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Abstract

Locally Differentially Private (LDP) Reports are
commonly used for collection of statistics and ma-
chine learning in the federated setting. In many
cases the best known LDP algorithms require
sending prohibitively large messages from the
client device to the server (such as when construct-
ing histograms over a large domain or learning a
high-dimensional model). Here we demonstrate
a general approach that, under standard crypto-
graphic assumptions, compresses every efficient
LDP algorithm with negligible loss in privacy
and utility guarantees. The practical implication
of our result is that in typical applications ev-
ery message can be compressed to the size of the
server’s pseudo-random generator seed. From this
general approach we derive low-communication
algorithms for the problems of frequency estima-
tion and high-dimensional mean estimation. Our
algorithms are simpler and more accurate than
existing low-communication LDP algorithms for
these well-studied problems.

1 Introduction
We consider the problem of collecting statistics and machine
learning in the setting where data is held on a large number
of user devices. The data held on devices in this federated
setting is often sensitive and thus needs to be analyzed with
privacy preserving techniques. One of the key approaches
to private federated data analysis relies on the use of lo-
cally differentially private (LDP) algorithms to ensure that
the report sent by a user’s device reveals little information
about that user’s data. Specifically, a randomized algorithm
R : X → Y is an ε-DP local randomizer if for every pos-
sible output y ∈ Y , and any two possible values of user
data x1, x2 ∈ X , Pr[R(x1) = y] and Pr[R(x2) = y] are
within a factor of eε (where the probability is taken solely
with respect to the randomness of the algorithmR).
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The concept of a local randomizer dates back to the work
of Warner (1965) where it was used to encourage truthful-
ness in surveys. In the context of modern data analysis it
was introduced by Evfimievski et al. (2003) and then re-
lated to differential privacy in the seminal work of Dwork
et al. (2006). Local randomizers are also used for collec-
tion of statistics and machine learning in several industrial
applications (Erlingsson et al., 2014; Apple’s Differential
Privacy Team, 2017; Ding et al., 2017). Practical applica-
tions such as building a histogram over a large domain or
training a model with millions of parameters (McMahan
et al., 2018), require applying the randomizer to high dimen-
sional data. Many of the standard and most accurate ways
to randomize such data result in reports whose size scales
linearly with the dimension of the problem. Communication
from the user devices is often significantly constrained in
practical applications. This limits the scope of problems in
which we can achieve the best known utility-privacy trade-
off and motivates significant research interest in designing
communication-efficient LDP algorithms.

1.1 Our contribution

In this work, we explore practical and theoretical aspects
of designing low-communication LDP mechanisms. It has
long been noted that, by design, the output of an LDP ran-
domizer contains a limited amount of information about the
input data. Thus it should be possible to reduce the com-
munication down to the information content about the data
using standard tools from information theory. We will refer
to such reduction in communication as compression of the
LDP randomizer. To avoid confusion, we note that the goal
is not to compress the content of the original messages of
the randomizer but rather to find a different randomizer that
communicates the same information about the data point
using shorter messages.

Unfortunately, standard information-theoretic approaches
to such compression do not necessarily preserve privacy.
Bassily & Smith (2015) and Bun et al. (2019) describe gen-
eral privacy preserving techniques for compressing LDP
protocols. Unfortunately, their techniques result either in
the loss of accuracy (as only a fraction of the user popula-
tion ends up contributing a report) or an increase in ε by
a constant factor > 2. Increase by such a constant factor
is likely to make the algorithm impractical in the ε > 1
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regime since in some problems accuracy scales as e−ε/2

when ε > 1. The ε > 1 regime has become particularly
important since the introduction of the privacy amplifica-
tion techniques based on anonymization and shuffling of
LDP reports (Bittau et al., 2017; Erlingsson et al., 2019;
Cheu et al., 2019; Balle et al., 2019; Feldman et al., 2020).
Central privacy guarantees resulting from amplification by
shuffling scale as e−ε/2 making preservation of ε crucial in
this setting.

