
Exploring the Inner Life of Neural Networks with Robust Rules

A. MDL for robust rules
In this section we will give extended examples on how to
compute the MDL score for a given database and set of
rules, elaborate on the error encoding for the rule tails, and
give a visual toy example on the impact of the extended
pattern language for the rule head.

A.1. Computing MDL for rules

For the given example in Fig. 6, we will now compute the
codelength L(D,M) = L(M)+L(D |M) of transmitting
the whole database D using M ∪Mind. Here, we will stick
with the simple encoding without error matrices, to make the
process of computation more understandable. For reference,
we first compute the baseline model, which is given by

L(D,Mind) =|I| × Lpc(|D|) +
∑
I∈I

log

(
|D|
|TI |

)
=4× Lpc(100) + log

(
100

40

)
+ 2 log

(
100

35

)
+ log

(
100

33

)
≈14.88 + 93.47 + 179.64 + 87.93 = 375.92.

Thus, sending the data with just the baseline model costs
375.92 bits. Now, we will compute L(D,M ∪Mind), we
will start with the costs of sending the data L(D | M ∪
Mind)

L(D |M ∪Mind) =

(∑
X→Y ∈M

log

(
|TX |
|TY |X |

))

+

(∑
I∈I

log

(
|D|
|T ′I |

))

= log

(
40

30

)
+ log

(
100

40

)
+ log

(
100

5

)

+ log

(
100

3

)
+ log

(
100

35

)
≈29.66 + 93.47 + 26.17 + 17.30 + 89.82

=256.42.

The model costs are composed of the parametric complexi-
ties for the (adapted) baseline rules, plus the costs of trans-
mitting what the rule is composed of along with its paramet-

ric complexity. We thus get

L(M ∪Mind) =|I| × Lpc(|D|) +

(∑
X→Y ∈M

LN(|X|)

+ LN(|Y |) + L(X) + L(Y) + Lpc(TX)

)

=4× Lpc(100) + LN(1) + LN(2)

− log
40

143
− log

35

143
− log

33

143
+ Lpc(40)

≈14.88 + 1.52 + 2.52 + 1.84

+ 2.03 + 2.12 + 3.11

=28.02.

Hence, the model with the complex rule has a smaller code-
lengh than the baseline, with L(D,M ∪Mind) = 284.44
bits.

A.2. The error encoding for tails

For the error encoding for tails, which allow to discover
rules in noisy settings (compare Fig. 7a,b), we send where
a rule X → Y approximately holds according to some
parameter k, which defines the number of items of the tail
that have to be present in the transaction. The errors made by
this approximation are then accounted for by sending error
correcting matrices X−X→Y and X+

X→Y , which account for
the destructive, respectively additive noise in the are where
the rule applies (compare Fig. 7c).

Let us first assume we are given a k, we will later show
how we can optimize for k. We redefine the transaction
sets TY |X = {t ∈ D | (X ⊂ t) ∧ (|Y ∩ t| ≥ k)},
which corresponds to the transactions where the rule ap-
proximately holds. We will now slightly abuse notation
and indicate the binary input matrix that correspond to D
by D, and we subset this matrix using the transaction id
lists and item subsets. Both of these are sets of indices that
indicate which rows, respectively columns to use of the ma-
trix. For example, the submatrix where X holds is given by
D[TX , X]. We can now define the error correcting matrices
to be X−X→Y = D[TY |X , Y] ×©1|TY |X |×|Y |, and X−X→Y =
D[TX \ TY |X , Y], where ×© is the element-wise XOR oper-
ator and 1i×j is a matrix of size i× j filled with ones. The
receiver, knowing TX and TY |X , can then reconstruct the
original data D[TY |X , Y] = 1|TY |X |×|Y | ×©X−X→Y , respec-
tively D[TX \ TY |X , Y] = X+

X→Y .

