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Abstract
We give a dimensionality reduction procedure
to approximate the sum of distances of a given
set of n points in Rd to any “shape” that lies
in a k-dimensional subspace. Here, by “shape”
we mean any set of points in Rd. Our algo-
rithm takes an input in the form of an n × d
matrix A, where each row of A denotes a data
point, and outputs a subspace P of dimension
O(k3/ε6) such that the projections of each of
the n points onto the subspace P and the dis-
tances of each of the points to the subspace P
are sufficient to obtain an ε-approximation to
the sum of distances to any arbitrary shape that
lies in a k-dimensional subspace of Rd. These
include important problems such as k-median,
k-subspace approximation, and (j, l) subspace
clustering with j · l ≤ k. Dimensionality re-
duction reduces the data storage requirement to
(n + d)k3/ε6 from nnz(A). Here nnz(A) could
potentially be as large as nd. Our algorithm runs
in time nnz(A)/ε2 + (n + d)poly(k/ε), up to
logarithmic factors. For dense matrices, where
nnz(A) ≈ nd, we give a faster algorithm, that
runs in time nd + (n + d)poly(k/ε) up to log-
arithmic factors. Our dimensionality reduction
algorithm can also be used to obtain poly(k/ε)
size coresets for k-median and (k, 1)-subspace
approximation problems in polynomial time.

1. Introduction
Machine learning models often require millions of high-
dimensional data samples in order to train. For example,
an image with moderate resolution can easily have more
than a million pixels. It is crucial that we can decrease the
size of the data to save on computational power. One way
to decrease the size of the data is dimensionality reduction,
where we project our data samples onto a low-dimensional
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subspace and perform the task on the low-dimensional
points. Given a set of n points A = {a1, . . . , an} in Rd,
the projections of A onto a subspace P of k dimensions
needs only k parameters for each point in the dataset. Thus
the size of the data is proportional to (n + d)k, which can
be much smaller than nd. Therefore if there exists a sub-
space P of dimension k, where k is much smaller than n
and d, and for which the projections of A onto the sub-
space P alone are sufficient to perform a certain a task on
the dataset A, then we can achieve a significant reduction
in the size of the data.

One very common task that requires dimensionality re-
duction is the shape-fitting problem. A problem instance
is defined by a quadruple (A,S, dist, f), where A =
{a1, . . . , an} ⊆ Rd is a set of points, dist : Rd×Rd → R≥0

is a metric which we will also refer to as the distance
function, S is a collection of subsets in Rd which we call
shapes, and a function f : R≥0 → R≥0. The task is to
find a shape S ∈ S that minimizes

!
i f(dist(ai, S)). The

most common function f used is f(x) = x2 as it has a
natural Frobenius norm interpretation for many tasks and
has closed-form solutions for natural sets S of shapes. Re-
cently, the function f(x) = x has been considered as it
is more robust to outliers than the function f(x) = x2,
meaning that it does not square the distance to an erroneous
point, allowing the objective to fit more of the remaining
(non-outlier) data points.

The most common dimensionality reduction techniques
include Principal Component Analysis (PCA) and the
Johnson-Lindenstrauss Transform (JL). PCA projects the
original dataset onto a low-dimensional subspace for which
the data variance is the largest. On the other hand, the JL
transform provides a data-oblivious dimensionality reduc-
tion that preserves pairwise distances between points in the
dataset.

Feldman et al. (2013) show that if P is the sub-
space spanned by the top O(k/ε2) singular vectors of
the data matrix A, which is given by PCA, then for
any shape S that lies in a k-dimensional space, the
quantity

!
i mins∈S ‖ai − s‖22 can be approximated by!

i mins∈S ‖PPai− s‖22+
!

i ‖ai−PPai‖22, where PPai
denotes the Euclidean projection of ai onto the subspace
P , thereby giving a dimensionality reduction technique for
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the shape-fitting problem instantiated with f(x) = x2, Eu-
clidean norm distance function dist(x, y) = ‖x− y‖2, and
with S being the collection of any k-dimensional shape.

In this work, we concentrate on shape fitting problems with
dist(x, y) = ‖x − y‖2 and f(x) = x. Unfortunately,
both PCA and the JL transform are not known to work in
this case. We give fast algorithms to find a subspace P of
"O(k3/ε6)1 dimensions that allows us to compute a (1±ε)-
approximation to

!
i dist(xi, S) for any shape S that lies

in a k-dimensional subspace. Examples of such shapes in-
clude all k-dimensional subspaces themselves, which cor-
responds to the subspace approximation problem, as well
as all sets of k points, which corresponds to the k-median
problem. Our results also apply to the (j, l)-projective clus-
tering problem, with j · l ≤ k, where we seek to find j sub-
spaces, each of dimension at most l, so as to minimize the
sum of distances of each input point to its nearest subspace
among the j that we have chosen. We also show empir-
ically that we need fewer dimensions than our theoretical
analysis predicts to obtain good approximations.

A coreset is another type of data structure to reduce the
size of a data set A. Namely, a coreset P is a data struc-
ture consuming a much smaller amount of memory than A,
which can be used as a substitute for A for any query Y
on A. For example, in the k-median problem, the query
Y = {y1, . . . , yk} can be a set of k points, and we want
to find a coreset P to obtain a (1 + ε)-approximation to!n

i=1 ‖ai − yai‖2, where yai is the closest point to ai in
Y . Often, we want to construct a strong coreset, meaning
with high probability, P can be used in place of A simul-
taneously for all possible query sets Y . If this is the case,
then we can throw away the original dataset A, which saves
us not only on computational power, but also on storage.