We propose a general approach to compressing an arbitrary
local randomizer that preserves both the privacy and ac-
curacy (or utility) of the randomizer. At a high level it is
based on replacing the true random bits used to generate
the output with pseudo-random bits that can be described
using a short seed. For a randomizer R : X → Y , we do
this by first picking a fixed reference distribution ρ that is
data-independent and ε-close (in the standard sense of dif-
ferential privacy) to the output distributions of R for all
possible inputs x ∈ X . Existence of such reference distri-
bution is exactly the definition of the deletion version of
local differential privacy (Erlingsson et al., 2020) and thus
our results are easiest to describe in this model. A sample
from ρ typically requires many random bits to generate but,
by replacing random bits with pseudo-randomly generated
ones, we will obtain a distribution over values in Y that
can be described using a short seed. In addition, under
standard cryptographic assumptions, a random sample from
this distribution is computationally indistinguishable from ρ.
Given an input x we can now emulateR(x) by performing
rejection sampling relative to pseudo-random samples from
ρ. A special case of this idea appears in the work of Mishra
& Sandler (2006) who apply it the problem of estimating
sets of counting queries.

A crucial question is whether this scheme satisfies ε dif-
ferential privacy. We show that the answer is yes if the
pseudo-random generator (PRG) used is strong enough to
fool a certain test that looks at the ratio of the output density
ofR(x) to ρ. This ratio is typically efficiently computable
whenever the randomizer itself is efficiently computable.
Thus under standard cryptographic assumptions, the privacy
is preserved (up to a negligible loss). Similarly, when the
processing of the reports on the server side is done by an
efficient algorithm the utility will be preserved. See Theo-
rem 3.4 for a formal statement. Asymptotically, this result
implies that if we assume that there exists an exponentially
strong PRG, then the number of bits that needs to be com-
municated is logarithmic in the running time of the rejection
sampler we defined. An immediate practical implication
of this result is that in most applications the output of the
local randomizer can be compressed to the size of the seed
of the system (PRG) without any observable effect on utility
or privacy. This size is typically less than 1024 bits. We
remark that when implementing a randomizer in practice,

true randomness is replaced with pseudo-randomly gener-
ated bits with an (implicit) assumption that this does not
affect privacy or utility guarantees. Thus the assumptions
underlying our analysis are similar to those that are already
present in practical implementations of differentially private
algorithms.

We demonstrate that this approach also extends to the (more
common) replacement notion of local differential privacy
and also to (ε, δ)-DP randomizers. In the latter case the
randomizer needs to be modified to allow subsampling via
simple truncation. This step adds δ to both privacy and
utility guarantees of the algorithm. For replacement DP this
version also requires a more delicate analysis and a stronger
set of tests for the PRG. A detailed description of these
results is given in Section 3.

An important property of our analysis is that we do not need
to follow the general recipe for specific randomizers. Firstly,
for some randomizers it is possible to directly sample from
the desired distribution over seeds instead of using rejection
sampling that requires eε trials (in expectation). In addition,
it may be possible to ensure that privacy and utility are
preserved without appealing to general cryptographically
secure PRGs and associated computational assumptions. In
particular, one can leverage a variety of sophisticated results
from complexity theory, such as k-wise independent PRGs
and PRGs for bounded-space computation (Nisan, 1992), to
achieve unconditional and more efficient compression.

We apply this fine-grained approach to the problem of fre-
quency estimation over a discrete domain. In this problem
the domain X = [k] and the goal is to estimate the fre-
quency of each element j ∈ [k] in the dataset. This is one
of the central and most well-studied problems in private
(federated) data analysis. However, for ε > 1, existing
approaches either require communication on the order of
k bits, or do not achieve the best known accuracy in some
important regimes (see Sec. 1.2 for an overview).

The best accuracy is achieved for this problem is achieved
by the (asymmetric) RAPPOR algorithm (Erlingsson et al.,
2014) (which has two versions depending on whether it
is used with replacement or deletion privacy) and also
by the closely related Subset Selection algorithm (Wang
et al., 2016; Ye & Barg, 2018). We observe that a pairwise-
independent PRG suffices to fool both the privacy and utility
conditions for this randomizer. Thus we can compress RAP-
POR to O(log k + ε) bits losslessly and unconditionally us-
ing a standard construction of a pairwise-independent PRG
(Luby et al., 2006). The structure of the PRG also allows us
to sample the seeds efficiently without rejection sampling.
The details of this construction appear in Section 3.