While this explains the concept of how error correcting
matrices can be used to reconstruct the original input, which
hence define a lossless encoding, we are mainly interested
in the codelength functions. To adapt the data costs, we now

Exploring the Inner Life of Neural Networks with Robust Rules

Figure 6: Example database and model. A toy database D with blocks indicating where the items A,B,C,D occur in D,
margins and relevant joint counts are given on the right. A sensible rule set M ∪Mind = A→ BC ∪Mind is given on the
right, the part of the database where the rule applies and holds is indicated by a light respectively dark orange area.

additionally send the two error matrices, which we can do
using binomial codes. Hence, we get

L(D |M) =

(∑
X→Y ∈M

log

(
|TX |
|TY |X |

))

+

(∑
I∈I

log

(
|D|
|T ′I |

))

+ log

(|TY |X | × |Y |
|X−X→Y |

)
+ log

(|TX \ TY |X | × |Y |
|X+

X→Y |

)
,

with the second line providing the codelength of the error
matrices, and |X | indicating the number of ones in X .

Our model M now not only consists of rules M ∪Mind, but
also of the set of error correcting matrices. As the submatrix
to which we need to apply the matrix is fully defined by
TX , TY |X , and Y of the corresponding rule, also defining
its size, the only adaptation we need for the model costs
is the parametric complexities induced by the codes for
transmitting the data. This yields

L(M) =|I| × Lpc(|D|) +

(∑
X→Y ∈M

L(X → Y)

+ Lpc(|TY |X | × |Y |) + Lpc(|TX \ TY |X | × |Y |)

)
.

This completes the MDL costs for rules robust to noise in
the tail for a given k. To optimize k, the crucial insight is that
the codelength of individual complex rules are independent,

as is the data cost. That means we can optimize a k for
each rule separately. Thus, for a given rule X → Y we can
enumerate all |Y | many models for the different thresholds
k and let MDL decide which one fits the data best.

A.3. The impact of the extended pattern language

Extending the pattern language for rule heads is crucial to
be applicable for tracing activation patterns through a neural
network. First of all, we need to start from labels, which
are inherently activated mutually exclusive, as we only have
a single label as classification. To find shared features of
labels, it is essential to be able to express disjunctions with
rule heads. Furthermore, the data as well as activation
patterns across the data are very noisy. Thus, determining
where a rule applies just based on conjunctions of features
can give a very twisted look of the data at hand, as visualized
in Fig. 8. That is the reason to introduce a more flexible
language similar to approximate rule tails, which solves
these issues.

A.4. Search complexity

The size of the search space implied by our model class
M is in O(2|Ii|×|Ij |×2

|Ii|+|Ij |
). For two layers Ii, Ij , we

Exploring the Inner Life of Neural Networks with Robust Rules

Figure 7: Example of tail error encoding. For a given database D given in a, where blocks indicate the occurrence of items,
a good rule is given byA→ BCDE. The part of the database where the rule applies is indicated by the orange area. In
b we show the part of the transaction were the rule holds for varying number k of tail items that have to be present in a
transaction, from all items on the left – corresponding to a conjunction – towards just a single item on the right, which
corresponds to a disjunction. In c we visualize the error encoding used to transmit the data for k = 3. We first transmit the
data where the rule holds, resulting in the area that is indicated by the gray block. XORing the error matrix X− with this
block, it is possible to reconstruct the original data for the part where the rule holds. Using X+, we reconstruct the original
data in the area where the rule applies but does not hold.

enumerate all possible rules by

(|Ii|∑
k=0

k ×
(
|Ii|
k

))
︸ ︷︷ ︸

Possibilities for head

×
(|Ij |∑

l=0

l ×
(
|Ij |
l

))
︸ ︷︷ ︸

Possibilities for tail

≤ |Ii|
(|Ii|∑

k=0

(
|Ii|
k

))
× |Ij |

(|Ij |∑
l=0

(
|Ij |
l

))
= |Ii| 2|Ii| × |Ij | 2|Ij | = |Ij | |Ii| 2|Ii|+|Ij |,

where the first sum enumerates all heads of size k, the bi-
nomial coefficient describes the ways of drawing heads of
such size, and the term k is the number of models given by
the robust head encoding. Similarly, the second sum enu-
merates all tails of size l, the binomial coefficient describes
the drawing of such tails, and the term l is the number of
ways to place the error correcting matrices for the robust tail

encoding. As in theory we can have any subset of these rules
as a model, we thus get approximately 2(|Ij |×|Ii|×2

|Ii|+|Ij |)

many different models.

