ (0, 1], generalized histogram h, and non-
negative m < y1 · h(y1), we can move a probability mass
from location y1 to y2 by reassigning h(y1)−m/y1 to y1,
and h(y2) + m/y2 to y2. Given τ ∈ [0, 1], we define the
cost associated with this operation as

cτ,m(y1, y2) := m ·
∣∣∣∣log

y1 ∨ τ
y2 ∨ τ

∣∣∣∣ ,
and term it as τ -truncated earth-moving cost. The cost of
multiple operations is additive. Note that Rτ (p, q) is the
minimal total τ -truncated earth-moving cost associated with
any operation schemes of moving h{p} to yield h{q}.
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For simplicity, we suppress Xn in ϕi(Xn) and µs(Xn),
representing respectively the number of symbols appearing
i times and the number of times symbol s appears.

For any absolute constants B and C satisfying 0.1 >

B > C > B
2 > 0, define xn := nB+nC

n and S :=
{ 1
n2 ,

2
n2 , . . . , xn}. Consider the following linear program.

For each x ∈ S, define the associated variable vx

Minimize
nB∑
i=1

∣∣∣∣∣ϕi −∑
x∈S

bin(n, x, i) · vx

∣∣∣∣∣
s.t.

∑
x∈S

x · vx =
∑

i≤nB+2nC

i

n
· ϕi

and ∀x ∈ S, vx ≥ 0

Figure 1. Linear program (LP)

EXISTENCE OF A GOOD FEASIBLE POINT

Let p be the underlying distribution and h be its histogram.
First, we show that with high probability, the linear program
LP has a feasible point (vx) that is good in the following
sense: 1) the corresponding objective value is relatively
small; 2) for τ ≥ n−3/2, the generalized histogram h0 :
x→ vx is close to hn : y → h(y) · 1y≤xn , admitting a low
τ -truncated earth-mover cost.

In the appendix, we leverage the Chernoff bound and
union bound to show that with probability at least 1 −
exp(−n 1

3 +κ), the objective value of the feasible point (vx)

is at most nB · O(n
2
3 +κ + 1) = O(nB+ 2

3 +κ).

For any τ ≥ n−3/2, the minimal τ -truncated earth-moving
cost of moving the generalized histogram h0 corresponding
to (vx), and the histogram hn : y → h(y) · 1y≤xn , so that
they differ from each other only at x = xn, is at most

log

(
n−3/2 + n−2

n−3/2

)
+O

(
log n

n
1
3−κ

)
= O(n−

1
3 +2κ).

ALL SOLUTIONS ARE GOOD SOLUTIONS

Let (vx) be the solution described above. The appendix then
proceeds to show that for any solution (v′x) to LP whose
objective value is O(nB+ 2

3 +κ), the generalized histogram
h1 corresponding to (v′x) is close to h0.

Specifically, the proof establishes a O(1/
√

log n) discrep-
ancy bound whenever B = 1.5C = 10κ = 0.01.

Consolidate the previous results. Forw ∈ [1, log n] and τ =

w/(n log n), with probability at least 1− exp(−n 1
3 +κ), the

solution to LP will yield a generalized histogram h1, such
that the minimal τ -truncated earth-moving cost of moving
h1 and hn so that they differ only at xn, is O(1/

√
w).

COMPETITIVENESS OF PML

For the PML distribution associated with a sample satisfy-
ing our prior assumptions, denote by hPML

n the histogram
corresponding to its entries that are at most xn.

By a recent result in (Han & Shiragur, 2021), for any w ∈
[1, log n] and τ = w/(n log n), the minimal τ -truncated
cost of moving hPML

n and hn so that they differ only at xn,
is O(1/

√
w), with probability at least 1− 2 exp(−Ω(n

1
3 )).

PROPERTIES OF THE EMPIRICAL HISTOGRAM

Denote by hEMP the empirical histogram. By the Chernoff
bound, for any symbol s, the probability that

|n · p(s)− µs| ≥ µ3/4
s and µs > nB + 2nC

is at most 2np(s) exp(−Ω(n2C−B)), and similarly,

n · p(s) ≥ nB + 4nC and µs ≤ nB + 2nC

will happen with probability at most 2 exp(−Ω(n2C−B)).
Hence, we assume that |n·p(s)−µs| < µ

3/4
s for all symbols

s appearing more than nB+2nC times, and that any symbol
s with probability p(s) ≥ (nB+4nC)/n appears more than
nB + 2nC times. By the union bound, we will be correct
with probability at least 1− 4n exp(−Ω(n2C−B)).

