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Abstract

Alternating minimization (AM) procedures are
practically efficient in many applications for solv-
ing convex and non-convex optimization prob-
lems. On the other hand, Nesterov’s acceler-
ated gradient is theoretically optimal first-order
method for convex optimization. In this paper
we combine AM and Nesterov’s acceleration to
propose an accelerated alternating minimization
algorithm. We prove 1/k? convergence rate in
terms of the objective for convex problems and
1/k in terms of the squared gradient norm for non-
convex problems, where k is the iteration counter.
Our method does not require any knowledge of
neither convexity of the problem nor function pa-
rameters such as Lipschitz constant of the gradi-
ent, i.e. it is adaptive to convexity and smooth-
ness and is uniformly optimal for smooth convex
and non-convex problems. Further, we develop
its primal-dual modification for strongly convex
problems with linear constraints and prove the
same 1/k? for the primal objective residual and
constraints feasibility.

1. Introduction

Alternating minimization (AM) optimization algorithms
have been known for a long time (Ortega & Rheinboldt,
1970; Bertsekas & Tsitsiklis, 1989). These algorithms as-
sume that the decision variable is divided into several blocks
and minimization in each block can be done explicitly. AM
algorithms have a number of applications in machine learn-
ing problems. For example, iteratively reweighted least
squares can be seen as an AM algorithm. Other applica-
tions include robust regression (McCullagh & Nelder, 1989)
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and sparse recovery (Daubechies et al., 2010). The famous
Expectation-maximization (EM) algorithm can also be seen
as an AM algorithm (McLachlan & Krishnan, 1996; An-
dresen & Spokoiny, 2016).

The initial motivation for this paper was accelerating al-
gorithms for optimal transport (OT) applications, which
are widespread in the machine learning community (Cuturi,
2013; Cuturi & Doucet, 2014; Arjovsky et al., 2017). The
ubiquitous Sinkhorn’s algorithm can be seen as an alter-
nating minimization algorithm for the dual to the entropy-
regularized optimal transport problem. Recent Greenkhorn
algorithm (Altschuler et al., 2017), which is a greedy ver-
sion of Sinkhorn’s algorithm, is a greedy modification of
an AM algorithm. For the Wasserstein barycenter (Agueh
& Carlier, 2011) problem, the extension of the Sinkhorn’s
algorithm is known as the Iterative Bregman Projections
(IBP) algorithm (Benamou et al., 2015), which can be seen
as an alternating minimization procedure (Kroshnin et al.,
2019). This motivated us to have a wider look on alternating
minimization algorithms and try to accelerate general AM
algorithm.

Sublinear 1/k convergence rate was proved for general AM
algorithm for n = 2 in (Beck, 2015). Despite the same con-
vergence rate as for the gradient method, AM-algorithms
converge faster in practice as they are free of the choice of
the step-size and are adaptive to the local smoothness of the
problem. At the same time, there are accelerated gradient
methods (AGM) which use a momentum term to have a
faster convergence rate of 1/k? (Nesterov, 1983) and use
gradient steps rather than block minimization. Our goal in
this paper is to combine the idea of alternating minimiza-
tion and momentum acceleration to propose an accelerated
alternating minimization method. As applications of our
general approach, we develop accelerated alternating least
squares algorithm and apply it to a non-convex collaborative
filtering problem, and propose accelerated Sinkhorn’s algo-
rithm for OT distances and accelerated Iterative Bregman
Projections algorithm for Wasserstein barycenters.

Related work. Besides mentioned above works on AM
algorithms, we mention (Beck & Tetruashvili, 2013; Saha
& Tewari, 2013; Sun & Hong, 2015), where non-asymptotic
convergence rates for AM algorithms for convex problems
were proposed and their connection with cyclic coordinate
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descent was discussed, but the analyzed algorithms are not
accelerated. Accelerated versions are known for random
coordinate descent methods (Nesterov, 2012; Lee & Sid-
ford, 2013; Shalev-Shwartz & Zhang, 2014; Lin et al., 2014;
Fercoq & Richtarik, 2015; Allen-Zhu et al., 2016; Nes-
terov & Stich, 2017; Alacaoglu et al., 2017), cyclic block
coordinate descent (Beck & Tetruashvili, 2013), greedy co-
ordinate descent (Lu et al., 2018). These ACD methods
are designed for convex problems and use momentum term,
but they require knowledge of block-wise Lipschitz con-
stants, i.e. are not parameter-free. A hybrid accelerated
random block-coordinate method (AAR-BCD) with exact
minimization in the last block was proposed in (Diakoniko-
las & Orecchia, 2018a) for convex problems. Unlike our
greedy choice of the updated block they use random choice
and the parameters of the algorithm depend on the block
Lipschitz constants, meaning that AAR-BCD algorithm is
not parameter-free. An extension providing a two-block
accelerated alternating minimization algorithm is available
in the updated version (Diakonikolas & Orecchia, 2018b)
for the convex case. This method is deterministic and it
is explained how to make it parameter-free. At the same
time neither of two algorithms from (Diakonikolas & Orec-
chia, 2018b) have an analysis for non-convex problems or
problems with linear constraints, yet it seems that such ex-
tensions are possible for their methods. We also underline
that our definition of the algorithm parameters, in particular,
the sequence ay, in Algorithm 1, is different from theirs.