A.5. Algorithm Pseudocode

EXPLAINN explores the search space of rule sets in an itera-
tive fashion, either generating new rules with a single item in
the tail, or merging two existing rules, thus generating more
complex rules with multiple items in the tail. Using these
two steps, we can generate all potential candidate rules to
add to the model, and evaluate their respective gain in terms
of MDL. For a rule r′, we will say model M ′ = M ⊕ r′ is
the refined model, with the refinement operator ⊕ adding
the rule r′ = X → Y to M , removing the merged rules that
led to r′, if any, and updating the singleton transaction lists
TA for all items in the tail A ∈ Y . Here, we will provide

Exploring the Inner Life of Neural Networks with Robust Rules

Figure 8: Example of the impact of noise. For a given database D given in a, where blocks indicate the occurrence of items, a
good rule is given byABC → D. Due to high noise, the simple conjunctive pattern language results in a bad representation
on where the rule should apply, visualized on the left of b. More relaxed definitions towards disjunctions, where we only
require l items of the head to be present in the transaction, result in much more stable representation on where the rule
applies.

the pseudocode for the two candidate generation functions
for new rules and for merging rules in the general setting
alongside the complete algorithm of EXPLAINN.

For generating a new rule with a head using the extended
pattern language we use the approach described in the main
paper, gathering all confidence values for a given neuron A
in Ij for all potential head neurons Ii. We keep all potential
head neurons with confidence value beyond θ in a list HA

sorted descending on confidence and merge the first t neu-
rons in the list to form the head. Going over all t = 1..|HA|
allows us to greedily optimize for the best of all relevant
heads for the given item. We give pseudocode for generating
new candidate rules in Alg. 1.

The key component is hidden in the gain estimate in line
10, which for the given rule X → A determines the best
value k of items in the head needed for a rule to apply. That
is, we test all for all transactions sets determining where
the rule applies T k

X = {t ∈ D | |X ∪ t| ≥ k} which one
gives the best gain. To generate new rules going from the
output layer to a hidden layer, we want to mine rules with
disjunctive heads, which means we only have to consider
T 1
X – corresponding to a disjunction – in the search process.

To generate candidates from existing rules in M , we use an
extended search scheme that allows to merge pairs of rules
with approximately equal heads, having up to µ dissimilar
items, measured by the symmetric set differences 	. We
provide pseudocode for this process in Alg. 2.

Algorithm 1 GenCandNew

Input: dataset D over layers Ii, Ij , Model M , tail item
A, threshold θ
Output: best refinement M ′

HA ← ∅ {head items, in decreasing order of confidence}
for x ∈ Ii do
σx,A ← |Tx∩TA|

|Tx| {Compute conditional frequency}
if σx,A > θ then

insert (x, σx,A) into HA{Add neuron x to list}
end if

end for
M ′ ← ∅
∆min ← 0{gain estimate in bits}
for t = 1... |HA| do
M ′ = M ⊕ {HA[: t] → A}{Refine model with rule
using first t labels}
∆t ← L(D,M)− L(D,M ′)
if ∆t < ∆min then

∆min ← ∆t

M ′ ←M ⊕ {HA[: t]→ A}{Update best rule set}
end if

end for
return M ′

Using the candidate generation methods, we can now write
down EXPLAINN as given in Alg. 3, which iteratively