As an additional application of our techniques we consider
the problem of estimating the mean of d-dimensional vectors
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in `2-norm. This problem is a key part of various machine
learning algorithms, most notably stochastic gradient de-
scent. In the ε > 1 regime, the first low-communication
(specifically, dεe log2 d bits) and asymptotically optimal al-
gorithm was recently given by Chen et al. (2020). It is
however less accurate empirically and more involved than
the algorithm of Bhowmick et al. (2019) that communicates
a d dimensional vector. Using our general result we can
losslessly compress the algorithm from (Bhowmick et al.,
2019) to O(log d+ ε) bits. One limitation of this approach
is the O(eεd) complexity of rejection sampling in this case
which can be prohibitive for large ε. However we show a
simple reduction of the ε > 1 case to ε < 1 which increases
communication but a factor of dεe. This general reduction
allows us to reduce the running time to O(dεed) and also
use a simple and low-communication randomizer that is
(asymptotically) optimal only when ε < 1 (Duchi et al.,
2018; Erlingsson et al., 2020). The details of these results
and empirical comparisons appear in Section 5.

1.2 Related Work

As mentioned, the closest in spirit to our work is the use of
rejection sampling in the work of Mishra & Sandler (2006).
Their analysis can be seen as a special case of ours but
they only prove that the resulting algorithm satisfies 2ε-DP.
Rejection sampling on a sample from the reference distribu-
tion is also used in existing compression schemes (Bassily
& Smith, 2015; Bun et al., 2019) as well as earlier work
on private compression in the two-party setting (McGregor
et al., 2010). These approaches assume that the sample is
shared between the client and the server, namely, it requires
shared randomness. Shared randomness is incompatible
with the setting where the report is anonymized and is not
directly linked to the user that generated it. As pointed out
in (Bassily & Smith, 2015), a simple way to overcome this
problem is to include a seed to a PRG in the output of the
randomizer and have the server generate the same sample
from the reference distribution as the client. While superfi-
cially this approach seems similar to ours, its analysis and
properties are different. For example, in our setting only the
seed for a single sample that passes rejection sampling is
revealed to the server, whereas in (Bassily & Smith, 2015;
Bun et al., 2019) all samples from the reference distribution
are known to the server and privacy analysis does not de-
pend on the strength of the PRG. More importantly, unlike
previous approaches our compression scheme is essentially
lossless (although at the cost of requiring assumptions for
the privacy analysis).

Computational Differential Privacy (CDP) (Mironov et al.,
2009) is a notion of privacy that defends against computa-
tionally bounded adversaries. Our compression algorithm
can be easily shown to satisfy the strongest SIM-CDP def-
inition. At the same time, our privacy bounds also hold

for computationally unbounded adversaries as long as the
LDP algorithm itself does not lead to a distinguisher. This
distinction allows us to remove computational assumptions
for specific LDP randomizers.

For both deletion and replacement privacy the best results
for frequency estimation are achieved by variants of the
RAPPOR algorithm (Erlingsson et al., 2014) and also by
a closely-related Subset Selection algorithm (Wang et al.,
2016; Ye & Barg, 2018). Unfortunately, both RAPPOR
and Subset Selection have very high communication cost
of ≈ kH(1/(eε + 1)), where H is the binary entropy func-
tion. This has led to numerous and still ongoing efforts to
design low-communication protocols for the problem (Hsu
et al., 2012; Erlingsson et al., 2014; Bassily & Smith, 2015;
Kairouz et al., 2016; Wang et al., 2016; 2017; Ye & Barg,
2018; Acharya et al., 2019; Acharya & Sun, 2019; Bun et al.,
2019; Bassily et al., 2020; Chen et al., 2020).

