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Abstract
We develop and analyze MARINA: a new com-
munication efficient method for non-convex dis-
tributed learning over heterogeneous datasets. MA-
RINA employs a novel communication compres-
sion strategy based on the compression of gradi-
ent differences that is reminiscent of but different
from the strategy employed in the DIANA method
of Mishchenko et al. (2019). Unlike virtually
all competing distributed first-order methods, in-
cluding DIANA, ours is based on a carefully de-
signed biased gradient estimator, which is the
key to its superior theoretical and practical perfor-
mance. The communication complexity bounds
we prove for MARINA are evidently better than
those of all previous first-order methods. Further,
we develop and analyze two variants of MARINA:
VR-MARINA and PP-MARINA. The first method
is designed for the case when the local loss func-
tions owned by clients are either of a finite sum
or of an expectation form, and the second method
allows for a partial participation of clients – a
feature important in federated learning. All our
methods are superior to previous state-of-the-art
methods in terms of oracle/communication com-
plexity. Finally, we provide a convergence anal-
ysis of all methods for problems satisfying the
Polyak-Łojasiewicz condition.

1. Introduction
Non-convex optimization problems appear in various appli-
cations of machine learning, such as training deep neural
networks (Goodfellow et al., 2016) and matrix completion
and recovery (Ma et al., 2018; Bhojanapalli et al., 2016). Be-
cause of their practical importance, these problems gained
much attention in recent years, which led to a rapid develop-
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ment of new efficient methods for non-convex optimization
problems (Danilova et al., 2020), and especially the training
of deep learning models (Sun, 2019).

Training deep neural networks is notoriously computation-
ally challenging and time-consuming. In the quest to im-
prove the generalization performance of modern deep learn-
ing models, practitioners resort to using increasingly larger
datasets in the training process, and to support such work-
loads, it is imperative to use advanced parallel and dis-
tributed hardware, systems, and algorithms. Distributed
computing is often necessitated by the desire to train models
from data naturally distributed across several edge devices,
as is the case in federated learning (Konečný et al., 2016;
McMahan et al., 2017). However, even when this is not the
case, distributed methods are often very efficient at reduc-
ing the training time (Goyal et al., 2017; You et al., 2020).
Due to these and other reasons, distributed optimization has
gained immense popularity in recent years.

However, distributed methods almost invariably suffer from
the so-called communication bottleneck: the communica-
tion cost of information necessary for the workers to jointly
solve the problem at hand is often very high, and depend-
ing on the particular compute architecture, workload, and
algorithm used, it can be orders of magnitude higher than
the computation cost. A popular technique for resolving
this issue is communication compression (Seide et al., 2014;
Konečný et al., 2016; Suresh et al., 2017), which is based on
applying a lossy transformation/compression to the models,
gradients, or tensors to be sent over the network to save
on communication. Since applying a lossy compression
generally decreases the utility of the exchanged messages,
such an approach will typically lead to an increase in the
number of communications, and the overall usefulness of
this technique manifests itself in situations where the com-
munication savings are larger compared to the increased
need for the number of communication rounds (Horváth
et al., 2019).

The optimization and machine learning communities have
exerted considerable effort in recent years to design dis-
tributed methods supporting compressed communication.
From many methods proposed, we emphasize VR-DIANA
(Horváth et al., 2019), FedCOMGATE (Haddadpour et al.,
2020), and FedSTEPH (Das et al., 2020) because these pa-
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pers contain the state-of-the-art results in the setup when
the local loss functions can be arbitrary heterogeneous.

1.1. Contributions

We propose several new distributed optimization methods
supporting compressed communication, specifically focus-
ing on smooth but nonconvex problems of the form

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x)

}
, (1)

where n workers/devices/clients/peers are connected in a
centralized way with a parameter-server, and client i has an
access to the local loss function fi only. We establish strong
complexity rates for them and show that they are better than
previous state-of-the-art results.

•MARINA. The main contribution of our paper is a new
distributed method supporting communication compression
called MARINA (Alg 1). In this algorithm, workers apply an
unbiased compression operator to the gradient differences
at each iteration with some probability and send them to
the server that performs aggregation by averaging. Unlike
all known methods operating with unbiased compression
operators, this procedure leads to a biased gradient estima-
tor. We prove convergence guarantees for MARINA, which
are strictly better than previous state-of-the-art methods
(see Table 1). For example, MARINA’s rate O( 1+ω/

√
n

ε2 ) is
O(
√
ω) times better than that of the state-of-the-art method

DIANA (Mishchenko et al., 2019), where ω is the variance
parameter associated with the deployed compressor. For
example, in the case of the Rand1 sparsification compressor,
we have ω = d − 1, and hence we get an improvement
by the factor O(

√
d). Since the number d of features can

be truly very large when training modern models, this is a
substantial improvement that can even amount to several
orders of magnitude.

• Variance Reduction on Nodes. We generalize MARINA
to VR-MARINA, which can handle the situation when the
local functions fi have either a finite-sum (each fi is an
average of m functions) or an expectation form, and when it
is more efficient to rely on local stochastic gradients rather
than on local gradients. When compared with MARINA, VR-
MARINA additionally performs local variance reduction on
all nodes, progressively removing the variance coming from
the stochastic approximation, leading to a better oracle com-
plexity than previous state-of-the-art results (see Table 1).
When no compression is used (i.e., ω = 0), the rate of VR-
MARINA is O(

√
m√
nε2

), while the rate of the state-of-the-art

method VR-DIANA is O(m
2/3

ε2 ). This is an improvement
by the factor O(

√
nm1/6). When much compression is

applied, and ω is large, our method is faster by the factor
O( m2/3+ω

m1/2+ω1/2 ). In the special case, when there is just a sin-

gle node (n = 1), and no compression is used, VR-MARINA
reduces to the PAGE method of Li et al. (2020); this is an
optimal first-order algorithm for smooth non-convex finite-
sum/online optimization problems.