Let yn := (nB + 4nC)/n for notational convenience. If
for each symbol s satisfying µs ≥ nB + 2nC , we move
a µs/n probability mass of hEMP from µs/n to p(s), then
at all locations y ≥ yn, the total discrepancy between the
resulting generalized histogram and the actual one is at most

∑
j>nB+2nC

ϕj
j

3
4

n
=

1

n

∑
j>nB+2nC

ϕ
1
4
j (ϕjj)

3
4 ≤ n−B4 ,

where the last step follows by Hölder’s inequality. Moreover,
the associated total earth-moving cost is at most

∑
j>nB+2nC

ϕj
j

n
log

∣∣∣∣ j

j ± j 3
4

∣∣∣∣ ≤ ∑
j>nB+2nC

ϕj
j

3
4

n
≤ n−B4 .

The yn-truncated earth-mover distance between hEMP and
h is thus at most 2n−

B
4 log n = O(n−

B
5 ), which, to-

gether with the above error probability bound, upper
bounds the expected value of Ryn(h

EMP, h) by O(n−
B
5 ) +

4n exp(−Ω(n2C−B)) log n = O(n−
B
5 ).

Moreover, changing any element in the sample sequence
changes the value of Ryn(h

EMP, h) by at most (log n)/n.
Hence, by McDiarmid’s inequality, with probability at least
1 − 2 exp(−2

√
n), the value of Ryn(h

EMP, h) is less than
O(n−

B
5 ) + n−

1
4 log n = O(n−

B
5 ).
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COMPETITIVENESS OF PML

Consider the PML histogram hPML and its yn-truncated
earth-mover distance to h. Since there are at most exp(3

√
n)

different profiles (Hardy & Ramanujan, 1918), with proba-
bility at least 1− 2 exp(−Ω(

√
n)),

Ryn(hPML, h) ≤ O(n−
B
5 ).

PERFORMANCE OF PML

We consolidate the previous results. For any w ∈ [1, log n]
and τ = w/(n log n), we design an earth-moving scheme
that moves hPML to h.

First, with probability at least 1− 2 exp(−Ω(n
1
3 )), we can

move the probability mass of hPML
n so that it differs from hn

only at xn = (nB + nC)/n while incurring a τ -truncated
earth-mover cost of at most O(1/

√
w).

Second, by the empirical-histogram argument and xn < yn,
with probability at least 1−2 exp(−Ω(n

1
3 )), we can further

move the probability mass of hPML at locations y ≥ xn to
coincide with h above yn while incurring a loss ofO(n−

B
5 ).

After the previous two steps, the modified PML histogram
differs from the actual histogram h only at locations y ∈
In = [xn, yn]. Note that the cost of moving a unit mass
within In is at most 3nC−B , implying that with probability
at least 1− 2 exp(−Ω(n

1
3 )),

Rτ (hPML, h) ≤ O
(

1√
w

+ n−
B
5

)
+ 3nC−B=O

(
1√
w

)
.

7. Symmetric Functionals
In this section, we apply the idea of CML to estimate multi-
sets of low probabilities and leverage the respective plug-in
estimator to approximate several distribution functionals.

The study of functional estimation dates back more than
half a century (Carlton, 1969; Good, 1953; Good & Toul-
min, 1956) and has steadily grown over the years. While
the empirical distribution plug-in estimator performs well
in the large-sample regime, modern data science applica-
tions often study high-dimensional data, for which more
sophisticated methods lead to estimators that possess better
guarantees (Jiao et al., 2015; Orlitsky et al., 2016; Valiant &
Valiant, 2011a;b; Wu & Yang, 2016; Hao et al., 2018; Wu
& Yang, 2019; Hao & Orlitsky, 2019b; 2020a;b).