A number of low-communication algorithms that achieve
asymptotically optimal bounds in the ε < 1 regime are
known (Bassily & Smith, 2015; Wang et al., 2017; Acharya
et al., 2019; Acharya & Sun, 2019; Bassily et al., 2020;
Chen et al., 2020). The first low-communication algorithm
that achieves asymptotically optimal bounds in the ε > 1
regime is given in (Wang et al., 2017). It communicates
O(ε) bits and relies on shared randomness. However, it
matches the bounds achieved by RAPPOR only when eε is
an integer. Acharya & Sun (2019) and Chen et al. (2020)
give closely related approaches that are asymptotically opti-
mal and use log2 k bits of communication (without shared
randomness). However both the theoretical bounds and
empirical results for these algorithms are noticeably worse
than those of (asymmetric) RAPPOR and Subset Selection
(e.g. plots in (Chen et al., 2020) show that these algorithms
are ≈15-20% worse for ε = 5 than Subset Selection1). The
constructions in (Acharya & Sun, 2019; Chen et al., 2020)
and their analysis are also substantially more involved than
RAPPOR.

A closely related problem is finding “heavy hitters”, namely
all elements j ∈ [k] with counts higher than some given
threshold. In this problem the goal is to avoid linear runtime
dependence on k that would result from doing frequency
estimation and then checking all the estimates. This problem
is typically solved using a “frequency oracle” which is an
algorithm that for a given j ∈ [k] returns an estimate of the
number of j’s held by users (typically without computing
the entire histogram) (Bassily & Smith, 2015; Bassily et al.,
2020; Bun et al., 2019). Frequency estimation is also closely

1The error of asymmetric RAPPOR (namely 0 and 1 are flipped
with different probabilities) is essentially identical to that of the
Subset Selection randomizer. Comparisons with RAPPOR often
use the symmetric RAPPOR which is substantially worse than
the asymmetric version for the replacement notion of differential
privacy. See Section 4 for details.
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related to the discrete distribution estimation problem in
which inputs are sampled from some distribution over [k]
and the goal is to estimate the distribution (Ye & Barg, 2018;
Acharya et al., 2019; Acharya & Sun, 2019). Indeed, bounds
for frequency estimation can be translated directly to bounds
on distribution estimation by adding the sampling error.

Mean estimation has attracted a lot of attention in recent
years as it is an important subroutine in differentially pri-
vate (stochastic) gradient descent algorithms (Bassily et al.,
2014; Abadi et al., 2016) used in private federated learn-
ing (Kairouz et al., 2019). Indeed, private federated opti-
mization algorithms aggregate updates to the model coming
from each client in a batch of clients by getting a private esti-
mate of the average update. When the models are large, the
dimensionality of the update d leads to significant communi-
cation cost. Thus reducing the communication cost of mean
estimation has been studied in many works with (Agarwal
et al., 2018; Girgis et al., 2020; Chen et al., 2020; Gandikota
et al., 2019) or without privacy (Alistarh et al., 2017; Faghri
et al., 2020; Suresh et al., 2017; Gandikota et al., 2019;
Mayekar & Tyagi, 2020).

In the absence of communication constraints and ε < d,
the optimal ε-LDP protocols for this problem achieve an
expected squared `2 error of Θ( d

nmin(ε,ε2) ) (Duchi et al.,
2018; Duchi & Rogers, 2019). When ε ≤ 1, the randomizer
of Duchi et al. (2018) also achieves the optimal O( d

nε2 )
bound. Recent work of Erlingsson et al. (2020) gives a
low-communication version of this algorithm. Building
on the approach in (Duchi et al., 2018), Bhowmick et al.
(2019) describe the PrivUnit algorithm that achieves the
asymptotically optimal accuracy also when ε > 1 but has
communication cost of Ω(d).

An alternative approach in the ε < 1 regime was given
by Feldman et al. (2015) who show that the mean estimation
problem can be solved by having each client answer a single
counting query. This approach is based on Kashin’s repre-
sentation that maps vectors in the unit d-dimensional ball
to vectors in [−1, 1]O(d) (Lyubarskii & Vershynin, 2010).
Their work does not explicitly discuss the communication
cost and assumes that the server can pick the randomizer
used at each client. However it is easy to see that a single bit
suffices to answer a counting query and therefore an equiv-
alent randomizer can be implemented using dlog2 de + 1
bits of communication (or just 1 bit if shared randomness
is used). Chen et al. (2020) give a randomizer based on
the same idea that also achieves the asymptotically opti-
mal bound in the d > ε > 1 regime. Their approach uses
dεe log2 d bits of communication. Computing Kashin’s rep-
resentation is more involved than algorithms in (Duchi et al.,
2018; Bhowmick et al., 2019). In addition, as we demon-
strate empirically2, the variance of the estimate resulting

2Plots in (Chen et al., 2020) also compare their algorithm with

from this approach is nearly a factor of 5× larger for typical
parameters of interest.