• Partial Participation. We develop a modification of MA-
RINA allowing for partial participation of the clients, which
is a feature critical in federated learning. The resulting
method, PP-MARINA, has superior communication com-
plexity to the existing methods developed for this settings
(see Table 1).

• Convergence Under the Polyak-Łojasiewicz Condi-
tion. We analyze all proposed methods for problems sat-
isfying the Polyak-Łojasiewicz condition (Polyak, 1963;
Łojasiewicz, 1963). Again, the obtained results are strictly
better than previous ones (see Table 2). Statements and
proofs of all these results are in the Appendix.

• Simple Analysis. The simplicity and flexibility of our
analysis offer several extensions. For example, one can
easily generalize our analysis to the case of different quan-
tization operators and different batch sizes used by clients.
Moreover, one can combine the ideas of VR-MARINA and
PP-MARINA and obtain a single distributed algorithm with
compressed communications, variance reduction on nodes,
and clients’ sampling. We did not do this to keep the expo-
sition simpler.

1.2. Related Work

Non-Convex Optimization. Since finding a global mini-
mum of a non-convex function is, in general, an NP-hard
problem (Murty & Kabadi, 1987), many researchers in non-
convex optimization focus on relaxed goals such as finding
an ε-stationary point. The theory of stochastic first-order
methods for finding ε-stationary points is well-developed: it
contains lower bounds for expectation minimization without
smoothness of stochastic realizations (Arjevani et al., 2019)
and for finite-sum/expectation minimization (Fang et al.,
2018; Li et al., 2020) as well as optimal methods matching
the lower bounds (see (Danilova et al., 2020; Li et al., 2020)
for the overview). Recently, distributed variants of such
methods were proposed (Sun et al., 2020; Sharma et al.,
2019; Khanduri et al., 2020).

Compressed Communications. Works on distributed
methods supporting communication compression can be
roughly split into two large groups: the first group focuses
on methods using unbiased compression operators (which
refer to as quantizations in this paper), such as RandK, and
the second one studies methods using biased compressors
such as TopK. One can find a detailed summary of the most
popular compression operators in (Safaryan et al., 2020;
Beznosikov et al., 2020).

Unbiased Compression. In this line of work, the first con-
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Table 1: Summary of the state-of-the-art results for finding an ε-stationary point for the problem (1), i.e., such a point x̂ that
E
[
‖∇f(x̂)‖2

]
≤ ε2. Dependences on the numerical constants, “quality” of the starting point, and smoothness constants are omitted in

the complexity bounds. Abbreviations: “PP” = partial participation; “Communication complexity” = the number of communications
rounds needed to find an ε-stationary point; “Oracle complexity” = the number of (stochastic) first-order oracle calls needed to find
an ε-stationary point. Notation: ω = the quantization parameter (see Def. 1.1); n = the number of nodes; m = the size of the local
dataset; r = (expected) number of clients sampled at each iteration; b′ = the batchsize for VR-MARINA at the iterations with compressed
communication. To simplify the bounds, we assume that the expected density ζQ of the quantization operatorQ (see Def. 1.1) satisfies
ω + 1 = Θ(d/ζQ) (e.g., this holds for RandK and `2-quantization, see (Beznosikov et al., 2020)). We notice that (Haddadpour et al.,
2020) and (Das et al., 2020) contain also better rates under different assumptions on clients’ similarity.

Setup Method Citation Communication Complexity Oracle Complexity

(1)

DIANA
(Mishchenko et al., 2019)

(Horváth et al., 2019)
(Li & Richtárik, 2020)

1+(1+ω)
√
ω/n

ε2
1+(1+ω)

√
ω/n

ε2

FedCOMGATE (1) (Haddadpour et al., 2020) 1+ω

ε2
1+ω

nε4

FedSTEPH, r = n (Das et al., 2020) 1+ω/n

ε4
1+ω/n

ε4

MARINA (Alg. 1) Thm. 2.1 & Cor. 2.1 (NEW) 1+ω/
√
n

ε2
1+ω/

√
n

ε2

(1)+(5)

DIANA (Li & Richtárik, 2020) 1+(1+ω)
√
ω/n

ε2
+ 1+ω

nε4
1+(1+ω)

√
ω/n

ε2
+ 1+ω

nε4

VR-DIANA (Horváth et al., 2019)

(
m2/3+ω

)√
1+ω/n

ε2

(
m2/3+ω

)√
1+ω/n

ε2

VR-MARINA (Alg. 2), b′ = 1(2) Thm. 3.1 & Cor. 3.1 (NEW)
1+max

{
ω,
√

(1+ω)m
}
/
√
n

ε2

1+max
{
ω,
√

(1+ω)m
}
/
√
n

ε2

(1)+(6)

DIANA (3) (Mishchenko et al., 2019)
(Li & Richtárik, 2020)

1+(1+ω)
√
ω/n

ε2
+ 1+ω

nε4
1+(1+ω)