The summary of the related works on alternating minimiza-
tion and coordinate methods is presented in the Table 1,
where P-F stands for parameter-free, Acc. for accelerated,
N-C for non-convex, P-D for primal-dual and B-N for num-
ber of blocks.

Table 1. Summary of the related works

P-F Acc. N-C P-D B-N
AM ! Vv X X X 2
AM? vV X X X any
ACD? X Vv X Vv any
AAR-BCD*  x Vv X X any
AAM? v VY X X 2
This paper vV v v vV any

Concerning the OT problem, the most used algorithm
is Sinkhorn’s algorithm (Sinkhorn, 1974; Cuturi, 2013).
Its complexity for the OT problem was first analyzed in

1(Beck & Tetruashvili, 2013; Beck, 2015)

%(Saha & Tewari, 2013; Sun & Hong, 2015)

3(Nesterov, 2012; Lee & Sidford, 2013; Fercoq & Richtarik,
2015; Shalev-Shwartz & Zhang, 2014; Allen-Zhu et al., 2016;
Nesterov & Stich, 2017; Beck & Tetruashvili, 2013; Lu et al.,
2018; Lin et al., 2014; Alacaoglu et al., 2017)

*(Diakonikolas & Orecchia, 2018a)

3(Diakonikolas & Orecchia, 2018b)

Table 2. Summary of OT algorithms

Algorithm Complexity
Sinkhorn (Cuturi, 2013; Dvurechensky et al., 2018b) N2||C|2%,/<?
Greenkhorn (Altschuler et al., 2017; Lin et al., 2019a) N2||C|2,/<?
Randkhorn (Lin et al., 2019b) N3\ C|2L2 Je
APDA(G/M)D (Dvurechensky et al., 2018b; Lin et al., 2019a) ~ N5/2||C||o /&
Mirror-Prox (Jambulapati et al., 2019) N2||Clleo/e
This paper N2||Clo /2

(Altschuler et al., 2017) and improved in (Dvurechensky
et al., 2018b). An accelerated gradient descent method in
application to OT problem was also analyzed in (Dvurechen-
sky et al., 2018b) with a better dependence on k in the rate,
but worse dependence on the dimension of the problem, see
also (Lin et al., 2019a). (Altschuler et al., 2017) propose a
greedy variant called Greenkhorn together with complexity
analysis, which was improved in (Lin et al., 2019a). In an
unpublished preprint (Lin et al., 2019b) the authors propose
a randomized accelerated version of Sinkhorn’s algorithm.
We summarize the complexity of existing methods for OT
in the Table 2. NNV is the number of points in the histogram,
C is the transportation cost matrix, € desired accuracy. The
complexity of approximating Wasserstein barycenter was
analyzed in (Kroshnin et al., 2019), where the complexity
by Iterative Bregman Projections algorithm and a variant of
accelerated gradient method was obtained. Previous works
(Cuturi & Doucet, 2014; Benamou et al., 2015; Staib et al.,
2017; Claici et al., 2018) did not give an explicit complexity
bounds for approximating barycenter. But there are plenty of
algorithms for approximating WB including accelerated gra-
dient method plus Sinkhorn’s algorithm (Cuturi & Doucet,
2014), gradient-type methods (Cuturi & Peyré, 2016), ac-
celerated primal-dual gradient descent (Dvurechensky et al.,
2018a; Krawtschenko et al., 2020), stochastic gradient de-
scent (Claici et al., 2018; Tiapkin et al., 2020), distributed
and parallel gradient descent (Staib et al., 2017; Uribe et al.,
2018; Rogozin et al., 2021), alternating direction method
of multipliers (ADMM)(Ye et al., 2017; Yang et al., 2018)
and interior-point algorithm (Ge et al., 2019). Only recently
the question of complexity got some answers. Namely, two
approaches for approximating Wasserstein barycenter based
on entropic regularization (Cuturi, 2013) were analyzed.
The first approach is based on Iterative Bregman Projec-
tion (IBP) algorithm (Benamou et al., 2015), which can be
considered as a general alternating projections algorithm
and also as a generalization of the Sinkhorn’s algorithm
(Sinkhorn, 1974). The second approach Primal-Dual Accel-
erateg Gradient Descent (PDAGD) is based on constructing
a dual problem and solving it by primal-dual accelerated
gradient descent. For both approaches, it was shown, how
the regularization parameter should be chosen in order to
approximate the original, non-regularized barycenter. In
(Lin et al., 2020) the authors proposed a variant of the It-
erative Bregman Projection (IBP) algorithm, which they
called FastIBP. Very recently (Dvinskikh & Tiapkin, 2021)
provided two algorithms to compute Wasserstein barycenter,
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one of them has the best theoretical convergence guarantees.