Recently, a line of research works studied the use of PML
in functional estimation (Orlitsky et al., 2004; 2011; Das,
2012; Acharya et al., 2012; 2017a; Hao & Orlitsky, 2019a;
2020b; Charikar et al., 2019a;b; Han & Shiragur, 2021).

For functionals addressed in this section, the plain PML
is known to be sample-optimal only for additive errors

ε ≥ 1/n1/3. Concurrently with our result, Charikar et al.
(2019c) proposed a different PML-type functional esti-
mation method with optimal sample complexity down to
ε� 1/

√
n accuracy. We note that some specialized estima-

tors also achieve better accuracy of order 1/
√
n.

Recently, an efficient algorithm (Anari et al., 2020) was
proposed to compute the PML-type estimators in Charikar
et al. (2019c). The techniques also apply to the algorithms
presented in this section.

7.1. Compressor

For any distribution p over X , sample Xn ∼ p, and multi-
plicity i, recall that ϕi(Xn) denotes the number of symbols
appearing exactly i times.

Our objective is to extract information about low probabili-
ties of p, regardless of symbol permutations. It is natural to
consider, for an integer t ≤ n, the compressor

ϕ(Xn) := (ϕi(X
n))ti=1,

where t determines the inference horizon.

7.2. CML Estimator

Similar to previous sections, for fixed t and sample Xn ∼ p,
the CML estimator for the above compressor takes the form

pϕ := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn)).

Equivalently, the CML estimator can be written as

pϕ := arg max
p∈P

∑
yn:ϕ(yn)=ϕ(Xn)

n∏
i=1

p(yi).

For space considerations, we relegate the rest of this section
and the paper’s appendix to the supplementary material.

Conclusion
The paper proposes a simple, novel, and unified compressed
maximum likelihood (CML) approach for several funda-
mental tasks. The new technique bridges algorithms and
results in several research directions over both discrete and
continuous domains.

Acknowledgements
We thank the reviewers for their helpful comments and are
grateful to the National Science Foundation for supporting
this work through grants CIF-1564355 and CIF-1619448.

We also thank an anonymous reviewer for an excellent sum-
mary of our contribution, incorporated into Section 2.1, and
another anonymous reviewer for suggesting the approximate
CML estimator (Definition 1).



Compressed Maximum Likelihood

References
Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Pan,

S. Estimating multiple concurrent processes. In Proceed-
ings 2012 IEEE International Symposium on Information
Theory (ISIT), pp. 1628–1632. IEEE, 2012.

Acharya, J., Das, H., Orlitsky, A., and Suresh, A. T. A
unified maximum likelihood approach for estimating
symmetric properties of discrete distributions. In Inter-
national Conference on Machine Learning, pp. 11–21,
2017a.

Acharya, J., Diakonikolas, I., Li, J., and Schmidt, L. Sample-
optimal density estimation in nearly-linear time. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1278–1289. SIAM,
2017b.

Anari, N., Charikar, M., Shiragur, K., and Sidford, A. In-
stance based approximations to profile maximum likeli-
hood. Advances in neural information processing systems,
2020.

Bishop, C. M. Pattern recognition and machine learning.
springer, 2006.

Carlton, A. G. On the bias of information estimates. Psy-
chological Bulletin, 71(2):108, 1969.

Charikar, M., Shiragur, K., and Sidford, A. The Bethe
approximation for structured matrices: an improved ap-
proximation for the profile maximum likelihood. In
NeurIPS 2019 Workshop on Information Theory and Ma-
chine Learning, 2019a.

Charikar, M., Shiragur, K., and Sidford, A. Efficient pro-
file maximum likelihood for universal symmetric prop-
erty estimation. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pp. 780–
791, 2019b.

Charikar, M., Shiragur, K., and Sidford, A. A general
framework for symmetric property estimation. Advances
in neural information processing systems, 2019c.

Das, H. Competitive tests and estimators for properties of
distributions. PhD thesis, UC San Diego, 2012.

Devroye, L. and Lugosi, G. Combinatorial methods in
density estimation. Springer Science & Business Media,
2012.

Friedman, J., Hastie, T., Tibshirani, R., et al. The elements
of statistical learning. Number 10 in 1. Springer series in
statistics New York, 2001.

Good, I. J. The population frequencies of species and the
estimation of population parameters. Biometrika, 40(3-4):
237–264, 1953.