√
ω/n

ε2
+ 1+ω

nε4

FedCOMGATE (3) (Haddadpour et al., 2020) 1+ω

ε2
1+ω

nε4

VR-MARINA (Alg. 2), b′ = 1 Thm. 3.2 & Cor. 3.2 (NEW) 1+ω/
√
n

ε2
+
√

1+ω

nε3
1+ω/

√
n

ε2
+
√

1+ω

nε3

VR-MARINA (Alg. 2), b′ = Θ
(

1
nε2

)
Thm. 3.2 & Cor. 3.2 (NEW) 1+ω/

√
n

ε2
1+ω/

√
n

nε4
+ 1+ω

nε3

PP, (1)
FedSTEPH (Das et al., 2020) 1+ω/n

rε4
+

(1+ω)(n−r)
r(n−1)ε4

1+ω/n

rε4
+

(1+ω)(n−r)
r(n−1)ε4

PP-MARINA (Alg. 4) Thm. 4.1 & Cor. 4.1 (NEW) 1+(1+ω)
√
n/r

ε2
1+(1+ω)

√
n/r

ε2

(1) The results for FedCOMGATE are derived under assumption that for all vectors x1, . . . , xn ∈ Rd the quantization operator Q satisfies

E
[∥∥ 1

n

∑n
i=1Q(xj)

∥∥2 − ∥∥Q ( 1
n

∑n
i=1 xj

)∥∥2] ≤ G for some constant G ≥ 0. In fact, this assumption does not hold for classical quantization

operators like RandK and `2-quantization on Rd. The counterexample: n = 2 and x1 = −x2 = (t, t, . . . , t)> with arbitrary large t > 0.
(2) One can even further improve the communication complexity by increasing b′.
(3) No assumptions on the smoothness of the stochastic realizations fξ(x) are used.

vergence result in the non-convex case was obtained by
Alistarh et al. (2017) for QSGD, under assumptions that
the local loss functions are the same for all workers, and
the stochastic gradient has uniformly bounded second mo-
ment. After that, Mishchenko et al. (2019) proposed DIANA
(and its momentum version) and proved its convergence rate
for non-convex problems without any assumption on the
boundedness of the second moment of the stochastic gradi-
ent, but under the assumption that the dissimilarity between
local loss functions is bounded. This restriction was later
eliminated by Horváth et al. (2019) for the variance reduced
version of DIANA called VR-DIANA, and the analysis was ex-
tended to a large class of unbiased compressors. Finally, the
results for QSGD and DIANA were recently generalized and
tightened by Li & Richtárik (2020) in a unifying framework
that included many other methods as well.

Biased Compression. Biased compression operators are
less “optimization-friendly” than unbiased ones. Indeed,
one can construct a simple convex quadratic problem for
which distributed SGD with Top1 compression diverges ex-
ponentially fast (Beznosikov et al., 2020). However, this
issue can be resolved using error compensation (Seide et al.,
2014). The first analysis of error-compensated SGD (EC-

SGD) for non-convex problems was obtained by Karim-
ireddy et al. (2019) for homogeneous problems under the
assumption that the second moment of the stochastic gradi-
ent is uniformly bounded. The last assumption was recently
removed from the analysis of EC-SGD by Stich & Karim-
ireddy (2020); Beznosikov et al. (2020), while the first re-
sults without the homogeneity assumption were obtained
by Koloskova et al. (2020a) for Choco-SGD, but still under
the assumption that the second moment of the stochastic
gradient is uniformly bounded. This issue was resolved by
Beznosikov et al. (2020). In general, the current understand-
ing of optimization methods with biased compressors is far
from complete: even in the strongly convex case, the first
linearly converging (Gorbunov et al., 2020) and accelerated
(Qian et al., 2020) error-compensated stochastic methods
were proposed just recently.

Other Approaches. Besides communication compression,
there are also different techniques aiming to reduce the
overall communication cost of distributed methods. The
most popular ones are based on decentralized communi-
cations and multiple local steps between communication
rounds, where the second technique is very popular in feder-
ated learning (Konečný et al., 2016; Kairouz et al., 2019).
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Table 2: Summary of the state-of-the-art results for finding an ε-solution for the problem (1) satifying Polyak-Łojasiewicz condition
(see As. 2.1), i.e., such a point x̂ that E [f(x̂)− f(x∗)] ≤ ε. Dependences on the numerical constants and log(1/ε) factors are omitted
and all smoothness constanst are denoted by L in the complexity bounds. Abbreviations: “PP” = partial participation; “Communication
complexity” = the number of communications rounds needed to find an ε-stationary point; “Oracle complexity” = the number of
(stochastic) first-order oracle calls needed to find an ε-stationary point. Notation: ω = the quantization parameter (see Def. 1.1); n = the
number of nodes; m = the size of the local dataset; r = (expected) number of clients sampled at each iteration; b′ = the batchsize for
VR-MARINA at the iterations with compressed communication. To simplify the bounds, we assume that the expected density ζQ of the
quantization operatorQ (see Def. 1.1) satisfies ω + 1 = Θ(d/ζQ) (e.g., this holds for RandK and `2-quantization, see (Beznosikov et al.,
2020)). We notice that (Haddadpour et al., 2020) and (Das et al., 2020) contain also better rates under different assumptions on clients’
similarity.