2 Preliminaries
For a positive integer k we denote [k] = {1, 2 . . . , k}. For
an arbitrary set S we use x ∼ S to mean that x is chosen
randomly and uniformly from S.

Differential privacy (DP) is a measure of stability of a ran-
domized algorithm. It bounds the change in the distribution
on the outputs when one of the inputs is either removed or
replaced with an arbitrary other element. The most common
way to measure the change in the output distribution is via
approximate infinity divergence. More formally, we say that
two probability distributions µ and ν over (finite) domain
Y are (ε, δ)-close if for all E ⊂ Y ,

e−ε(µ(E)− δ) ≤ ν(E) ≤ eεµ(E) + δ.

This condition is equivalent to
∑
y∈Y |µ(y)− eεν(y)|+ ≤

δ and
∑
y∈Y |ν(y) − eεµ(y)|+ ≤ δ, where |a|+ :=

max{a, 0} (Dwork & Roth, 2014). We also say that two
random variables P and Q are (ε, δ)-close if their probabil-
ity distributions are (ε, δ)-close. We abbreviate (ε, 0)-close
to ε-close.

Algorithms in the local model of differential privacy and fed-
erated data analysis rely on the notion of local randomizer.

Definition 2.1. An algorithm R : X → Y is an (ε, δ)-DP
local randomizer if for all pairs x, x′ ∈ D,R(x) andR(x′)
are (ε, δ)-close.

We will also use the add/delete variant of differential privacy
which was defined for local randomizers in (Erlingsson et al.,
2020).

Definition 2.2. An algorithm R : X → Y is a deletion
(ε, δ)-DP local randomizer if there exists a reference distri-
bution ρ such that for all data points x ∈ X , R(x) and ρ
are (ε, δ)-close.

It is easy to see that a replacement (ε, δ)-DP algorithm
is also a deletion (ε, δ)-DP algorithm, and that a deletion
(ε, δ)-DP algorithm is also a replacement (2ε, 2δ)-DP algo-
rithm.

Fooling and Pseudorandomness: The notion of pseudo-
randomness relies on the inability to distinguish between the
output of the generator and true randomness using a family
of tests, where a test is a boolean function (or algorithm).

PrivUnit yet as their code at (Kas) shows and was confirmed by
the authors, they implemented the algorithm from (Duchi et al.,
2018) instead of PrivUnit which is much worse than PrivUnit
for ε = 5. The authors also confirmed that parameters stated in
their figures are incorrect so cannot be directly compared to our
results.
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Definition 2.3. Let D be a family of boolean functions over
some domain Y . We say that two random variables P and
Q over Y are (D, β)-indistinguishable if for all D ∈ D,

|Pr[D(P ) = 1]−Pr[D(Q) = 1]| ≤ β.

We say that P and Q are (T, β)-computationally indistin-
guishable if P and Q are (D, β)-indistinguishable with D
being all tests that can be computed in time T (for some
fixed computational model such as boolean circuits).

We now give a definition of a pseudo-random number gen-
erator.

Definition 2.4 (Pseudo-random generator). We say that
an algorithm G : {0, 1}n → {0, 1}m where m � n, β-
fools a family of tests D if G(s) for s ∼ {0, 1}n is (D, β)-
indistinguishable from r for r ∼ {0, 1}m. We refer to such
an algorithm as (D, β)-PRG and also use (T, β)-PRG to
refer to G that β-fools all tests running in time T .