There is a long line of work which focuses on constructing
coresets for subspace approximation with sum of squared
distances loss function, as well as for the k-means prob-
lem (see, e.g., (Deshpande et al., 2006; Deshpande and
Varadarajan, 2007; Feldman and Langberg, 2011; Feld-
man et al., 2010; 2013; Varadarajan and Xiao, 2012; Shya-
malkumar and Varadarajan, 2007; Bādoiu et al., 2002;
Chen, 2009; Feldman and Schulman, 2012; Frahling and
Sohler, 2005; 2008; Har-Peled and Kushal, 2007; Har-
Peled and Mazumdar, 2004; Langberg and Schulman,
2010)). Feldman et al. (2013) give the first coresets of
size independent of d. For subspace approximation, they
give strong coresets of size O(k/ε), and "O(k3/ε4) for k-
means. Cohen et al. (2015) improve the result and give an
input sparsity time algorithm to construct the coreset.

Later, Sohler and Woodruff (2018) give a strong coreset of
size poly(k/ε) for the k-median problem, as well as the

1We use !O(f(n)) notation to denote O(f(n)polylog(f(n))).

subspace approximation problem with the sum of distances
loss function, obtaining the first strong coresets indepen-
dent of n and d for this problem. Their algorithm runs
in "O(nnz(A) + (n + d) · poly(k/ε) + exp(poly(k/ε)))
time. Recent work by Makarychev et al. (2019) provides
an oblivious dimensionality reduction for k-median to an
O(ε−2 log(k/ε))-dimensional space while preserving the
cost of every clustering. This dimension reduction re-
sult can also be used to construct a strong coreset of size
poly(k/ε).

Sohler and Woodruff (2018) gave an algorithm to compute
first polynomial size coresets for k-median using their di-
mensionality reduction, albeit, with a running time expo-
nential in k, 1/ε as discussed. In a similar way, we can
obtain "O(k4/ε8) size coreset for k-median in polynomial
time using our dimensionality reduction algorithm. In con-
current and independent work, Huang and Vishnoi (2020)
gave a polynomial time algorithm to compute a coreset of
size "O(k/ε4). We stress that we can run the second stage
in the coreset construction algorithm of Huang and Vishnoi
(2020) on a coreset of size "O(k4/ε8) to obtain a coreset of
size "O(k/ε4) just as in (Huang and Vishnoi, 2020). Also,
their techniques cannot be extended to give an efficient di-
mensionality reduction algorithm to approximate the sum-
of-distances metric, as their coreset construction arguments
are based on an existential dimensionality reduction result.
As an aside, we observe that the coreset construction algo-
rithm of Huang and Vishnoi (2020) can be implemented to
have a running time of "O(nnz(A)+(n+d)poly(k/ε)), im-
proving their "O(nnz(A) · k) time algorithm. To our knowl-
edge, this is the first input sparsity time algorithm to con-
struct a coreset for the fundamental k-median problem. We
give a proof of our observation in the supplementary mate-
rial.

The size of the coresets constructed based on the sensitiv-
ity sampling framework of Feldman and Langberg (2011)
depend on the dimension of the data. An important con-
sequence of our dimensionality reduction algorithm is that
the coresets constructed on the data after first reducing its
dimensionality can be much smaller for many important
problems.

1.1. Our Results

Our main contribution is that we obtain the first polynomial
time, in fact near-linear time, dimension reduction algo-
rithm that returns a poly(k/ε)-dimensional subspace such
that the projections of the input points to this subspace, as
well as the distances of the points to this subspace, can be
used to compute a (1±ε)-approximation to the sum of dis-
tances of the set A to any k-dimensional shape S.

Theorem 1.1 (Dimensionality Reduction). Given A ∈
Rn×d and 0 < ε < 1, there exists an algorithm that runs in
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time "O(nnz(A)/ε2+(n+d)poly(k/ε)) and outputs a sub-
space P of dimension "O(k3/ε6) such that, with probability
≥ 2/3, for any shape S ⊆ Rd that lies in a k-dimensional
subspace,
#

i

$
dist(PPai, S)2 + dist(ai, P )2 = (1±ε)

#

i

dist(ai, S).

When A is dense, i.e., nnz(A) ≈ nd, the quantity
nnz(A)/ε2 ≈ nd/ε2 may be prohibitive. In this case,
we also provide a fast dimensionality reduction algorithm
which runs in "O(nd+ (n+ d) · poly(k/ε)) time.

Theorem 1.2. For any ε ∈ (0, 1) and k ≥ 1, there is an
"O(nd + (n + d) · poly(k/ε)) time algorithm that finds an
"O(k3.5/ε6)-dimensional subspace P such that, with prob-
ability ≥ 2/3, for any shape S ⊆ Rd that lies in a k-
dimensional subspace,
#

i

$
dist(PPai, S)2 + dist(ai, P )2 = (1±ε)

#

i

dist(ai, S).

Given a subspace P as in the above theorems, it is still ex-
pensive to compute the projections of the rows of A onto
the subspace P as well as the distances to the subspace P .
We also give an algorithm to compute approximate projec-
tions and approximate distances that still satisfy the guar-
antees of the above theorems, obtaining the following the-
orem.