Setup Method Citation Communication Complexity Oracle Complexity

(1)
DIANA (Li & Richtárik, 2020) L(1+(1+ω)

√
ω/n)

µ

L(1+(1+ω)
√
ω/n)

µ

FedCOMGATE (1) (Haddadpour et al., 2020) L(1+ω)
µ

L(1+ω)
nµε

MARINA (Alg. 1) Thm. 2.2 & Cor. C.2 (NEW) ω +
L(1+ω/

√
n)

µ ω +
L(1+ω/

√
n)

µ

(1)+(5)

DIANA (Li & Richtárik, 2020)
L(1+(1+ω)

√
ω/n)

µ +

+
L(1+ω)
nµ

(
L
µ + 1

ε

) L(1+(1+ω)
√
ω/n)

µ +

+
L(1+ω)
nµ

(
L
µ + 1

ε

)
VR-DIANA (Li & Richtárik, 2020)

L
(
m2/3+ω

)√
1+ω/n

µ

L
(
m2/3+ω

)√
1+ω/n

µ

VR-MARINA (Alg. 2), b′ = 1(2) Thm. D.2 & Cor. D.2 (NEW)
ω +m+

+
L(1+max

{
ω,
√

(1+ω)m
}
/
√
n)

µ

ω +m+

+
L(1+max

{
ω,
√

(1+ω)m
}
/
√
n)

µ

(1)+(6)

DIANA (3) (Mishchenko et al., 2019)
(Li & Richtárik, 2020)

1+(1+ω)
√
ω/n

ε2
+ 1+ω

nε4
1+(1+ω)

√
ω/n

ε2
+ 1+ω

nε4

FedCOMGATE (3) (Haddadpour et al., 2020) L(1+ω)
µ

L(1+ω)
nµε

VR-MARINA (Alg. 2), b′ = 1 Thm. D.4 & Cor. D.4 (NEW) ω +
L(1+ω/

√
n)

µ + L
√

1+ω
nµε ω +

L(1+ω/
√
n)

µ + L
√

1+ω
nµε

VR-MARINA (Alg. 2), b′ = Θ
(

1
nµε

)
Thm. D.4 & Cor. D.4 (NEW) ω +

L(1+ω/
√
n)

µ
1+ω
nµε +

L(1+ω/
√
n)

nµ2ε
+
L(1+ω)

nµ2
√
ε

PP, (1)
FedSTEPH (4) (Das et al., 2020)

(
L
µ

)3/2 (
L
µ

)3/2

PP-MARINA (Alg. 4) Thm. E.2 & Cor. E.2 (NEW) (ω+1)n
r +

L(1+(1+ω)
√
n/r)

µ
(ω+1)n

r +
L(1+(1+ω)

√
n/r)

µ

(1) The results for FedCOMGATE are derived under assumption that for all vectors x1, . . . , xn ∈ Rd the quantization operator Q satisfies

E
[∥∥ 1

n

∑n
i=1Q(xj)

∥∥2 − ∥∥Q ( 1
n

∑n
i=1 xj

)∥∥2] ≤ G for some constant G ≥ 0. In fact, this assumption does not hold for classical quantization operators like

RandK and `2-quantization on Rd. The counterexample: n = 2 and x1 = −x2 = (t, t, . . . , t)> with arbitrary large t > 0.
(2) One can even further improve the communication complexity by increasing b′.
(3) No assumptions on the smoothness of the stochastic realizations fξ(x) are used.
(4) The rate is derived under assumption that r = Ω((1 + ω)

√
L/µ log(1/ε)).

One can find the state-of-the-art distributed optimization
methods using these techniques and their combinations in
(Lian et al., 2017; Karimireddy et al., 2020; Li et al., 2019;
Koloskova et al., 2020b). Moreover, there exist results
based on the combinations of communication compression
with either decentralized communication, e.g., Choco-SGD
(Koloskova et al., 2020a), or local updates, e.g., Qsparse-
Local-SGD (Basu et al., 2019), FedCOMGATE (Haddadpour
et al., 2020), FedSTEPH (Das et al., 2020), where in (Basu
et al., 2019) the convergence rates were derived under an as-
sumption that the stochastic gradient has uniformly bounded
second moment and the results for Choco-SGD, FedCOM-
GATE, FedSTEPH were described either earlier in the text,
or in Table 1.

1.3. Preliminaries

We will rely on two key assumptions thrughout the text.

Assumption 1.1 (Uniform lower bound). There exists f∗ ∈
R such that f(x) ≥ f∗ for all x ∈ Rd.

Assumption 1.2 (L-smoothness). We assume that fi is Li-
smooth for all i ∈ [n] = {1, 2, . . . , n} meaning that the

following inequality holds ∀x, y ∈ Rd, ∀i ∈ [n]:

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖. (2)

This assumption implies that f is Lf -smooth with L2
f ≤

L2 = 1
n

∑n
i=1 L

2
i .

Finally, we describe a large class of unbiased compression
operators satisfying a certain variance bound, which we will
refer to, in this paper, by the name quantization.

Definition 1.1 (Quantization). We say that a stochastic map-
ping Q : Rd → Rd is a quantization operator/quantization
if there exists ω > 0 such that for any x ∈ Rd , we have

E [Q(x)] = x, E
[
‖Q(x)− x‖2

]
≤ ω‖x‖2. (3)

For the given quantization operator Q(x), we define the
the expected density as ζQ = supx∈Rd E [‖Q(x)‖0] , where
‖y‖0 is the number of non-zero components of y ∈ Rd.

Notice that the expected density is well-defined for any
quantization operator since ‖Q(x)‖0 ≤ d.