We summarize the known complexity bounds from the lit-
erature in Table 3. We underline that despite many advan-
tages of the entropic regularization, in some situations other
reguarizations provide more robust results (Blondel et al.,
2018). Our proposed method is flexible enough to allow
efficient computations with regularizers other than entopic
both for OT and WB problems.

Table 3. Summary of algorithms for Wasserstein barycenters

Algorithm
IBP (Benamou et al., 2015; Kroshnin et al., 2019)
PDAGD (Kroshnin et al., 2019)
FastIBP (Lin et al., 2020)

Complexity
mN2?||C||2, /e
mN2||C| /e

mN"/3|C|[oL? e/

Area Convexity (Dvinskikh & Tiapkin, 2021) mN?|C|lo/e
Mirror-Prox (Dvinskikh & Tiapkin, 2021) mN®2||C|ls /e
This paper mN%/2|C| /e

Our contributions. For objectives with n blocks of vari-
ables we introduce an accelerated alternating minimization
method with O(n/k?) convergence rate for the objective val-
ues in smooth unconstrained convex problems and O(n/k)
convergence rate in terms of the squared norm of the gradi-
ent both for convex and non-convex smooth unconstrained
problems. Thus, in terms of the dependence on the iteration
counter k our algorithm achieves uniformly the best possible
rates in convex case (same as for AGM) and in non-convex
case (same as for gradient descent (GD)). Moreover, the
algorithm automatically adapts to convexity and smooth-
ness: it is completely the same for convex and non-convex
settings and does not need to know in advance whether the
problem is convex or not, i.e. is uniform for smooth convex
and non-convex problems; it does not need to know the
Lipschitz constant of the gradient, i.e. is parameter-free.
Parameter-free versions exist also for AGM and GD (see,
e.g. (Nesterov, 2013)), but they are based on a different idea
of backtracking line-search and do not explore the block
structure of the problem and block minimization for accel-
eration in practice.

The main idea of our algorithm is to combine block-wise
minimization and the extrapolation (also known as momen-
tum) step which is usually used in accelerated gradient meth-
ods. We also show that in the convex setting the proposed
method is primal-dual, meaning that if we apply it to a dual
problem for a linearly constrained strongly convex problem,
we can reconstruct the solution of the primal problem with
the same convergence rate. In the follow-up work (Tupitsa
et al., 2021) a modification of AAM is proposed and ana-
lyzed for strongly convex problems.

To highlight the new properties of our method, the proven
convergence rate for non-convex problems and the primal-
dual analysis, we consider two particular applications. First,
we consider a non-convex collaborative filtering problem
and show empirically that our algorithm outperforms the

standard alternating least squares algorithm. Second, we
apply it to the dual entropy-regularized OT problem to ob-
tain the Accelerated Sinkhorn’s algorithm. The Primal-dual
analysis is crucial here since the goal is to find the trans-
portation plan, i.e. the primal variable, by solving the dual
problem. Our method has complexity comparable to the
existing methods and in the experiments, we show that our
general method outperforms specific baselines for this prob-
lem, including Sinkhorn’s algorithm. Importantly, we use
a non-standard formulation of the dual entropy-regularized
OT problem in the form of minimization of a softmax func-
tion. Moreover, our algorithm is more flexible since it can
solve OT problems with other types of regularization, e.g.
by squared Euclidean norm. Finally, in the supplementary,
we apply our accelerated primal-dual AM algorithm to the
Wasserstein Barycenter (WB) problem and propose an ac-
celerated Iterative Bregman Projection algorithm with the
complexity O (mN 25 /5) to find a barycenter of m his-
tograms of dimension N. This bound is better than the
complexity bound for the standard Iterative Bregman Pro-
jection algorithm (Kroshnin et al., 2019) O (mN?/e?) in
terms of ¢. In the follow-up paper (Tupitsa et al., 2020) the
AAM method is applied to a more general multimarginal
optimal transport problem and complexity estimates are ob-
tained that are better in some regimes than the ones in the
literature.