Theorem 1.3 (Size Reduction). Given a matrix A ∈ Rn×d

and a subspace P of r = "O(k3/ε6) dimensions that sat-
isfies the guarantees of Theorems 1.1 and 1.2, there is an
algorithm that runs in time "O(nnz(A)+(n+d)poly(k/ε))
and outputs vectors aBi ∈ Rr and values vi ∈ R≥0 for
all i such that for any shape S that lies in a k dimensional
subspace,

#

i

%
dist(BaBi , S)

2 + v2i = (1± ε)
#

i

dist(ai, S),

where B is an orthonormal basis for the subspace P .
Thus the storage requirement drops from nnz(A) to (n +
d)k3/ε6.

2. Preliminaries and Technical Overview
We let A ∈ Rn×d denote our input matrix. The rows of A
are interpreted as a set of n points in Rd. Throughout the
paper, we use Ai∗ and ai to denote the ith row of A, and
A∗i to denote the ith column. Similarly, for J ⊆ [n], AJ∗
denotes the matrix with rows of A only indexed by J . For
n ∈ Z+, [n] denotes the set {1, 2, 3, . . . , n}. For a matrix
A, we use A+ to denote its Moore-Penrose pseudoinverse.
We write x = (a, b)y to denote that ay ≤ x ≤ by. If

a = 1 − ε and b = 1 + ε, we abbreviate the notation as
x = (1± ε)y.

Given a subspace B, we use PB to denote the projection
matrix onto B, i.e., for any vector u, we have PBu =
argminv∈B ‖u− v‖2. Let B⊥ denote the orthogonal com-
plement of the subspace B. We use bold capital letters such
as S,L to stress that these are random matrices that are ex-
plicitly sampled.

Definition 2.1 ((p, 2)-norm). For a matrix A ∈ Rn×d,
its (p, 2)-norm is ‖A‖p,2 = (

!n
i=1 ‖Ai∗‖p2)1/p. We de-

fine ‖A‖h to be ‖AT‖1,2 which is the sum of ℓ2 norms of
columns of A.

Definition 2.2 ((k, p)-clustering). Given input matrix A ∈
Rn×d, let X be the collection of all sets containing k
points. The (k, p)-clustering problem denotes the optimiza-
tion problem minX∈X

!
Ai∗∈A d(Ai∗, X)p.

If p = 2, we have the k-means problem, while if p = 1, we
have the k-median problem.

Definition 2.3 ((k, p)-subspace approximation). Given in-
put matrix A ∈ Rn×d, let P be the set of all sub-
spaces with dimension at most k. The (k, p)-subspace
approximation problem denotes the optimization problem
minP∈P

!
i∈[n] d(Ai∗, P )p. We let SubApxk,p(A) denote

the optimum value of the (k, p) subspace approximation to
A.

Definition 2.4 (ε-strong coreset). For the (k, p)-clustering
problem with input matrix A ∈ Rn×d, a weighted ε-
strong coreset is a tuple (C,w) where C ∈ Rm×d and
w : rows(C) → R+ is such that simultaneously for all
X ⊆ Rd with |X| = k,

#

i∈[m]

w(Ci∗)d(Ci∗, X)p = (1± ε)
#

i∈[n]

d(Ai∗, X)p.

The definition can be generalized to any data struc-
ture that lets us compute a (1 ± ε) approximation to!

Ai∗∈A d(Ai∗, X)p for all sets X of size k. A similar no-
tion of strong coreset can be defined for the (k, p)-subspace
approximation problem as well.

Definition 2.5 ((α,β)-bicriteria approximation). Given
an input matrix A ∈ Rn×d for the (k, 1)-subspace
approximation problem, we say that a subspace Q is
an (α,β)-bicriteria approximation if dim(Q) ≤ β and!n

i=1 d(Ai∗, Q) ≤ α · SubApxk,1(A).

Definition 2.6 (ℓ1 subspace embedding). Let A ∈ Rn×d,
Π ∈ Rs×n. We call Π an (α,β) ℓ1 subspace embedding if
for all x ∈ Rd, α‖Ax‖1 ≤ ‖ΠAx‖1 ≤ β‖Ax‖1. If QR =
ΠA is the QR decomposition, then we let ‖Ai∗R

−1‖1 be
the ℓ1 leverage score of the ith row. See (Cohen and Peng,
2015; Wang and Woodruff, 2019) for several constructions
of ℓ1 subspace embeddings.
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2.1. Technical Overview

Let A ∈ Rn×d be the input matrix. Sohler and Woodruff
(2018) show that if a subspace S satisfies

‖A(I−PS)‖1,2−‖A(I−PS+W )‖1,2 ≤ ε2SubApxk,1(A)
(1)

for all k-dimensional subspaces W , then we can reduce the
dimension of the input points by projecting the points onto
S, while being able to compute a (1 ± ε)-approximation
to the sum of distances to any k-dimensional shape. They
construct such a subspace S by directly computing a (1 +
ε, poly(k/ε)) bicriteria approximation for the (i∗k, 1) sub-
space approximation problem on A, where i∗ is a randomly
chosen index in [1/ε2]. This introduces the exp(poly(k/ε))
term in their running time. We show that we can com-
pute (1 + ε, poly(k/ε))-bicriteria solutions for the (k, 1)-
subspace approximation problem on A(I − P ), for adap-
tively chosen projection matrices P , and that with constant
probability, the union of the bicriteria solutions we com-
pute has the desired property (1).

We solve the problem of finding a (1 + ε, poly(k/ε))-
bicriteria solution for the (k, 1)-subspace approximation
problem on the input A(I − P ), where P is an arbi-
trary projection matrix onto a subspace of dimension at
most poly(k/ε), based on techniques from (Clarkson and
Woodruff, 2015). We simplify their arguments and ob-
tain tighter parameters for their algorithms. We solve the
problem in two stages. First we compute an (O(1), "O(k))-
approximation, i.e., we find a subspace &X of dimension at
most "O(k) such that ‖A(I − P )(I − P !X)‖1,2 ≤ O(1) ·
SubApxk,1(A(I − P )).