MARINA: Faster Non-Convex Distributed Learning with Compression

2. MARINA

In this section, we describe the main algorithm of this work:
MARINA (see Algorithm 1). At each iteration of MARINA,
each worker i either sends to the server the dense vector
∇fi(xk+1) with probability p, or it sends the quantized
gradient difference Q

(
∇fi(xk+1)−∇fi(xk))

)
with prob-

ability 1−p. In the first situation, the server just averages the
vectors received from workers and gets gk+1 = ∇f(xk+1),
whereas in the second case, the server averages the quan-
tized differences from all workers and then adds the result
to gk to get gk+1. Moreover, if Q is identity quantization,
i.e., Q(x) = x, then MARINA reduces to Gradient Descent
(GD).

Algorithm 1 MARINA

1: Input: starting point x0, stepsize γ, probability p ∈
(0, 1], number of iterations K

2: Initialize g0 = ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, . . . , n in parallel do
7: xk+1 = xk − γgk
8: Set gk+1

i = ∇fi(xk+1) if ck = 1, and gk+1
i =

gk +Q
(
∇fi(xk+1)−∇fi(xk))

)
otherwise

9: end for
10: gk+1 = 1

n

∑n
i=1 g

k+1
i

11: end for
12: Return: x̂K chosen uniformly at random from
{xk}K−1

k=0

However, for non-trivial quantizations, we have E[gk+1 |
xk+1] 6= ∇f(xk+1) unlike all other distributed methods
using exclusively unbiased compressors we know of. That
is, gk+1 is a biased stochastic estimator of∇f(xk+1). How-
ever, MARINA is an example of a rare phenomenon in
stochastic optimization when the bias of the stochastic gra-
dient helps to achieve better complexity.

2.1. Convergence Results for Generally Non-Convex
Problems

We start with the following result.

Theorem 2.1. Let Assumptions 1.1 and 1.2 be satisfied.
Then, after

K = O
(

∆0L
ε2

(
1 +

√
(1−p)ω
pn

))
iterations with ∆0 = f(x0) − f∗, L2 = 1

n

∑n
i=1 L

2
i and

the stepsize γ ≤ L−1
(

1 +
√

(1−p)ω/(pn)

)−1

, MARINA pro-

duces point x̂K for which E[‖∇f(x̂K)‖2] ≤ ε2.

One can find the full statement of the theorem together with
its proof in Section C.1 of the Appendix.

The following corollary provides the bounds on the number
of iterations/communication rounds and estimates the total
communication cost needed to achieve an ε-stationary point
in expectation. Moreover, for simplicity, throughout the
paper we assume that the communication cost is propor-
tional to the number of non-zero components of transmitted
vectors from workers to the server.

Corollary 2.1. Let the assumptions of Theorem 2.1 hold

and p = ζQ/d. If γ ≤ L−1
(

1 +
√
ω(d−ζQ)/(nζQ)

)−1

, then
MARINA requires

O
(

∆0L
ε2

(
1 +

√
ω
n

(
d
ζQ
− 1
)))

iterations/communication rounds in order to achieve
E[‖∇f(x̂K)‖2] ≤ ε2, and the expected total communica-
tion cost per worker is O(d+ ζQK).

Let us clarify the obtained result. First of all, if ω = 0
(no quantization), then ζQ = 0 and the rate coincides with
the rate of Gradient Descent (GD). Since GD is optimal
among first-order methods in terms of reducing the norm
of the gradient (Carmon et al., 2019), the dependence on
ε in our bound cannot be improved in general. Next, if n
is large enough, i.e., n ≥ ω(d/ζQ − 1), then1 the iteration
complexity of MARINA (method with compressed commu-
nications) and GD (method with dense communications)
coincide. This means that in this regime, MARINA is able
to reach a provably better communication complexity than
GD!

2.2. Convergence Results Under Polyak-Łojasiewicz
condition

In this section, we provide a complexity bounds for MARINA
under the Polyak-Łojasiewicz (PŁ) condition.

Assumption 2.1 (PŁ condition). Function f satisfies
Polyak-Łojasiewicz (PŁ) condition with parameter µ, i.e.,

‖∇f(x)‖2 ≥ 2µ (f(x)− f(x∗)) . (4)

holds for x∗ = arg minx∈Rd f(x) and for all x ∈ Rd.

Under this and previously introduced assumptions, we de-
rive the following result.

Theorem 2.2. Let Assumptions 1.1, 1.2 and 2.1 be satisfied.
Then, after

K = O
(

max

{
1
p ,

L
µ

(
1 +

√
(1−p)ω
pn

)}
log ∆0

ε

)
1For `2-quantization this requirement is satisfied when n ≥ d.
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iterations with ∆0 = f(x0) − f(x∗),
L2 = 1

n

∑n
i=1 L

2
i and the stepsize γ ≤

min

{
L−1

(
1 +

√
2(1−p)ω/(pn)

)−1

, p(2µ)−1

}
, MARINA

produces a point xK for which E[f(xK)− f(x∗)] ≤ ε.

One can find the full statement of the theorem together with
its proof in Section C.2 of the Appendix.