Paper organization. In Sect. 2 we consider the general
setting of minimizing a smooth objective function using
block minimization. We introduce our uniform accelerated
alternating minimization (AAM) method for convex and
non-convex problems together with its primal-dual modi-
fication for convex linearly constrained problems. In Sect.
3 we study the primal-dual properties of the method. In
Sect.4 we discuss the application of our method to the col-
laborative filtering problem and provide experiments on the
Last.fm dataset 360K for the collaborative filtering problem.
In Sect. 5 we describe the OT and the WB problems and
their entropy-regularized versions, together with the dual
for the latters, that are non-standard. Then, we propose the
Accelerated versions of Sinkhorn’s algorithm and IBP algo-
rithm and obtain their theoretical complexity, and provide
the results of numerical experiments on MNIST dataset for
both problems and additionally provide experiments for WB
problem with Gaussian measures. The proofs of all stated
results, the explicit form of algorithms and the application
of the proposed methods to the regularized Wasserstein
Barycenter problem may be found in the supplement. In
Section 6 we provide numerical experiment for least squares
problem for linear regression.®

8Code for all presented algorithms is available at https://
github.com/nazya/AAM
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2. Accelerated Alternating Minimization

In this section we consider the minimization problem
min_f (x), where f(x) is continuously differentiable and,
z€R

in general non-convex, L-smooth function, the latter mean-
ing that its gradient is L-Lipschitz, ie. V z, y €
RN ||[Vf(z) = Vf(y)|2 < L||z — y||2. We assume that
the space is equipped with the Euclidean norm || - || and
that the problem has at least one solution, denoted by x*.
The set {1, ..., N} of indices of the basis vectors {e; } Y ; is
divided into n disjoint subsets (blocks) I,,, p € {1,...,n}.
Let S,(z) = = + span{e; : i € I}, i.e. the affine sub-
space containing x and all the points differing from = only
over the block p. We use z; to denote the components of
x corresponding to the block ¢ and V,; f(z) to denote the
gradient corresponding to the block . We will further re-
quire that for any p € {1,...,n} and any z € R" the

problem Hélr(l : f(z) has a solution, and this solution is
reSp(z

easily computable.

Algorithm 1 Accelerated Alternating Minimization (AAM)
Input: Starting point x.
Output: z*

1: Set Ag =0, 20 =20,

2: for k > 0do

3:  Set 8y = argmin [ (xk + B(v* — xk))

Be[0,1]
4:  SetyF = 2¥ 4 B (vF — 2¥)
5. Choose i, = argmax ||V, f(y*)|3
ie{l,...,n}
6: Setx*tl = argmin f(x)
€Sy, (y*)
7:  Find ag41, Ak+1 = Ak + ap41 from

a%ﬂ kyp2 k+1
o IVIHIE = F=*)

k —
") s

8  SetvFtl =k —ap  VF(yF)
9: end for

Our accelerated alternating minimization method is listed as
Algorithm 1. This algorithm combines AM and Nesterov’s
momentum and, thus, a full-gradient step 8 is inherited and
AM updates are used for faster empirical convergence than
AGD. In some sense this is similar to AM compared to
gradient descent: theoretical rates are the same, but AM
has practical benefits. At the same time, full gradient step
8 is not more expensive than other steps. For example, in
the OT applications, full gradient costs nearly the same as
block minimization. We underline that Algorithm 1 does
not require knowledge of whether the function is convex or
non-convex and does not require knowledge of any param-
eters of the function. The latter is in contrast to standard
accelerated gradient descent (Nesterov, 2004), accelerated
random coordinate descent (Nesterov, 2012; Lee & Sidford,