To achieve this guarantee, we make use of so-called
lopsided embeddings. Clarkson and Woodruff (2015)
show that if a matrix S is an ε lopsided embedding
for (Vk, (A(I − P ))T), where Vk is an orthonormal ba-
sis for the k-dimensional subspace that attains the cost
SubApxk,1(A(I−P )), then minrank-k X ‖A(I−P )STX−
A‖1,2 ≤ (1+ε)SubApxk,1(A(I−P )). We first show that a
Gaussian matrix S with O(k) rows is an O(1) lopsided em-
bedding with probability ≥ 9/10. Then we show that if a
random matrix L is an O(1) ℓ1 subspace embedding for the
matrix A(I −P )ST and satisfies EL[‖LM‖1,2] = ‖M‖1,2
for any fixed matrix M , then the row space of (LA(I−P ))
is an O(1) approximation. We use the Lewis weight sam-
pling algorithm of Cohen and Peng (2015) to sample a ma-
trix L that satisfies these properties. As the matrix ST,
which is a Gaussian matrix, has only O(k) columns, the
matrix L has only "O(k) rows. We can also instead use the
ℓ1 subspace embeddings of Wang and Woodruff (2019) to
construct an "O(k3.5)-sized ℓ1 embedding by leverage score
sampling (Woodruff, 2014).

Next, based on the (O(1), "O(k)) bicriteria solution, we per-

form non-adaptive residual sampling. This was shown to
give a (1 + ε, "O(k3/ε2)) bicriteria solution in (Clarkson
and Woodruff, 2015) when an O(1) approximate solution
is used. Thus, we obtain a subspace &S for which

‖A(I − P )(I − P!S)‖1,2 ≤ (1 + ε)SubApxk,1(A(I − P )).

Starting with P = 0, we obtain a (1 + ε, k3/ε2) bicrite-
ria subspace &S. However, the dimensionality reduction re-
quires a subspace that satisfies (1). To obtain such a guar-
antee, we crucially run this algorithm adaptively Θ(1/ε)

times. Let &Si be the subspace obtained in the ith itera-
tion. In the ith iteration, we find a bicriteria solution for
the (k, 1) subspace approximation problem on the matrix
A(I − P!S1∪...∪!Si−1

). We then show that the final subspace
&S = ∪j

&Sj , with probability ≥ 9/10, satisfies ‖A(I −
P!S)‖1,2 − ‖A(I − P!S+W )‖1,2 ≤ ε · SubApxk,1(A) for
all k-dimensional subspaces W . Thus, running the above
procedure with parameter ε2 gives a subspace that satis-
fies (1). We show that each iteration of the algorithm takes
"O(nnz(A)+(n+d)poly(k/ε)) time and as we run the algo-
rithm adaptively for 1/ε2 iterations, the total time complex-
ity of the algorithm is O(nnz(A)/ε2 + (n+ d)poly(k/ε)).

For dense inputs A, the algorithm described above has a
running time of O(nd/ε2 + (n + d)poly(k/ε)) which can
be prohibitive when both n and d are large. We observe
that in each of the 1/ε2 iterations, the algorithm computes
sampling probabilities pi for all the n rows, whereas it sam-
ples only poly(k/ε) rows independently with these proba-
bilities in any particular iteration. We propose a novel al-
ternate sampling scheme in which we partition rows of the
matrix A(I − P ) into equal size blocks I1, . . . , Ib ⊆ [n].
We show that given several precomputed matrices, we can
quickly obtain estimates “apxj” that approximate

!
i∈Ij

pi
for all j ∈ [b]. Now, to sample a row i ∈ [n] with prob-
ability approximately equal to pi, we first sample a block
Ij with probability proportional to apxj , which is close to!

i∈Ij
pj , and then compute the probabilities pi only for

the rows in the sampled blocks. If the number of samples is
less than the number of blocks, we see that we compute the
actual probabilities only for a few rows. In order to be able
to estimate apxj , we make use of several standard proper-
ties of Cauchy and Gaussian random matrices. Finally, we
show that each of the precomputed matrices required can
be computed in time "O(nd) using the fast rectangular ma-
trix multiplication algorithm by Coppersmith (1982).

In addition to providing a tool for data size reduction, our
dimensionality reduction also leads to small coreset con-
structions for various problems with sizes that depend only
on the problem parameter k instead of n or d. As shown
by Sohler and Woodruff (2018), the points projected onto
the subspace given by a dimensionality reduction algorithm
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can be used to construct coresets of sizes poly(k/ε) for k-
median and (k, 1)-subspace approximation problems. We
note that the same constructions work with our dimension-
ality reduction algorithm. We include the details of such
constructions in the supplementary material.

3. Sum of Distances to a k-dimensional shape
Let A = {a1, . . . , an} be a given set of points and P be
a poly(k/ε) dimensional subspace that satisfies (1). Let
S ⊆ Rd be an arbitrary shape such that span(S) has di-
mension at most k. We want to obtain an ε approximation
to

!
i dist(ai, S).

Sohler and Woodruff (2018) show that for any such
shape S,

!
i

$
dist(ai,PPai)2 + dist(PPai, S)2 = (1 ±

ε)
!

i∈S dist(ai, S). The following lemma is a more gen-
eral version that works with approximate projections onto
the subspace P and approximate distances to the subspace
P . A similar lemma is stated as Lemma 14 in (Sohler and
Woodruff, 2018). We correct an error in Equation 2 of their
proof.