3. Variance Reduction
Throughout this section, we assume that the local loss on
each node has either a finite-sum form (finite sum case),

fi(x) = 1
m

m∑
j=1

fij(x), (5)

or an expectation form (online case),

fi(x) = Eξi∼Di [fξi(x)]. (6)

3.1. Finite Sum Case

In this section, we generalize MARINA to problems of the
form (1)+(5), obtaining VR-MARINA (see Algorithm 2). At

Algorithm 2 VR-MARINA: finite sum case

1: Input: starting point x0, stepsize γ, minibatch size b′,
probability p ∈ (0, 1], number of iterations K

2: Initialize g0 = ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, . . . , n in parallel do
7: xk+1 = xk − γgk
8: Set gk+1

i = ∇fi(xk+1) if ck = 1, and gk+1
i =

gk + Q
(

1
b′

∑
j∈I′i,k

(∇fij(xk+1)−∇fij(xk))
)

otherwise, where I ′i,k is the set of the indices in
the minibatch, |I ′i,k| = b′

9: end for
10: gk+1 = 1

n

∑n
i=1 g

k+1
i

11: end for
12: Return: x̂K chosen uniformly at random from
{xk}K−1

k=0

each iteration of VR-MARINA, devices are to compute the
full gradients∇fi(xk+1) and send them to the server with
probability p. Typically, p ≤ 1/m and m is large, meaning
that workers compute full gradients rarely (once per ≥ m
iterations in expectation). At other iterations, workers com-
pute minibatch stochastic gradients evaluated at the current
and previous points, compress them using an unbiased com-
pression operator, i.e., quantization/quantization operator,
and send the resulting vectors gk+1

i −gk to the server. More-
over, if Q is the identity quantization, i.e., Q(x) = x, and

n = 1, then MARINA reduces to the optimal method PAGE
(Li et al., 2020).

In this part, we will rely on the following average smooth-
ness assumption.

Assumption 3.1 (Average L-smoothness). For all k ≥ 0
and i ∈ [n] the minibatch stochastic gradients difference
∆̃k
i = 1

b′

∑
j∈I′i,k

(∇fij(xk+1) − ∇fij(xk)) computed on

the i-th worker satisfies E
[
∆̃k
i | xk, xk+1

]
= ∆k

i and

E

[∥∥∥∆̃k
i −∆k

i

∥∥∥2

| xk, xk+1

]
≤ L

2
i

b′ ‖x
k+1 − xk‖2 (7)

with some Li ≥ 0, where ∆k
i = ∇fi(xk+1)−∇fi(xk).

This assumption is satisfied in many standard minibatch
regimes. In particular, if I ′i,k = {1, . . . ,m}, then Li = 0,
and if I ′i,k consists of b′ i.i.d. samples from the uniform
distributions on {1, . . . ,m} and fij are Lij-smooth, then
Li ≤ maxj∈[m] Lij .

Under this and the previously introduced assumptions, we
derive the following result.

Theorem 3.1. Consider the finite sum case (1)+(5). Let
Assumptions 1.1, 1.2 and 3.1 be satisfied. Then, after

K = O
(

∆0

ε2

(
L+

√
1−p
pn

(
ωL2 + (1+ω)L2

b′

)))
iterations with ∆0 = f(x0) − f∗, L2 = 1

n

∑n
i=1 L

2
i ,

L2 = 1
n

∑n
i=1 L2

i and the stepsize γ ≤(
L+

√(
ωL2 + (1+ω)L2

/b′
)

(1−p)/(pn)

)−1

, VR-MARINA

produces such a point x̂K that E[‖∇f(x̂K)‖2] ≤ ε2.

One can find the full statement of the theorem together with
its proof in Section D.1.1 of the Appendix.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold
and p = min {ζQ/d, b′/(m+b′)}, where b′ ≤ m. If γ ≤(
L+

√(
ωL2 + (1+ω)L2

/b′
)

max{d/ζQ−1,m/b′}/n
)−1

then

VR-MARINA requires

O

(
∆0

ε2

(
L

(
1 +

√
ωmax{d/ζQ−1,m/b′}

n

)

+L
√

(1+ω) max{d/ζQ−1,m/b′}
nb′

))
iterations/communication rounds and O (m+ b′K)
stochastic oracle calls per node in expectation in order
to achieve E[‖∇f(x̂K)‖2] ≤ ε2, and the expected total
communication cost per worker is O(d+ ζQK).

First of all, when workers quatize differences of the full
gradients, then I ′i,k = {1, . . . ,m} for all i ∈ [n] and k ≥ 0,
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implying L = 0. In this case, the complexity bounds for VR-
MARINA recover the ones for MARINA. Next, when ω = 0
(no quantization) and n = 1, our bounds for iteration and
oracle complexities for VR-MARINA recover the bounds for
PAGE (Li & Richtárik, 2020), which is optimal for finite-
sum smooth non-convex optimization. This observation
implies that the dependence on ε and m in the complexity
bounds for VR-MARINA cannot be improved in the class
of first-order stochastic methods. Next, we notice that up
to the differences in smoothness constants, the iteration
and oracle complexities for VR-MARINA benefit from the
number of workers n. Finally, as Table 1 shows, the rates
for VR-MARINA are strictly better than ones for the previous
state-of-the-art method VR-DIANA (Horváth et al., 2019).

We provide the convergence results for VR-MARINA in the
finite-sum case under the Polyak-Łojasiewicz condition,
together with complete proofs, in Section D.1.2 of the Ap-
pendix.