Exploring the Inner Life of Neural Networks with Robust Rules

Algorithm 2 GenCandMerges

Input: dataset D, Model M , overlap threshold µ
Output: candidates C sorted by gain ∆
C ← ∅ {Candidate rule merges}
for r1 = X1 → Y1 ∈M, r2 = X2 → Y2 ∈M do

if |X1 	X2| ≤ µ then
∆∩ ← L(D,M ⊕ {X1 ∩ X2 → Y1 ∪ Y2}) −
L(D,M){Gain of adding conjunction of heads}
if ∆∩ < 0 then

insert (X1 ∩X2 → Y1 ∪ Y2, ∆∩) into C {Add
to candidates}

end if
∆∪ ← L(D,M ⊕ {X1 ∪ X2 → Y1 ∪ Y2}) −
L(D,M){Gain of adding disjunction of heads}
if ∆∪ < 0 then

insert (X1 ∪X2 → Y1 ∪ Y2, ∆∪) into C{Add
to candidates}

end if
end if

end for
return C

generates candidates and commits to the candidate with
highest gain, until there is no more candidate that yields any
gain in terms of MDL.

Algorithm 3 EXPLAINN

Input: dataset D over layers Ii, Ij , frequency threshold
θ, overlap threshold µ
Output: best model M∗

M ← {∅ → A | A ∈ Ij} {Initialize model with baseline
rule set}
for A ∈ Ij do
R′ ← GENCANDNEW(D,M,A, θ){App. Alg. 1}
M ′ ←M ⊕R′
if L(D,M ′) < L(D,M) then
M ←M ′

end if
end for
repeat
M̂ ←M
C ← GENCANDMERGES(D,M,µ){App. Alg. 2}
Y ← ∅{Keep track of independence of merged rules}
for X → Y ∈ C. Y 6⊂ Y do
M ′ ←M ⊕ {X → Y }{Refine model, test gain}
if L(D,M ′) < L(D,M) then
M̂ ←M ′

Y ← Y
end if

end for
until M = M̂
return C

Exploring the Inner Life of Neural Networks with Robust Rules

B. Experiments and Data
Here, we detail the setup and training of the individual
networks, and provide further experimental results. In par-
ticular, we first discuss the training setup for MNIST and
highlight key results in App. Sec. B.1, and then provide
additional insights into ImageNet prototypes. For ImageNet,
we first shortly discuss prototypes obtained for GoogLeNet
– a different network architecture than VGG – in App. Sec.
B.2.1 and then proceed to show additional results on VGG-S
for ImageNet in App. Sec. B.2.2-B.3. Finally, we show pro-
totypes obtained for the study on fine-tuning for the Oxford
Flower data that reflect the general trend observed for this
data set in App. Sec. B.4.

B.1. MNIST training

We trained a CNN on MNIST using the Keras framework,
using 60000 images for training and 10000 images as hold
out test set for evaluation. The network consists of 2 con-
volutional layers, with 20 filters in the first layer and 40
filters in the second layer, each using 3x3 kernels and 2x2
maxpooling. The convolutional layers are followed by a
Dropout layer with dropout rate .25, and the flattened out-
puts are passed on to a fully connected layer with 64 nodes
with ReLU activations. Then follows a dropout layer with
rate .5 and the output layer of size 10 with softmax activa-
tions. The network was trained using AdaDelta with default
parameters based on categorical cross entropy loss over 12
epochs using a batch size of 128. We gathered binarized
activations across all filters and applied EXPLAINN to build
rules from the output layer to the first respectively second
convolutional layer.

In Fig. 9, we show the average activation maps as back-
ground, and neurons found in a tail of a rule containing
the corresponding label in its head for filter 2 in the first
convolutional layer. We observe that EXPLAINN discovers
individual rules spanning multiple classes that describes
pixel groups that detect common areas of a set of numbers,
such as the top left stroke in 4s and 9s. The average acti-
vation maps as visualized in the same figure cannot reveal
such fine-grained information, neither can do a prototype
for the filter (see Fig. 10).