2013; Shalev-Shwartz & Zhang, 2014; Lin et al., 2014; Fer-
coq & Richtérik, 2015; Allen-Zhu et al., 2016; Nesterov &
Stich, 2017), accelerated cyclic block coordinate descent
(Beck & Tetruashvili, 2013), accelerated greedy coordinate
descent (Lu et al., 2018), all of which require the knowledge
of either the constant L or block-wise Lipschitz constants.
Our method is also different from parameter-free versions
of AGM that use a backtracking line-search as, e.g., in
(Nesterov, 2013). Parameter-free nature of our method is
achieved by applying steps 3 and 7. In standard methods
ay, is defined by an equation containing L and [y is defined
based on aj,. We prove that in the case when f is convex and
L-smooth, our method has the accelerated O(n/k?) rate for
the objective residual and, for a general setting of possi-
bly non-convex L-smooth functions it guarantees that the
squared norm of the gradient decreases as O(n/k). Impor-
tantly, the obtained convergence rate in the convex case is n
times better than the rate for accelerated random coordinate
descent (Nesterov, 2012), which is O(n?/k?). The main
convergence rate theorem for Algorithm 1 is as follows.

Theorem 1. a) Assume that f is (possibly non-convex) L-
smooth function w.rt. ||-||2. Then, after k steps of Algorithm

b) Assume additionally that f is convex. Then, after k steps
of Algorithm 1,

o 2nL]2® —a*||3
= f(z") < TQ

Proof of Theorem 1, a). L-smoothness of f together with
the fact that zF+1 = argmin,cg, (4, f(x) where i), =
argmax; ||V, f(y"*)||3 implies
1
F") = S IV PO = ().

Since i = argmax; ||V;f(y*)||2 we have that

1
Vi FWOIE = IV I3

and

FE) < 6N - 519 SN
<) — 5 IVFM B
Summing this up for¢ = 0, ..., k, we obtain
£~ £7) > F) — )

k . 112
> —— m V v .
~ onlL i:071..r.l,k VIOl
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Consequently, we may guarantee %nn V)3 <

.....

2nL(f(z°)—f(z"))
% : =

To prove the part b) of Theorem 1 we firstly state an auxiliary
lemma. Let us introduce an auxiliary sequence of functions
defined as 1o(z) = i”x = 2°?, Yrp(z) = Yu(z) +
ap1{f (W) + (Vf(yF),z — y*)}. Tt is easy to see that
v* = argmin vy, (z).

z€RN
Lemma 2. After k steps of Algorithm 1 it holds that

Apf(#") < min Ye(w) = (o). )

Moreover, Ay, > 4’2 , where n is the number of blocks.
Proof of Theorem 1 b). From the convexity of f(x) we

have - Y170 ax1 (F(UF) +(VF(y7), 2 —yF)) < f(a).
From Lemma 2, using the standard argument (Nesterov,
2005), we have

A f (") < Yr(v k) < r(x”)

z* —a°3 + Zam

=0

+(VFy'), " =)

S Apf(z™)+

1
Slla” — 2|3

Since A, > 4’;L,

theorem f(z%) — f(z*) <

we finally obtain the statement of the
2nLsz2—z 112 ) 0

The obtained rate leads to complexity O(1/n/¢) to achieve
accuracy ¢ in terms of the objective. As we show below,
for the collaborative filtering problem and optimal transport
problem n = 2 and our accelerated method provides accel-
eration from complexity O(1/¢) of existing AM methods
to the better complexity O(1/1/¢).

3. Primal-Dual Extension

In this section we consider the primal-dual (up to a sign)
pair of minimization problems

(P1) min {f(z): Az = b},

T€QCE

(P>) min {QS(A) = (A 0) + max (= f(x) - <AT)\,£C>)} ,

where E is a finite-dimensional real vector space, () is a sim-
ple closed convex set, f is a y-strongly convex function, A
is a given linear operator from FE to some finite-dimensional
real vector space H, b € H is given, A = H* is the conju-
gate space.

Algorithm 2 Primal-Dual AAM
I: Ag=ap =0,m0 = (o = Ao = 0.
2: for k > 0do
3 Set 8, = argmin¢ (n* + B(¢F — )

Bel0,1]
4 Set A = BiCF + (1 = B)n”
5. Choose i, = argmax ||V;p(\*)||2
ie{l,...,n}
6:  Setnftl = argmin ¢(n)
Weszk (AF)

7: Find aj1, Ak+1 = A, + aj+1 from

S(AF) — A}

I = 2 S k+1
2(Ap + ap41) )

IVe(A)]3 = (1

8:  Set (" = (% —ap 1 Vo(A)
9: Set #k+1 — arp12(\F)+ A, 2"

: y .
10: end for

Output: The points ¥+, pF+1,

Since f is convex, ¢()) is a convex function and, by Dan-
skin’s theorem, its subgradient is equal to

where z(\) is some solution of the convex problem
—f(z) — (ATX 2)). 3
max (—f(z) — (AT,2)) ©

In what follows, we assume that H is equipped with the
Euclidean norm, ¢(\) is L-smooth and that the problem
(P2) has a solution \* and there exist some R > 0 such that
[[A*]|2 < R. We underline that the quantity R will be used
only in the convergence analysis, but not in the algorithm
itself. Our primal-dual algorithm based on Algorithm 1 for
the pair (P )-(P2) is listed as Algorithm 2.