Standard cryptographic assumptions (namely that one-way
functions exist) imply that for any m and T that are polyno-
mial in n there exists an efficiently computable (β, T )-PRG
G, for negligible β (namely, β = 1/nω(1)). For a number of
standard approaches to cryptographically-secure PRGs, no
tests are known that can distinguish the output of the PRG
from true randomness with β = 2−o(n) in time T = 2o(n).
For example finding such a test for a PRG based on SHA-3
would be a major breakthrough. To make the assumption
that such a test does not exist we refer to a (β, T )-PRG
for β = 2−Ω(n) and T = 2Ω(n) as an exponentially strong
PRG.

3 Local Pseudo-Randomizers
In this section we describe a general way to compress LDP
randomizers that relies on the complexity of the randomizer
and subsequent processing. We will first describe the result
for deletion ε-DP and then give the versions for replacement
DP and (ε, δ)-DP.

For the purpose of this result we first need to quantify how
much randomness a local randomizer needs. We will say
that a randomizer R : X → Y is t-samplable if there ex-
ists a deterministic algorithm R∅ : {0, 1}t → Y such that
for r chosen randomly and uniformly from {0, 1}t, R∅(r)
is distributed according to the reference distribution of R
(denoted by ρ). Typically, for efficiently computable ran-
domizers, t is polynomial in the size of the output log(|Y |)
and ε. Note that every value y in the support of ρ is equal to
R∅(r) for some r. Thus every element that can be output
byR can be represented by some r ∈ {0, 1}t.

Our goal is to compress the communication by restricting the
output from all those that can be represented by r ∈ {0, 1}t
to all those values in Y that can be represented by a t-bit
string generated from a seed of length ` � t using some

PRG G : {0, 1}` → {0, 1}t. We could then send the seed
to the server and let the server first generate the full t-bit
string using G and then run R∅ on it. The challenge is to
do this efficiently while preserving the privacy and utility
guarantees ofR.

Our approach is based on the fact that we can easily sample
from the pseudo-random version of the reference distribu-
tion ρ by outputting R∅(G(s)) for a random and uniform
seed s. This leads to a natural way to define a distribution
over seeds on a input x: a seed s is output with probability
that is proportional to Pr[R(x)=R∅(G(s))]

Prr∼{0,1}t [R∅(r)=R∅(G(s))] . Specifi-
cally we define the desired randomizer as follows.

Definition 3.1. For a t-samplable deletion DP local ran-
domizerR : X → Y and a function G : {0, 1}` → {0, 1}t
let R[G] denote the local randomizer that given x ∈
X , outputs s ∈ {0, 1}t with probability proportional to

Pr[R(x)=R∅(G(s))]
Prr∼{0,1}t [R∅(r)=R∅(G(s))] .

For some combinations of a randomizerR and PRGG there
is an efficient way to implementR[G] directly (as we show
in one of our applications). In the general case, when such
algorithm may not exist we can sample from R[G](x) by
applying rejection sampling to uniformly generated seeds.
A special case of this approach is implicit in the work of
Mishra & Sandler (2006) (albeit with a weaker analysis).
Rejection sampling only requires an efficient algorithm for
computing the ratio of densities above to sufficiently high
accuracy. We describe the resulting algorithm below.

Algorithm 1R[G, γ]: PRG compression ofR
Input: x ∈ X , ε, γ > 0; seeded PRG G : {0, 1}` →
{0, 1}t; t-samplable ε-DP randomizerR.

1: J = eε ln(1/γ)
2: for j = 1, . . . , J do
3: Sample a random seed s ∈ {0, 1}`.
4: y = R∅(G(s))

5: Sample b from Bernoulli
(

Pr[R(x)=y]
eε Prr∼{0,1}t [R∅(r)=y]

)
6: if b == 1 then
7: BREAK
8: end if
9: end for

10: Send s

Naturally, the output of this randomizer can be decom-
pressed by applying R∅ ◦ G to it. It is also clear that the
communication cost of the algorithm is ` bits.

Next we describe the general condition on the PRG G that
suffices for ensuring that the algorithm that outputs a random
seed with correct probability is differentially private.