Another example is given in Fig. 11, where we visualize
the 36th filter in the second convolutional layer. We observe
that the discovered rules indicate the role of the filter to
be a horizontal edge detector, with shared features, such
as the top stroke of 0,2,3,5,8, and 9, being captured by the
same part of the filter. Neither average activation maps,
nor prototypes – both visualized in the same figure – are
able to detect this behaviour, as they can only capture the
global behaviour of the filter across all pixels, rather than
localized pixel areas. Furthermore, without proper learning
it is unclear which label combinations should be considered

in unison for these two methods, whereas EXPLAINN au-
tomatically detects labels that share neuron activations by
rule heads. Finally, we provide the discovered rules for filter
12 in convolutional layer 1 in Fig. 12. We observe that this
filter acts as a negative, “carving” out the surroundings of
the digits.

B.2. ImageNet further results

Here, we present additional results on the ImageNet data set.
If not specified directly, pretrained models were obtained
from the references indicated in the main manuscript.

B.2.1. GOOGLENET RESULTS

To examine if rule mining also works on different network
architectures and prototyping methods, we ran GoogLeNet
pretrained on ImageNet and gathered activation values
across the network. Here, we only focus on rules from
output to last hidden layer for brevity. Similar to VGG-S,
we find expressive rules that span multiple classes and mul-
tiple neurons in the last layer, capturing typical structures
of the classes (see Fig. 13). We observe, however, that
this particular prototyping method yields harder to interpret
images, which is known to be an issue and not due to the
rules.

B.2.2. VGG SHARED NEURONS

One key result for the VGG-S network for ImageNet is that,
similar to the previous MNIST network, traits that are shared
between classes are encoded by the same set of neurons.
We discovered many such shared traits that the network is
able to pick up across classes, which are encapsulated in
groups of neurons in the last layer. For example, there are
neurons that capture the red beaks of different birds, arch
like structures of buildings, tusks of elephants, and the ugly
face of a whole group of different dog breeds (see App. Fig.
14). So far, it is common practice to only visualize class
prototypes, which can be very misleading, as shown in the
next section.

B.2.3. RESOLVING THE MEANING OF CLASS
PROTOTYPES

A standard technique to capture traits that a neural network
learns about a class is prototyping the given class label.
These can offer hints on what the network learns globally
about the class, but very often lead to uninterpretable results.
We provide one such example prototype for the Great
Dane class in ImageNet of the VGG-S network in Fig. 15,
which does not provide any clue what the network learns.
The rules discovered by EXPLAINN however show, that
different groups of neurons in the last layer lead to the
Great Dane classification, each encoding a distinct type
of fur colour and pattern that appear with this breed. The

Exploring the Inner Life of Neural Networks with Robust Rules

0 1 2 3 4

5 6 7 8 9

Figure 9: MNIST Average activation of neurons for digit classes for filter 2 in the first convolutional layer. Overlayed are the
EXPLAINN rules, where pixel groups of the same colour (e.g. purple pixels top left for classes 2, 3) belong to a single rule
spanning multiple classes.

Figure 10: MNIST prototype. Prototype image for filter 2
from the first convolutional layer.

class prototype is a mixture of these different types, which
explains the difficulty to interpret that prototype.

B.3. Additional results on VGG-S

In App. Fig. 16, 17, we provide additional results based on
prototyping for rules found for ImageNet data and the VGG-
S network. We focus on rules with multiple neurons in the
tail, as such class and multiclass prototypes can hardly be
found by hand. Overall, we observed that the larger the num-
ber of neurons in the tail, the sharper and more interesting
the resulting protoype. Furthermore, we found that for many
prototypes spanning multiple classes, we discover multiple
rules for some of these classes (e.g. Black Grouse) and
the protoypes indicate that only a fraction of information,
such as patterns, a colored leg or beak, or a color patch, is
used from each group of neurons such that together they
arrive at the class prediction.