The key result for this method is that it guarantees conver-
gence in terms of the constraints and the duality gap for
the primal problem, provided that the primal objective is
strongly convex. The rate of convergence and complexity
remain the same as for Algorithm 1.

Theorem 3. Let the objective f(x) in the problem (Py) be

~-strongly convex w.rt. || - | g, and let || \*|| < R. Then, for
the sequences 3%, n*, k > 0, generated by Algorithm 2,
8n||AlF g R*
4
6() + 1) < TEEERA @)
8n||Al%2_ 4R
||A:%k _bH2 < n” ||E~>H , (5)
Vk?
. . in||A R
I8 — o < LN A 2R (©6)
vk

where ||Allg—n is the norm of A as a lin-
ear operator from E to H, i.e. lAllgsr =
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maxy ., {(Au,v) : ||lullg = 1, ||v||g =1}, and
Ml =12

4. Application to Non-convex Optimization

—o— AM
—v- AAM

7.8 x10*
7.6 x 10*
7.4x10*
7.2 x10!

7 x 10!

function value

6.8 x 10*

6.6 x 10*

6.4 x 10* ¥ v v
0 20 40 60 80 100 120
times, s

Figure 1. Performance of AM and Algorithm 1 on the problem (7)

In this section we apply our general accelerated AM method
to a non-convex collaborative filtering problem. The prob-
lem consists of completion of the user-item preferences
matrix with estimated values based on a small number of
observed ratings made by other users. This is a particu-
lar case of the matrix completion problem. The unknown
ratings 7,; associated with the user u and the item ¢ are
sought as a product z,} y;, where the vectors z,, and y; are
the optimized variables. We assume that we are given 7,,; —
observed preference rates associated with some users and
items. The confidence c,,; for an observation r,; is defined
as cy; = 1+ 57y, and the binarized rating p,,; is defined as
Pui = Lif ry; > 0 and p,; = 0if r; = 0. Following the
approach in (Hu et al., 2008), we minimize the data fitting
term with a regularizer

r;nyn F(z,y) = Z Cui (Tui —f;ryi)z

observed u,?

+A (Z lleull3 + ) IIyi|§> -

This function can be explicitly minimized over z for fixed
y and vice-versa, which motivates the use of alternating
minimization procedures.

The considered objective function is not convex, but has
Lipchitz continuous gradient (by Theorem 1 from (Khenissi
& Nasraoui, 2019)), so the minimization via Algorithm 1 is
possible. We use the standard AM algorithm as a baseline.
We generate the matrix {r,; }, ; from Last.fm dataset 360K
with ratings given by listeners to certain artists. There were
70 users and 100 artists observed, and the sparsity coefficient
of the matrix was approximately 2%. The regularization
coefficient was set to A = 0.1 In Figure 1 we compare the
performance of AM and Algorithm 1 applied to the problem
).

5. Application to Optimal Transport and
Wasserstein Barycenter

In this section we apply the developed methods to solve the
discrete-discrete optimal transportation problem

i f(X)=(C.X) (¥

Ulr,e) = {X e RN . X1 =7 XT1 = ¢},

where X is the transportation plan, C' € Ri\_] *N s a
given cost matrix, 1 € RY is the vector of all ones,
r,c € Sn(1) := {s € RY : (s,1) = 1} are given dis-
crete measures, and (A, B) denotes the Frobenius product

N
of matrices defined as (A, B) = > A;;B;;.

ij=1
Optimal transport distances lead to the concept of Wasser-
stein barycenter (WB). Given two probability measures p, g
and a cost matrix C € Rf *N we define optimal transporta-
tion distance between them as

We(p,q) = min (X, C).