Theorem 3.1. Let P be an r dimensional subspace of Rd

such that

#

i

dist(ai, P )−
#

i

dist(ai, P +W ) ≤ ε2

80
SubApxk,1(A)

for all k-dimensional subspaces W . Let B ∈ Rd×r be an
orthonormal basis for the subspace P . For each ai, let
aBi ∈ Rr be such that dist(ai, BaBi ) ≤ (1 + εc)dist(ai, P )
and let (1 − εc)dist(ai, P ) ≤ apxi ≤ (1 + εc)dist(ai, P )
for εc = ε2/6. Then for any k dimensional shape S,!

i

$
dist(BaBi , S)

2 + apx2i = (1± 5ε)
!

i dist(ai, S).

The above theorem shows that we have to only compute
approximate projections onto the subspace, which can be
done in input sparsity time by using high probability sub-
space embeddings obtained from CountSketch matrices
(see Section 2.3 of (Woodruff, 2014) and (Liang et al.,
2014)).

4. Dimensionality Reduction for Sparse
Inputs

4.1. Constructing an (O(1), "O(k))-bicriteria Subspace
Approximation

We first show how to obtain an (O(1), "O(k))-bicriteria so-
lution for (k, 1)-subspace approximation. A key tool we
use is a lopsided embedding defined as follows:

Definition 4.1 (Lopsided embedding). A matrix S is a lop-
sided ε-embedding for matrices A and B with respect to a
matrix norm ‖ · ‖ and constraint set C, if (i) for all matri-
ces X of the appropriate dimensions, ‖S(AX − B)‖ ≥

(1 − ε)‖AX − B‖, and (ii) for B∗ = AX∗ − B, we have
‖SB∗‖ ≤ (1+ ε)‖B∗‖, where X∗ = argminX∈C ‖AX−
B‖.

Let Uk ∈ Rn×k and V T
k ∈ Rk×d be rank k matrices

such that ‖UkV
T
k −A‖1,2 = SubApxk,1(A). Clarkson and

Woodruff (2015) show that if S is a lopsided ε-embedding
for matrices (Vk, A

T) with respect to the norm ‖ · ‖h, then
minrank-k X ‖ASTX −A‖1,2 ≤ (1+O(ε))SubApxk,1(A).
We show that a suitably scaled Gaussian random matrix S
with "O(k) rows is a lopsided (1/4)-embedding for matri-
ces (Vk, A

T) with probability ≥ 9/10. Thus, we have that
with probability ≥ 9/10,

min
rank-k X

‖ASTX −A‖1,2 ≤ (3/2)SubApxk,1(A).

We next prove that a row-sampling based ℓ1 subspace em-
bedding for the column space of the matrix AST can be
used to obtain a bicriteria solution to the subspace approx-
imation problem.

The following lemma summarizes the results discussed
above. The results of the lemma are a significant improve-
ment over Lemma 44 of (Clarkson and Woodruff, 2015)
and have simpler proofs that do not involve ε-nets.

Lemma 4.1. (i) If ST is a random Gaussian matrix with
O(k) columns, then S is a 1/4-lopsided embedding for
(Vk, A

T) with respect to the ‖ · ‖h norm with probability
≥ 9/10. Therefore, with probability ≥ 9/10

min
rank-k X

‖ASTX −A‖1,2 ≤ (3/2)SubApxk,1(A).

(ii) If L is a random matrix drawn from a distribu-
tion such that with probability ≥ 9/10, α‖ASTy‖1 ≤
‖LASTy‖1 ≤ β‖ASTy‖1 for all vectors y and if
EL[‖LM‖1,2] = ‖M‖1,2 for any matrix M , then with
probability ≥ 3/5, all matrices X of appropriate dimen-
sions such that ‖LASTX − LA‖1,2 ≤ 10 · SubApxk,1(A)

satisfy ‖ASTX −A‖1,2 ≤ O(2 + 40/α) · SubApxk,1(A).

Using the above lemma, we now have the following theo-
rem which shows that Algorithm 1 returns an (O(1), "O(k))
approximation.

Theorem 4.1. Given any matrix A ∈ Rn×d and a matrix
B ∈ Rd×c1 with c1 = poly(k/ε) orthonormal columns,
Algorithm 1 returns a matrix &X with "O(k) orthonormal
columns that with probability 1− δ satisfies

‖A(I −BBT)(I − &X &XT)‖1,2
≤ O(1) · SubApxk,1(A(I −BBT)),

in time "O((nnz(A) + dpoly(k/ε)) log(1/δ)).
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Algorithm 1 POLYAPPROX

Input: A ∈ Rn×d, B ∈ Rd×c1 , k ∈ Z, δ
Output: &X ∈ Rd×c2

cols ← O(k + 1/δ2)
ST ← N (0, 1)d×cols

L ← LEWISWEIGHT(A(I −BBT)ST,1/2) (Cohen and
Peng, 2015)
&X ← Orthonormal Basis for rowspace(LA(I −BBT))

Repeat the above O(log(1/δ)) times and return the best
&X i.e., &X minimizing ‖A(I − &X &XT)G‖1,2 where G is

a Gaussian matrix with O(log(n)) columns

4.2. Constructing a (1 + ε, "O(k3/ε2))-bicriteria
Subspace Approximation

Using the (O(1), "O(k))-bicriteria subspace approximation
solution found, we design a finer sampling process based
on Theorem 45 of (Clarkson and Woodruff, 2015) to further
pick a subspace of dimension "O(k3/ε2) that contains a (1+
ε)-approximate solution for subspace approximation of the
matrix A(I −BBT).