In App. Fig. 16, the first row of the panel are exam-
ples of neuron groups that learn typical shapes of objects,
such as Sombrero or Gondola. The second row contain
groups of neurons capturing typical patterns and colors for
individual classes, such as yellow patches on black skin
of the Fire Salamander, red caps with white dots of

the Agaric mushroom, the typical leaf with red veins of
Sorrel or the wings of a Monarch butterfly. The third
row contains common features between two classes that
are together captured by the same group of neurons, like
the arch-like structures and round rooftops found for cer-
tain Triumphal Archs and Mosques, the layered and
intertwined worm-like shapes of many Fur Coats and
the Gyromira mushroom, or the characteristic traditional
covering of yurts and the front part of dogsleds.

In App. Fig. 17, groups of neurons that are shared between
multiple classes are visualized both revealing surprising
similarities, as well as confirming that the network learns
similarities that we also use as a human. In the first row,
the neurons described by the first two images capture the
typical shape and red color of the ears shared between the
Red Fox and the Lesser Panda, respectively the in-
sect legs and shiny turquoise color of the body of Tiger
Beetles and Damselflies. Intriguingly, the network
also learns a roundish shape and distinct pattern between
the Jackfruit and the Squirrel Monkey. At this
point, we would like to invite the reader to look up how
the top of the head of such a monkey looks like, it resem-
bles surprisingly well the size, color, shape, and texture
of a Jackfruit. For the last picture in the first row of this
panel, we see dotted wings that clearly are related with the
associated labels Cabbage Butterfly, and Sulphut
Butterfly. But opposed to visualizations related to other
Butterflies (given in both panels), the wings are all ori-
ented in a distinct way, which resemble the cap of a dotted
mushroom, which might explain the association with the
Agaric mushroom. In the second row, we observe that the
network captures common features shared between similar
classes - in this case closely related animals - with the same
set of neurons, which matches human intuition.

Exploring the Inner Life of Neural Networks with Robust Rules

0 1 2 3 4

5 6 7 8 9

(a) MNIST Average activations. Average activation maps across a class for filter 32.

(b) MNIST Prototype. Prototype image for filter 32.

0 1 2 3 4

5 6 7 8 9

(c) Horizontal edge detector. Discovered rules, feature groups found across classes share the same colour.

Figure 11: Filter visualizations. Activation maps (a) for the classes, the prototype of the filter (b), and discovered rules (c),
over the whole dataset for filter 36 in the second convolutional layer.

B.4. Oxford Flower data

One common approach to tackle the issue of learning net-
works for problems with scarce training data is fine-tuning.
There, networks (pre-)trained on larger, usually more gen-
eral data sets, are refined on the task-specific training data,
often freezing weights in earlier layers of the network and
training the last layers for a few rounds, assuming that the
earlier layers detect abstract features that are similar in the
specific task. For example, in the earlier MNIST experi-
ments, we saw filters detecting horizontal edges or certain

strokes. For a data set on e.g. handwritten letters, such
features would be similarly useful, but have to be puzzled
together in a different way, which is supposedly achieved
by the later layers.

Here, we look at the vanilla VGG-S network trained on
ImageNet, and compare it to the VGG-S network fine-tuned
on Oxford Flower data (see main paper for references). The
Oxford Flower data consists of 8000 images of 102 flow-
ers. We again look at rules from output to last hidden layer
and report a representative set of prototypes in Fig. 18. In-

Exploring the Inner Life of Neural Networks with Robust Rules

0 1 2 3 4

5 6 7 8 9

Figure 12: The negative of a digit. Visualizations for filter 12 in the first convolutional layer. This filter seems to capture the
’negatives’ of the handwritten digits.

triguingly, we observe that when visualizing the same set of
neurons of rules for the fine-tuned network also for the orig-
inal network, we do find almost the same prototypes which
capture the key traits of the flowers. Only minor differences
can be seen with slightly more pronounced shapes and more
intense colors. This is a strong indication that information
about these specific flowers is already in the vanilla network
hidden in some specific combination of neurons, although
the network never had to classify those, nor has it probably
seen these flowers in the original ImageNet data.