XeU(p.q)

For a given set of probability measures p; and cost matrices
C; we define their weighted barycenter with weights w €
Sm(1) as a solution of the following convex optimization

problem:

min w;We. (p;i, q).
quN(l)i:1 4 Cﬁ(pzaQ)

The key aspect to apply our method is the strong convexity
of the function to minimize. To ensure this, we introduce a
general strongly convex regularizer R(X), e.g. entropy (Cu-
turi, 2013) or squared Euclidean norm (Essid & Solomon,
2018). Since the f(X) is strongly convex, we are in the
situation of Section 3. We underline that our method is able
to solve OT problems with general regularizers, but, next we
focus on a special case of entropic regularization as the most
used in practice. In this case R(X) = (X, In X) with In X
taken elementwise. The detailed derivations and proofs for
this subsection can be found in the supplementary.

Using the entropic regularization we define the regularized
OT-distance for v > 0:

WC,'y(pa Q) = min <7T, C> + ’YR(W)v

meU(p,q)
and the regularized barycenter which is the solution to the
following problem:

m

min ZleCL,"/ (plvq) . (9)

S (1
qcesSn (1) T

Importantly, the entropy (X, In X) is not strongly convex
on RfXN. Thus, if we just take Q = RfXN in Section
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3, we will get a standard dual problem (Altschuler et al.,
2017)[Sect. 3.3] in the form of minimization of a sum of ex-
ponents. This objective does not have Lipschitz-continuous
gradient as the gradient grows exponentially. Previous
works (Dvurechensky et al., 2018b; Lin et al., 2019a;b)
do not take this into account and apply accelerated gradient
methods to the dual problem, which makes their complexity
results not completely correct.

To resolve this problem, we note thatU(r,c) C @ := {X €
]RfXN :17X1 = 1} and the entropy (X, In X) is strongly
convex on this new set () in 1-norm. Thus, we introduce an
additional constraint 17 X1 = 1 into the problem. Since
this constraint is a corollary of the constraint X € U(r, ¢),
the solution of the problem remains the same. The gain is
that the gradient in the dual now becomes Lipschitz contin-
uous and we can apply our primal-dual AAM.

Introducing the dual variables y, z, we derive in the supple-
mentary the dual entropy OT problem

min_~In <§: exp <W>>+<y )+ (2, ),

y,z€RN o1 Yy
(10)

and the dual (minimization) problem of (9)

m N

(i vd 4
vzwllnze}{p (ug + v +C)
Y
=1

min
u,v
m

L wiv =0 ij=1

- ’YZwl (ug,pry (11)
=1

The variables in the dual problem (10), (11) naturally de-
compose into two blocks. Moreover, minimization over
any one block can be made explicitly and the expressions
are the same as for the Sinkhorn’s algorithm in the form
of (Altschuler et al., 2017) and IBP from (Kroshnin et al.,
2019). The detailed proof of this fact may be found in the
corresponding section of the supplement.

—8— AAM-LS
4000 1 —— Greenkhorn
—&— AAM-A
—< APDAGD
3000 7" —— AAR-BCD
Sinkhorn

2000 1

required time

1000 4

T T T T T T
0 500 1000 1500 2000 2500
/e,

Figure 2. Performance comparison on MNIST dataset. Filled in
area corresponds to 1 standard deviation.

Concerning OT problem, the goal is to approximate the
non-regularized OT distance, the regularization parameter

has to be chosen small, which leads to instabilities for the
matrix-scaling Sinkhorn’s algorithm of (Cuturi, 2013).

We obtained the final bound of the complexity to find an
e-approximation for the non-regularized OT problem to be

0] (W— IHEN”C”"") Compared to the same bound for the

NZ 1nN\|C\|'§O>
€2

Sinkhorn’s algorithm, which is O ( , the new

result for our accelerated algorithm is better in terms of €.
Detailed derivations can be found in the supplementary.

In Figure 2, we provide a numerical comparison of our meth-
ods with Sinkhorn’s algorithm, the AAR-BCD method (Di-
akonikolas & Orecchia, 2018a), the APDA(G/M)D method
(Dvurechensky et al., 2018b; Lin et al., 2019a) and with
the Greenkhorn algorithm (Altschuler et al., 2017). We
do not provide numerical comparison with Area Convex-
ity algorithm from (Jambulapati et al., 2019) because the
authors did not implement their algorithm. Instead of this
the authors "implemented their algorithm as an instance of
mirror prox". For this instance "there is not a known proof
of convergence with an area-convex regularizer". So it’s
impossible to know the moment of time when the desired
accuracy is reached. The AAM-LS method is the Acceler-
ated Sinkhorn algorithm based on Algorithm 2, while the
AAM-A is the Accelerated Sinkhorn algorithm based on the
APDAGD method. Pseudocode of both these methods may
be found in the supplementary. We performed experiments
using randomly chosen images from MNIST dataset. We
slightly modified the smaller values in the measures corre-
sponding to the images as in (Dvurechensky et al., 2018b).
We choose several values of accuracy e € [0.0004, 0.002],
sampled 5 pairs of images and ran the methods until the
desired accuracy was reached, which is ensured using com-
putable stopping criteria (Dvurechensky et al., 2018b). Our
AAM algorithms outperform the other methods and also
have much lower variance in performance compared to the
Sinkhorn’s algorithm. Probably the large variance in the
results for Sinkhorn’s algorithm is caused by its instability
for small ~, which corresponds to small €.