3.2. Online Case

In this section, we focus on problems of type (1)+(6).
For this type of problems, we consider a slightly
modified version of VR-MARINA. That is, we replace
line 8 in Algorithm 2 with the following update rule:
gk+1
i = 1

b

∑
j∈Ii,k ∇fξkij (x

k+1) if ck = 1, and gk+1
i =

gk + Q
(

1
b′

∑
j∈I′i,k

(∇fξkij (x
k+1)−∇fξkij (x

k))
)

other-
wise, where Ii,k, I ′i,k are the sets of the indices in the mini-
batches, |Ii,k| = b, |I ′i,k| = b′, and ξkij is independently
sampled from Di for i ∈ [n], j ∈ [m] (see Algorithm 3 in
the Appendix).

Before we provide our convergence results in this setup, we
reformulate Assumption 3.1 for the online case.

Assumption 3.2 (Average L-smoothness). For all k ≥ 0
and i ∈ [n] the minibatch stochastic gradients difference
∆̃k
i = 1

b′

∑
j∈I′i,k

(∇fξkij (x
k+1)−∇fξkij (x

k)) computed on

the i-th worker satisfies E
[
∆̃k
i | xk, xk+1

]
= ∆k

i and

E

[∥∥∥∆̃k
i −∆k

i

∥∥∥2

| xk, xk+1

]
≤ L

2
i

b′ ‖x
k+1 − xk‖2 (8)

with some Li ≥ 0, where ∆k
i = ∇fi(xk+1)−∇fi(xk).

Moreover, we assume that the variance of the stochastic
gradients on all nodes is uniformly upper bounded.

Assumption 3.3. We assume that for all i ∈ [n] there exists
such constant σi ∈ [0,+∞) that for all x ∈ Rd

Eξi∼Di [∇fξi(x)] = ∇fi(x), (9)

Eξi∼Di

[
‖∇fξi(x)−∇fi(x)‖2

]
≤ σ2

i . (10)

Under these and previously introduced assumptions, we
derive the following result.
Theorem 3.2. Consider the online case (1)+(6). Let As-
sumptions 1.1, 1.2, 3.2 and 3.3 be satisfied. Then, after

K = O
(

∆0

ε2

(
L+

√
1−p
pn

(
ωL2 + (1+ω)L2

b′

)))
iterations with ∆0 = f(x0) − f∗, L2 =
1
n

∑n
i=1 L

2
i , L2 = 1

n

∑n
i=1 L2

i , the stepsize

γ ≤
(
L+

√(
ωL2 + (1+ω)L2

/b′
)

(1−p)/(pn)

)−1

, and

b = Θ
(
σ2
/(nε2)

)
, σ2 = 1

n

∑n
i=1 σ

2
i , VR-MARINA

produces a point x̂K for which E[‖∇f(x̂K)‖2] ≤ ε2.

One can find the full statement of the theorem, together with
its proof, in Section D.2.1 of the Appendix.
Corollary 3.2. Let the assumptions of Theo-
rem 3.2 hold and choose p = min {ζQ/d, b′/(b+b′)},
where b′ ≤ b, b = Θ

(
σ2
/(nε2)

)
. If γ ≤(

L+
√(

ωL2 + (1+ω)L2
/b′
)

max{d/ζQ−1,b/b′}/n
)−1

,

then VR-MARINA requires

O

(
∆0

ε2

(
L

(
1 +

√
ω
n max

{
d
ζQ
− 1, σ2

nb′ε2

})

+L
√

(1+ω)
nb′ max

{
d
ζQ
− 1, σ2

nb′ε2

}))
iterations/communication rounds and O(ζQK + σ2

/(nε2))
stochastic oracle calls per node in expectation to achieve
E[‖∇f(x̂K)‖2] ≤ ε2, and the expected total communica-
tion cost per worker is O(d+ ζQK).

Similarly to the finite-sum case, when ω = 0 (no quan-
tization) and n = 1, our bounds for iteration and oracle
complexities for VR-MARINA recover the bounds for PAGE
(Li & Richtárik, 2020), which is optimal for online smooth
non-convex optimization as well. That is, the dependence
on ε in the complexity bound for VR-MARINA cannot be
improved in the class of first-order stochastic methods. As
previously, up to the differences in smoothness constants,
the iteration and oracle complexities for VR-MARINA benefit
from an increase in the number of workers n.

We provide the convergence results for VR-MARINA in
the online case under the Polyak-Łojasiewicz condition,
together with complete proofs, in Section D.2.2 of the Ap-
pendix.

4. Partial Participation
Finally, we propose another modification of MARINA. In
particular, we prove an option for partial participation of
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Figure 1: Comparison of MARINA with DIANA, and of VR-MARINA with VR-DIANA, on binary classification problem
involving non-convex loss (11) with LibSVM data (Chang & Lin, 2011). Parameter n is chosen as per Tbl. 3 in the Appendix.
Stepsizes for the methods are chosen according to the theory and the batchsizes for VR-MARINA and VR-DIANA are ∼ m/100.
In all cases, we used the RandK sparsification operator with K ∈ {1, 5, 10}.

the clients - a feature important in federated learning. The
resulting method is called PP-MARINA (see Algorithm 4
in the Appendix). At each iteration of PP-MARINA, the
server receives the quantized gradient differences from r
clients with probability 1 − p, and aggregates full gradi-
ents from all clients with probability p, i.e., PP-MARINA
coincides with MARINA up to the following difference:
gk+1
i = ∇fi(xk+1), gk+1 = 1

n

∑n
i=1 g

k+1
i if ck = 1,

and gk+1
i = gk + Q

(
∇fi(xk+1)−∇fi(xk))

)
, gk+1 =

1
r

∑
ik∈I′k

gk+1
ik

otherwise, where I ′k is the set of r i.i.d. sam-
ples from the uniform distribution over {1, . . . , n}. That is,
if the probability p is chosen to be small enough, then with
high probability the server receives only quantized vectors
from a subset of clients at each iteration.