The following lemma states that given a subspace of cost
at most K · SubApxk,1(A), that a sample of "O(K · k3/ε2)
rows with probabilities chosen proportional to the distances
of the rows of the matrix A to the subspace, can be used to
construct a subspace that is a 1 + ε approximation.

Algorithm 2 EPSAPPROX

Input: A,B, &X, k,K, ε, δ > 0.
Output: U ∈ Rd×c such that UTB = 0.
t ← O(log(n/δ)), G ← N (0, 1/t)d×t

M ← A(I −BBT)(I − &X &XT)G
pi ← ‖Mi∗‖2/‖M‖1,2 for all i ∈ [n]

s ← "O(K · k3/ε2 · log(1/δ))
S ← Multiset of s independent samples drawn from dis-
tribution p
U ← Orthonormal basis for column space of the matrix
((I −BBT)[ &X (AS)

T])
Return U

Lemma 4.2. Given a matrix A ∈ Rn×d and a matrix &X ∈
Rd×c that satisfies

‖A(I − &X &XT)‖1,2 ≤ K · SubApxk,1(A),

suppose we generate a matrix S of s = "O((K/α) ·
k3/ε2 · log(1/δ)) rows, each chosen independently to be
the ith standard basis vector with probability pi. Here,!

i∈[n] pi = 1 and for all i ∈ [n] pi ≥ α qi"
i qi

, where

qi = ‖Ai∗(I − &X &XT)‖2. Let U be an orthonormal ba-
sis for the rowspace of [ &XT ; SA]. Then with probability

≥ 1− δ,

‖A(I − UUT)‖1,2 ≤ (1 + ε)SubApxk,1(A).

The proof of the above lemma is the same as that of the
proof of Theorem 45 of (Clarkson and Woodruff, 2015)
with a minor change to account for the approximation er-
ror α. Now the following theorem shows that Algorithm 2
satisfies conditions of the previous lemma.

Theorem 4.2 (Residual Sampling). Given matrix A ∈
Rn×d, matrices B ∈ Rd×c1 and &X ∈ Rd×c2 with
orthonormal columns such that ‖A(I − BBT)(I −
&X &XT)‖1,2 ≤ K · SubApxk,1(A(I − BBT)), Algorithm 2

returns a matrix U having c = "O(c2+K ·k3/ε2 · log(1/δ))
orthonormal columns such that with probability ≥ 1− δ,

‖A(I −BBT)(I − UUT)‖1,2
≤ (1 + ε)SubApxk,1(A(I −BBT)).

The algorithm runs in time "O(nnz(A) + dpoly(k/ε)).
Moreover we also have that UTB = 0 i.e., the column
spaces of U and B are orthogonal to each other.

The proof of the theorem mainly involves showing that
‖Mi∗‖2 is proportional to the residual ‖Ai∗(I−BBT)(I−
&X &XT)‖2. This is done by using the fact that if G is a

Gaussian matrix with O(log(1/δ)) rows, then ‖xTG‖2 =
(1/2, 3/2)‖xT‖2 with probability ≥ 1 − δ. We then
apply Lemma 4.2 to conclude that the solution com-
puted by the algorithm is a bicriteria solution of cost at
most (1 + ε)SubApxk,1(A(I − BBT)). Therefore, using
the (O(1), "O(k)) bicriteria solution obtained using Algo-
rithm 1, we can obtain a (1 + ε, "O(k3/ε2)) bicriteria solu-
tion.

5. Dimensionality Reduction
With an algorithm to construct a (1+ε, k3/ε2) bicriteria so-
lution from the previous section, we are now ready to con-
struct a subspace that satisfies (1). Recall the crucial prop-
erty for the subspace S we need is that for all k-dimensional
subspaces W , ‖A(I − PS)‖1,2 − ‖A(I − PS+W )‖1,2 ≤
ε2SubApxk,1(A). To get such a subspace, we run Algo-
rithms 1 and 2 adaptively and then show that the union of
all 1 + ε approximate bicriteria solutions satisfy the above
property with parameter O(ε). Thus, running the algorithm
with parameter Θ(ε2) gives a subspace with the desired
property.

Theorem 5.1. Given an n × d matrix A, k ∈ Z, and an
accuracy parameter ε > 0, Algorithm 4 returns a ma-
trix B with "O(k3/ε6) orthonormal columns and a ma-
trix Apx = [X v] such that, with probability ≥ 9/10, for
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Algorithm 3 DIMENSIONREDUCTION

Input: A ∈ Rn×d, k, ε > 0.
Output: B ∈ Rd×c with orthonormal columns
i∗ ← uniformly random integer from [10/ε+ 1].
Initialize B ← []
for i∗ iterations do

&X ← POLYAPPROX(A,B, k, ε/100).
U ← EPSAPPROX(A,B, &X, k, "O(

√
k), ε, ε/100).

B ← [B |U ].
end for
Return B.