For WB problem, we add to the comparison recently pre-
sented algorithm from (Dvinskikh & Tiapkin, 2021). All
presented algorithms have convergence guarantees on the
value of non-regularized primal function, e.g. they guaran-
tee that >, w,W(pi, ") — > wiW (pr, ¢*) < € after
¢ number of iterations (see Table 3), where ¢* = >_," | wiq}
and ¢ = (X*)T'1, X" is an approximation of a tansporta-
tion plan at iteration ¢. But the particular implementation
of Area Convexity algorithm from (Dvinskikh & Tiapkin,
2021) is supposed to work faster than theoretical analy-
sis allows, because alternating minimization procedure for
calculation of a prox-mapping has different stopping cri-
terion, which is more easy to satisfy. To compare actual
convergence, we took on 5 randomly chosen images from
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MNIST dataset and plotted in Figure 5 and Figure 6 the
rate of decay of primal function from a transportation plan,
which is projected on the feasible set with Algorithm 2 from
(Altschuler et al., 2017). We divided visualisation into two
figures because of the scaling issues: Area-Convexity and
Mirror-Prox were much slower than the others. IBP appears
twice for a reference. Parameter of entropic regularization
v = be — 4.

Figure 3 and Figure 4 illustrate the results obtained after
500s by the proposed algorithms.

IBP, y=0.0005

Figure 3. Approximate barycenter

Mirror-Prox Area Convexity

AAR-BCD, y=0.0005 AAM-LS, y=0.0005

-
i
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Figure 4. Approximate barycenter
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Figure 5. Performance comparison on MNIST dataset.
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Figure 6. Performance comparison on MNIST dataset.

We also compare the performance of algorithms in terms of
St willgf — @)1 which is used as stopping criterion for
IBP algorithm, in Figure 7.

—o- IBP

Observed accuracy
-
<
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0 200 400 600 800 1000

Time, s

Figure 7. Performance comparison on MNIST dataset.

One may be interested in convergence to a true barycenter.
To show the convergence we conducted experiments with
random Gaussian measures. For this setup one has analytic
expression for a Wasserstein barycenter.

In Figure 8 we compare the performance of algorithms in
terms of ||¢* —q*||1, where ¢* is a true barycenter. Parameter
of entropic regularization v = 5e — 5.
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Figure 8. Performance comparison on Gaussian measures.

In Figure 9 we compare the performance of algorithms in
terms of > ", wi|lgf — @)1 in order to show a relation
between Real accuracy and Observed accuracy.
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Figure 9. Performance comparison on Gaussian measures.

6. Application to Least Squares

We also illustrate the results by solving the alternating least
squares problem on the Blog Feedback Data Set (Buza,
2014) obtained from UCI Machine Learning Repository.
The data set contains 280 attributes and 52,396 data points.
The attributes correspond to various metrics of crawled blog
posts. The data is labeled, and the labels correspond to the
number of comments that were posted within 24 hours from
a fixed basetime. The goal of a regression method is to
predict the number of comments that a blog post receives.

We partition the data into n blocks of the same size sequen-
tially, e.g. we group the first N/n coordinates into the first
block, the second N/n coordinates into the second block,
and so on. We present comparison with block sizes N/n
are 5 and 20, corresponding to n = 56 and n = 14.

The comparison for the linear regression is presented in
Figure 10 and in Figure 11.

7. Conclusions

In this paper we propose an accelerated alternating mini-
mization algorithm that combines greedy block-wise up-
dates with full relaxation and Nesterov’s moment. The
method automatically adapts to the gradient Lipschitz con-
stant and convexity of the problem. It achieves in the convex
case O(n/k?) convergence rate for the objective and in the
non-convex case O(n/k) convergence rate for the squared
norm of the gradient. We also propose a primal-dual ex-
tension of this algorithm for minimizing strongly convex
functions under linear constraints. The practical efficiency
of the algorithm is demonstrated by a series of numerical
experiments.
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