Good, I. J. and Toulmin, G. H. The number of new species,
and the increase in population coverage, when a sample
is increased. Biometrika, 43(1-2):45–63, 1956.

Han, Y. and Shiragur, K. On the competitive analysis
and high accuracy optimality of profile maximum likeli-
hood. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1317–1336. SIAM,
2021.

Han, Y., Jiao, J., and Weissman, T. Local moment match-
ing: A unified methodology for symmetric functional
estimation and distribution estimation under wasserstein
distance. In Conference On Learning Theory, pp. 3189–
3221, 2018.

Hao, Y. and Orlitsky, A. The broad optimality of profile
maximum likelihood. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 10989–11001, 2019a.

Hao, Y. and Orlitsky, A. Unified sample-optimal property
estimation in near-linear time. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 11106–
11116, 2019b.

Hao, Y. and Orlitsky, A. Data amplification: Instance-
optimal property estimation. In International Conference
on Machine Learning (ICML), pp. 4049–4059. PMLR,
2020a.

Hao, Y. and Orlitsky, A. Profile entropy: A fundamental
measure for the learnability and compressibility of dis-
crete distributions. In Advances in Neural Information
Processing Systems (NeurIPS), 2020b.

Hao, Y., Orlitsky, A., Suresh, A. T., and Wu, Y. Data
amplification: A unified and competitive approach to
property estimation. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 8834–8843, 2018.

Hao, Y., Jain, A., Orlitsky, A., and Ravindrakumar, V.
SURF: A simple, universal, robust, fast distribution learn-
ing algorithm. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020.

Hardy, G. H. and Ramanujan, S. Asymptotic formulaæ
in combinatory analysis. Proceedings of the London
Mathematical Society, 2(1):75–115, 1918.

Jiao, J., Venkat, K., Han, Y., and Weissman, T. Minimax
estimation of functionals of discrete distributions. IEEE
Transactions on Information Theory, 61(5):2835–2885,
2015.

Orlitsky, A., Santhanam, N. P., Viswanathan, K., and Zhang,
J. On modeling profiles instead of values. In Proceed-
ings of the 20th conference on Uncertainty in artificial
intelligence, pp. 426–435. AUAI Press, 2004.



Compressed Maximum Likelihood

Orlitsky, A., Santhanam, N. P., Viswanathan, K., and Zhang,
J. On estimating the probability multiset. Online Draft,
2011. URL http://alon.ucsd.edu/papers/
pml1.pdf.

Orlitsky, A., Suresh, A. T., and Wu, Y. Optimal prediction
of the number of unseen species. Proceedings of the
National Academy of Sciences, 113(47):13283–13288,
2016.

Valiant, G. and Valiant, P. Estimating the unseen: An
n/log(n)-sample estimator for entropy and support size,
shown optimal via new CLTs. In Proceedings 43rd An-
nual ACM Symposium on Theory of Computing (STOC),
pp. 685–694. ACM, 2011a.

Valiant, G. and Valiant, P. The power of linear estimators.
In Proceedings 52nd IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 403–412. IEEE, 2011b.

Valiant, G. and Valiant, P. Estimating the unseen: an n/log
(n)-sample estimator for entropy and support size, shown
optimal via new CLTs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pp.
685–694, 2011c.

Valiant, G. and Valiant, P. Instance optimal learning. arXiv
preprint, arXiv: 1504.05321, 2015.

Valiant, G. and Valiant, P. Instance optimal learning of
discrete distributions. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp.
142–155, 2016.

Valiant, P. and Valiant, G. Estimating the unseen: im-
proved estimators for entropy and other properties. In
Advances in Neural Information Processing Systems, pp.
2157–2165, 2013.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

Wu, Y. and Yang, P. Minimax rates of entropy estimation on
large alphabets via best polynomial approximation. IEEE
Transactions on Information Theory, 62(6):3702–3720,
2016.

Wu, Y. and Yang, P. Chebyshev polynomials, moment
matching, and optimal estimation of the unseen. The
Annals of Statistics, 47(2):857–883, 2019.

http://alon.ucsd.edu/papers/pml1.pdf
http://alon.ucsd.edu/papers/pml1.pdf