Algorithm 4 COMPLETEDIMREDUCE

Input: A ∈ Rn×d, k ∈ Z, ε > 0.
Output: Apx ∈ Rn×(c+1)

Let B = DIMENSIONREDUCTION(A, k,Θ(ε2)).
t = O(log(n))
Compute (SjB,SjA

T) for j ∈ [t] where Sj is an inde-
pendent CountSketch matrix with poly(k/ε) rows
for i = 1, . . . , n do

Let UjDjV
T
j ← SVD(Sj [BAT

i∗]) for all j ∈ [t]
for j ∈ [t] do

Check if for at least half j′ ∕= j, all singular values
of DjV

T
j Vj′(D

T
j′)

−1 are in [1−Θ(ε2), 1 +Θ(ε2)]

If the above check holds, set xi ← (SjB)†(SjA
T
i∗),

vi ← ‖(I − (SjB)(SjB)†)(SjA
T
i∗)‖2 and go to

next i
end for

end for
Return B and n × (c + 1) matrix Apx with Apxi∗ =
[xi vi]

any k dimensional shape S,
!

i

$
dist(BXT

i∗, S)
2 + v2i =

(1 ± ε)
!

i dist(Ai, S). The algorithm runs in time
O(nnz(A)/ε2 + (n+ d)poly(k/ε)).

Let Bi be the value of the matrix B after i iterations in
Algorithm 3. The proof of the above theorem first shows
that Algorithm 3 outputs a subspace B satisfying (1). This
is done by showing that for at least a constant fraction
of j ∈ [10/ε + 1], the terms ‖A(I − BjB

T
j )‖1,2 and

‖A(I − Bj+1B
T
j+1)‖1,2 are close. This further means

that the rows of the matrix A(I − BjB
T
j ) cannot be

projected onto any k dimensional subspace W to make
‖A(I −BjB

T
j )(I −WWT)‖1,2 substantially smaller than

‖A(I −BjB
T
j )‖1,2. Thus, we can show that with constant

probability, for i∗ chosen randomly by Algorithm 3, the
subspace colspan(Bi∗) satisfies (1).

Then, the proof uses the fact that for every i ∈ [n], the
algorithm finds a matrix Sj that is a Θ(ε2) subspace em-
bedding for [BAT

i∗]. This is shown to be true in (Liang

et al., 2014). Now, if Sj is a subspace embedding, it can be
shown that the vector xi and value vi satisfy the conditions
of Theorem 3.1, thus proving the above theorem.

6. Linear Time Algorithm for Dense Matrices
We see from Algorithm 4 that, after computing a subspace
that satisfies (1), we can compute approximate projections
and approximate distances to the subspace in time "O(nd+
(n+d)poly(k/ε)). We now show that the subspace can also
be found in "O(nd+(n+d)poly(k/ε)) time, thereby giving
a near linear time algorithm for dimensionality reduction
for dense matrices.

6.1. Computing an (O(1), poly(k)) approximation

Consider constructing an ℓ1 subspace embedding for the
matrix A(I−BBT)ST in Algorithm 1. The algorithm uses
Lewis weights to sample a matrix that is an O(1) ℓ1 sub-
space embedding for A(I − BBT)ST with high probabil-
ity. We instead use the following theorem to compute an
ℓ1 subspace embedding which is more amenable for giving
fast algorithms for dense matrices.
Theorem 6.1 (Section 3.1 of Woodruff (2014)). Given a
matrix A ∈ Rn×d, let L ∈ Rr×n be a random matrix that
is an (α,β) ℓ1 subspace embedding for the matrix A. Let
LA = QR be the QR decomposition of the matrix LA.
Let ℓi = ‖Ai∗R

−1‖1 for i ∈ [n]. If we generate a matrix
L′ with N = O((d2

√
r/γε2)(β/α) log(1/δε)) rows, each

chosen independently as the ith standard basis vector, times
1/(Npi) with probability pi, where pi ≥ γ(ℓi/

!
i′ ℓi′)

for all i ∈ [n], then the matrix L satisfies with probability
1 − δ, for all vectors x, (1 − ε)‖Ax‖1 ≤ ‖L′Ax‖1 ≤
(1 + ε)‖Ax‖1.

Therefore, given an (α,β) ℓ1 subspace embedding with
r rows for the matrix A(I − BBT)ST ∈ Rn×O(k),
we can compute a (1 ± ε) ℓ1 embedding with N =
O((k2

√
r/γε2)(β/α) log(1/ε)) rows. Using the ℓ1 sub-

space embedding of Theorem 1.3 of Wang and Woodruff
(2019), we have r, (β/α) = O(k log(k)).
Theorem 6.2. Given A ∈ Rn×d, B ∈ Rd×c1 , k ∈ Z and
δ, there exists an algorithm that returns &X with "O(k3.5)
orthonormal columns that with probability 1− δ satisfies

‖A(I −BBT)(I − &X &XT)‖1,2
≤ O(1) · SubApxk,1(A(I −BBT)).

Given that the matrices C1AIj for all j ∈ [b] and WA,
where C1 is a Cauchy matrix with O(log(npoly(k/ε)))
rows and W is the subspace embedding of Wang and
Woodruff (2019) for O(k) dimensional spaces, are pre-
computed for each of O(log(1/δ)) trials, the algorithm
can be implemented in time "O(((nd/b) · k3.5 + d ·
poly(k/ε)) log(1/δ)).
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We first partition rows of the matrix A into [b] sets
denoted I1, . . . , Ib. To prove the above theorem, we
use the following fact: if C is a Cauchy matrix with
O(log(n/δ)/ε2) rows, then for any vector x of n dimen-
sions, median(abs(Cx)) = (1 ± ε)‖x‖1 with probability
≥ 1 − δ. This fact lets us compute an approximation to
the sum of leverage scores of the rows that lie in Ij quickly
without computing individual leverage scores. Using these
approximations, we can sample r rows by computing the
leverage scores of all rows in just r blocks instead of com-
puting the leverage scores of all the rows of the matrix,
which gives the cost saving as described in the theorem.