Below, we provide a convergence result for PP-MARINA for
smooth non-convex problems.
Theorem 4.1. Let Assumptions 1.1 and 1.2 be satisfied.
Then, after

K = O
(

∆0L
ε2

(
1 +

√
(1−p)(1+ω)

pr

))
iterations with ∆0 = f(x0)−f∗, L2 = 1

n

∑n
i=1 L

2
i and the

stepsize γ ≤ L−1
(

1 +
√

(1−p)(1+ω)/(pr)
)−1

, PP-MARINA

produces a point x̂K for which E[‖∇f(x̂K)‖2] ≤ ε2.

One can find the full statement of the theorem together with
its proof in Section E.1 of the appendix.
Corollary 4.1. Let the assumptions of Theorem 4.1 hold
and choose p = ζQr/(dn), where r ≤ n. If γ ≤

L−1
(

1 +
√

(1+ω)(dn−ζQr)/(b′ζQr)
)−1

, then PP-MARINA

requires

O
(

∆0L
ε2

(
1 +

√
1+ω
r

(
dn
ζQr
− 1
)))

iterations/communication rounds to achieve
E[‖∇f(x̂K)‖2] ≤ ε2, and the expected total com-
munication cost is O (dn+ ζQrK).

When r = n, i.e., all clients participate in communication
with the server at each iteration, the rate for PP-MARINA
recovers the rate for MARINA under the assumption that
(1 + ω)(d/ζQ − 1) = O(ω(d/ζQ − 1)), which holds for
a wide class of quantization operators, e.g., for identical
quantization, RandK, and `p-quantization. In general, the
derived complexity is strictly better than previous state-of-
the-art one (see Table 1).

We provide the convergence results for PP-MARINA under
the Polyak-Łojasiewicz condition, together with complete
proofs, in Section E.2 of the Appendix.

5. Numerical Experiments
5.1. Binary Classification with Non-Convex Loss

We conduct several numerical experiments2 on binary clas-
sification problem involving non-convex loss (Zhao et al.,
2010) (used for two-layer neural networks) with LibSVM

2Our code is available at https://github.com/
burlachenkok/marina.

https://github.com/burlachenkok/marina
https://github.com/burlachenkok/marina
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data (Chang & Lin, 2011) to justify the theoretical claims of
the paper. That is, we consider the following optimization
problem:

min
x∈Rd

{
f(x) =

1

N

N∑
t=1

`(a>t x, yi)

}
, (11)

where {at} ∈ Rd, yi ∈ {−1, 1} for all t = 1, . . . , N , and
the function ` : Rd → R is defined as

`(b, c) =

(
1− 1

1 + exp(−bc)

)2

.

The distributed environment is simulated in Python 3.8 us-
ing MPI4PY and other standard libraries. Additional details
about the experimental setup together with extra experi-
ments are deferred to Section A of the Appendix.

In our experiments, we compare MARINA with the full-batch
version of DIANA, and then VR-MARINA with VR-DIANA.
We exclude FedCOMGATE and FedPATH from this compar-
ison since they have significantly worse oracle complexities
(see Table 1). The results are presented in Fig. 1. As our the-
ory predicts, the first row shows the superiority of MARINA
to DIANA both in terms of iteration/communication complex-
ity and the total number of transmitted bits to achieve the
given accuracy. Next, to study the oracle complexity as well,
we consider non-full-batched methods – VR-MARINA and
VR-DIANA – since they have better oracle complexity than
the full-batched methods in the finite-sum case. Again, the
results presented in the second row justify that VR-MARINA
outperforms VR-DIANA in terms of oracle complexity and
the total number of transmitted bits to achieve the given
accuracy.

5.2. Image Classification

We also compared the performance of VR-MARINA and VR-
DIANA on the training ResNet-18 (He et al., 2016) at
CIFAR100 (Krizhevsky et al., 2009) dataset. Formally, the
optimization problem is

min
x∈Rd

{
f(x) =

1

N

N∑
i=1

`(p(f(ai, x)), yi)

}
, (12)

where {(ai, yi)}Ni=1 encode images and labels from
CIFAR100 dataset, f(ai, x) is the output of ResNet-18
on image ai with weights x, p is softmax function, and `(·, ·)
is cross-entropy loss. The code is wrtitten in Python 3.9
using PyTorch 1.7, and the distributed environment is
simulated.

The results are presented in Fig. 2. Again, VR-MARINA
converges significantly faster than VR-DIANA both in terms
of the oracle complexity and the total number of transmitted
bits to achieve the given accuracy. See other details and
observations in Section A of the Appendix.
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Figure 2: Comparison of VR-MARINA with VR-DIANA on
training ResNet-18 at CIFAR100 dataset. Number of
workers equals 5. Stepsizes for the methods were tuned
and the batchsizes are ∼ m/50. In all cases, we used the
RandK sparsification operator, the approximate values of K
are given in the legends (d is dimension of the problem).
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ple and optimal probabilistic gradient estimator for non-
convex optimization. arXiv preprint arXiv:2008.10898,
2020.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5330–5340, 2017.

Łojasiewicz, S. A topological property of real analytic
subsets. Coll. du CNRS, Les équations aux dérivées par-
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