Lemma 3.2. For a t-samplable deletion ε-DP local random-
izer R : X → Y and G : {0, 1}` → {0, 1}t, let D denote
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the following family of tests which take r′ ∈ {0, 1}t as an
input:ind

 Pr[R(x) = R∅(r′)]
Pr

r∼{0,1}t
[R∅(r) = R∅(r′)]

≥ θ

 ∣∣∣∣∣∣ x ∈ X,θ ∈ [0, eε]

 ,

where ind denotes the {0, 1} indicator function of a con-
dition. If G β-fools D for β < 1/(2eε) then R[G] is a
deletion (ε+ 2eεβ)-DP local randomizer. Furthermore, for
every γ > 0, R[G, γ] is a deletion (ε + 2eεβ)-DP local
randomizer.

Unlike the preservation of privacy, conditions on the PRG
under which we can ensure that the utility ofR is preserved
depend on the application. Here we describe a general
result that relies only on the efficiency of the randomizer to
establish computational indistinguishability of the output of
our compressed randomizer from the output of the original
one.
Lemma 3.3. Let R be a deletion ε-DP t-samplable lo-
cal randomizer, let G : {0, 1}` → {0, 1}t be (T, β)-PRG.
Let T (R, G, γ) denote the running time of R[G, γ] and
assume that T > T (R, G, γ). Then for all x ∈ X ,
R∅(G(R[G, γ](x))) is (T ′, β′)-computationally indistin-
guishable from R(x), where β′ = γ + eε ln(1/γ)β and
T ′ = T − T (R, G, γ).

As a direct corollary of Lemmas 3.2 and 3.3 we obtain a
general way to compress efficient LDP randomizers.
Theorem 3.4. Let R be a deletion ε-DP t-samplable lo-
cal randomizer, let G : {0, 1}` → {0, 1}t be (T, β)-PRG
for β < 1/(2eε). Let T (R, G, γ) be the running time of
R[G, γ] and assume that T > T (R, G, γ). Then R[G, γ]
is a deletion (ε + 2eεβ)-DP local randomizer and for all
x ∈ X ,R∅(G(R[G, γ](x))) is (T ′, β′)-computationally in-
distinguishable from R(x), where β′ = γ + eε ln(1/γ)β
and T ′ = T − T (R, G, γ).

By plugging an exponentially strong PRG G into Theo-
rem 3.4 we obtain that if an LDP protocol based onR runs
in time T then its communication can be compressed to
O(log(T + T (R, G, γ)) with negligible effect on privacy
and utility. We also remark that even without making any
assumptions on G,R[G, γ] satisfies 2ε-DP. In other words,
failure of the PRG does not lead to a significant privacy
violation, beyond the degradation of the privacy parameter
ε by a factor of two.
Lemma 3.5. Let R be a deletion ε-DP t-samplable local
randomizer, let G : {0, 1}` → {0, 1}t be an arbitrary func-
tion. ThenR[G, γ] is a deletion 2ε-DP local randomizer.

Our approach extends in a natural way to (ε, δ)-DP as well
as to the replacement model of differential privacy. We defer
the proof of the following to SM.

Theorem 3.6. LetR be a deletion (replacement) (ε, δ)-DP
t-samplable local randomizer, let G : {0, 1}` → {0, 1}t be
(T, β)-PRG for β < 1/(2eε). Let T (R, G, γ) is the running
time of R[G, γ] and assume that T > T (R, G, γ). Then
R[G, γ] is a deletion (resp. replacement) (ε+2eεβ, eO(ε)δ)-
DP local randomizer.

4 Frequency Estimation
In this section we apply our approach to the problem of
frequency estimation over a discrete domain. In this prob-
lem on domain X = [k], the goal is to estimate the fre-
quency of each element j ∈ [k] in the dataset. Namely,
for S = (x1, . . . , xn) ∈ Xn we let c(S) ∈ {0, . . . , n}k
be the vector of the counts of each of the elements in S:
c(S)j = |{i | xi = j}|. In the frequency estimation prob-
lem the goal is to design a local randomizer and a decod-
ing/aggregation algorithm that outputs a vector c̃ that is
close to c(S). Commonly studied metrics are (the expected)
`∞, `1 and `2 norms of c̃ − c(S). In most regimes of in-
terest, n is large enough and all these errors are essentially
determined by the variance of the estimate of each count
produced by the randomizer and therefore the choice of the
metric does not affect the choice of the algorithm.