6.2. Computing a (1 + ε, poly(k/ε)) approximation

Theorem 6.3. Given a matrix A ∈ Rn×d, orthonor-
mal matrices B and &X such that ‖A(I − BBT)(I −
&X &XT)‖1,2 ≤ K · SubApxk,1(A(I −BBT)), and parame-

ters k, ε, and δ, there exists an algorithm that outputs a ma-
trix U with poly(K · k/ε) orthonormal columns such that
with probability ≥ 1− δ, ‖A(I −BBT)(I −UUT)‖1,2 ≤
(1+ε)SubApxk,1(A(I−BBT)). Given that C1AIj is pre-
computed for all j ∈ [b], where C1 is a Cauchy Matrix
with O(log(npoly(k/ε))) rows, the algorithm runs in time
"O((nd/b) · (K · k3/ε2 log(1/δ)) + dpoly(k/ε)).

Note that Algorithm 2 samples O(K · poly(k/ε)) rows us-
ing probabilities proportional to the residuals of the rows
with respect to the O(1) approximation. We again divide
the rows of the matrix A(I − BBT)(I − &X &XT) into b
parts denoted by I1, . . . , Ib. We use the following fact from
(Plan and Vershynin, 2013): If G is a Gaussian matrix with
m columns, then with high probability (1/m)‖xTG‖1 ≈
(
$
2/π)‖x‖2. Thus ‖AIj∗(I − BBT)(I − &X &XT)‖1,2

can be approximated by scaling ‖AIj∗(I − BBT)(I −
&X &XT)G‖1,1, i.e., the sum of absolute values of entries of

the matrix AIj∗(I − BBT)(I − &X &XT)G. We show that
these approximations can be computed quickly given the
precomputed matrices as required in the theorem statement.
Given the approximations for the sum of residuals of rows
in each Ij , we only have to compute the residuals of (n/b)c
rows to sample c rows from the distribution of residuals.

Replacing Algorithms 1 and 2 by algorithms given by the
above theorems lets us compute a subspace satisfying (1)
in time "O((nd/b)k3.5/ε6 + (n+ d)poly(k/ε) + T ), where
T is the time required to compute the precomputed matri-
ces required by the algorithms. By choosing b = k3.5/ε6,
we obtain that a subspace can be computed in time "O(nd+
(n+d)poly(k/ε)+T ). Notice that the above theorems only
require at most poly(k/ε) products of the form MA for ma-
trices M of at most poly(k/ε) rows. These products can be
obtained by computing MA, where M is formed by stack-
ing all the matrices M . Now M only has poly(k/ε) rows

Figure 1. Comparison of subspaces output by Algorithm 3 on
Synthetic dataset with Random and Singular Value Subspaces

and the product MA can be computed in time "O(nd) by
using the fast rectangular matrix multiplication algorithm
of Coppersmith (1982). Thus, a subspace satisfying (1) can
be computed in time "O(nd+ (n+ d)poly(k/ε)).

7. Experiments
We perform experiments to empirically verify that we can
attain a non-trivial amount of data reduction while still be-
ing able to compute an approximate sum of distances to a k-
dimensional shape. In our experiments, we set n = 10000
and k = 5. We use various subspaces to compute an ap-
proximation to the sum of distances to a k center set.

7.1. Synthetic Data

We set d = 10000 and we choose a set C of 5 centers
in Rd randomly. For each center, we add Cauchy noise
to generate 2000 independent samples and hence obtain a
dataset A of size 10000. We run our algorithm with a target
dimension of 100 and store the subspaces at intermediate
steps of the loop in Algorithm 3. We compare the approx-
imation computed for

!
i dist(Ai∗, C) using the subspace

computed by Algorithm 3, a random subspace, and the top
singular value subspace of the same dimensions. See Fig-
ure 1 for a plot. We note that for all dimensions, the sub-
space output by Algorithm 3 does better than a random sub-
space to approximate the sum of distances and particularly
at lower dimensions, the subspace output by Algorithm 3
does better than the top singular value subspace of the same
dimension.

7.2. Real-World Data

We run our dimensionality reduction algorithm on a ran-
domly chosen subset A of size 10000 of the CoverType
dataset (Dua and Graff, 2017). We compute a k-means so-
lution C on the dataset and then evaluate the sum of dis-
tances to the center set C. Similar to the case of synthetic
data, we compare the approximate sum of distances to C
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Figure 2. Comparison of subspaces output by Algorithm 3 on
CoverType dataset with random and singular value subspaces

computed using the subspace output by Algorithm 3, a ran-
dom subspace, and the top singular value subspace. See
Figure 2 for a plot. We note that, again, the subspace out-
put by our algorithm performs better than the random sub-
space at all dimensions. But note that the singular value
subspace approximates the sum of distances to the set C
better than the subspace output by our algorithm. This
occurs due to the fact that the data is inherently low di-
mensional and therefore if P is the top singular value sub-
space, then PPai ≈ ai and dist(ai, P ) ≈ 0 and therefore,$

dist(ai, P )2 + dist(PPai, C)2 ≈ dist(ai, C). Thus, if
the matrix A can be approximated well with a low dimen-
sional matrix, then we can instead use top singular value
subspace to reduce the dimension of the data and still be
able to compute an approximate sum of distances to k di-
mensional shapes, although we do not have any theoretical
bounds for singular value subspaces.

Code
An implementation of our Algorithm 3 and code for our
experiments is available at here2.
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