Exploring the Inner Life of Neural Networks with Robust Rules

La
be

ls
La

st
la

ye
r

Curly Coated Retriever
Chesapeake Bay Retriever

Irish Water Spaniel
Poodle Peacock Obelisk

(a) Prototypes for rules from output label to last hidden layer.

(b) Samples for curly haired dog breeds. From left: Curly Coated Retriever, Chesapeake Bay Retriever, Irish
Water Spaniel, Poodle

Figure 13: GoogLeNet results on ImageNet. (a)Visualizations for the rules found between the labels and the last hidden
layer in GoogLeNet. The labels in the rule heads are written above the prototype images of the tail unit groups. Each rule
tail captures some interesting features of the corresponding classes: In the first rule the characteristic curly hair of different
dog breeds is captured, the second group encapsulates information about the typical colourful plumage of peacocks, the
third captures the shape of obelisks. We provide example images of the curly haired dog breeds in (b).

Exploring the Inner Life of Neural Networks with Robust Rules

La
be

ls
F

C
7

Japanese spaniel
Pekinese
Shih-Tzu
Lhasa

Affenpinscher
Pug

Brabancon griffon
Viaduct

Triumphal arch

Red-breasted merg.
Redshank

Oystercatcher

Tusker
Indian elephant
African elephant

Figure 14: Shared information across labels. Visualizations for the rules found between the labels and the last fully
connected layer (FC7). The labels in the rule heads are written above the prototype images of the tail unit groups. Each
rule tail captures some interesting features of the corresponding classes: In the first rule the characteristic face of different
dog breeds is captured, the second group encodes information about the arch structures present for both Viaduct and
Triumphal arch, the third captures the red beaks surrounded by blackish feather that are shared between different birds,
and the fourth shows typical heads and tusks of elephants.

Class prototype for Great Danes Row 1: Example images from the class
Row 2: Rules in association with Great Danes

Figure 15: The left image shows the visualization for the whole class Great Danes. This visualization could not highlight
many characteristic features, since there is a large diversity within the class. On the right side 3 images from the dataset are
shown, along with 3 rules that EXPLAINN finds in connection with the class label. We are able to pick up trends, that are
not characteristic to the whole class, but only a subset.

Exploring the Inner Life of Neural Networks with Robust Rules

Sombrero Gong Barn Gondola

2 2 2 3

Europ. Fire Salam. Agaric Sorrel Monarch

2 3 2 5

Rapeseed Mosque
Triumphal Arch

Fur Coat
Gyromira

Dogsled
Yurt

7 2 2 2

Figure 16: Diverse prototypes. Visualized are prototypes for rules found in the VGG-S network for ImageNet data between
the output and last hidden layer. The class labels corresponding to the output are given above each image, the size of the
group of neurons that this picture was generated from is given in the bottom right.

Exploring the Inner Life of Neural Networks with Robust Rules

Red Fox
Lesser Panda

Tiger Beetle
Damselfly

Jackfruit
Squirrel Monkey

Cabbage Butterfly
Sulphur Butterfly

Agaric

2 2 2 3

A. S. S. Terrier
Bull Mastif
Saint Bernard

Water Ouzel
Black Grouse

Black Footed Ferret

Leopard
Snow Leopard

Cheetah

Ringlet
Cabbage Butterfly
Sulphur Butterfly

3 3 7 8

Figure 17: More prototypes. Visualized are prototypes for rules found in the VGG-S network for ImageNet data between the
output and last hidden layer. The class labels corresponding to the output are given above each image, the size of the group
of neurons that this picture was generated from is given in the bottom right.

Exploring the Inner Life of Neural Networks with Robust Rules

Figure 18: Flower visualizations. For rules found between output and last fully connected layer, we visualize the neurons in
the tail of the rule for the fine-tuned VGG-S network (first), the original VGG-S network (second), and example images for
the flower classes (right).