The randomizer used in the RAPPOR algorithm (Erlingsson
et al., 2014) is defined by two parameters α0 and α1. The
algorithm first converts the input j to the indicator vector of
j (also referred to as one-hot encoding). It then randomizes
each bit in this encoding: if the bit is 0 then 1 is output with
probability α0 (and 0 with probability 1− α0) and if the bit
is 1 then 1 is output with probability α1.

For deletion privacy the optimal error is achieved by a sym-
metric setting α0 = 1/(eε + 1) and α1 = eε/(eε + 1)
(Erlingsson et al., 2020). This makes the algorithm equiva-
lent to applying the standard binary randomized response
to each bit. A simple analysis shows that this results in the
standard deviation of each count being

√
neε/2

eε−1 (Erlingsson
et al., 2014; Wang et al., 2017). For replacement privacy the
optimal error is achieved by an asymmetric version in which
α0 = 1/(eε + 1) but α1 = 1/2. The resulting standard
deviation for each count is dominated by 2

√
neε/2

eε−1 (Wang
et al., 2017). (We remark that several works analyze the
symmetric RAPPOR algorithm in the replacement privacy.
This requires setting α0 = (1− α1) = 1/(eε/2 + 1) result-
ing in a substantially worse algorithm than the asymmetric
version).

Note that the resulting encoding has ≈ n/(eε + 1) ones.
A closely-related Subset Selection algorithm (Wang et al.,
2016; Ye & Barg, 2018) maps inputs to bit vectors of length
k with exactly d≈ n/(eε + 1)e ones (that can be thought of
as a subset of [k]). An input j is mapped with probability ≈
1/2 to a random subset that contains j and with probability
≈ 1/2 to a random subset that does not. This results in
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essentially the same marginal distributions over individual
bits and variance bounds as asymmetric RAPPOR.

4.1 Pairwise-independent RAPPOR

While we can use our general result to compress communi-
cation in RAPPOR, in this section we exploit the specific
structure of the randomizer. Specifically, the tests needed
for privacy are fooled if the marginals of the PRG are cor-
rect. Moreover the accuracy is preserved as long as the
bits are randomized in a pairwise independent way. Thus
we can simply use a standard derandomization technique
for pairwise independent random variables. Specifically, to
obtain a Bernoulli random variable with bias α0 we will use
a finite field X = Fp of size p such that α0p is an integer
(or, in general, sufficiently close to an integer) and p is a
prime larger than k. This allows us to treat inputs in [k] as
non-zero elements of Fp. We will associate all elements of
the field that are smaller (in the regular order over integers)
than α0p with 1 and the rest with 0. We denote this indica-
tor function of the event z < α0p by bool(z). Now for a
randomly and uniformly chosen element z ∈ Fp, we have
that bool(z) is distributed as a Bernoulli random variable
with bias α0.

As mentioned we will, associate each index j ∈ [k] with the
element j in Fp. We can describe an affine function φ over
Fp using its 2 coefficients: φ0 and φ1 and for z ∈ Fp we de-
fine φ(z) = φ0 +zφ1, where addition and multiplication are
in the field Fp. Each such function encodes a vector in Fkp as
φ([k]) := φ(1), φ(2), . . . , φ(k). Let Φ := {φ | φ ∈ F2

p} be
the family of all such functions. For a randomly chosen func-
tion from this family the values of the function on two dis-
tinct non-zero values are uniformly distributed and pairwise-
independent: for any j1 6= j2 ∈ [k] and a1, a2 ∈ Fp we
have that

Pr
φ∼Φ

[φ(j1) = a1 and φ(j2) = a2] =

Pr
φ∼Φ

[φ(j1) = a1] · Pr
φ∼Φ

[φ(j2) = a2] =
1

p2
.

In particular, if we use the encoding of φ as a boolean vector

bool(φ[k]) := bool(φ(1)), bool(φ(2)), . . . , bool(φ(k))

then we have that for φ ∼ Φ and any j1 6= j2 ∈ [k],
bool(φ(j1)) and bool(φ(j2)) are independent Bernoulli
random variables with bias α0.

Finally, for every index j ∈ [k] and bit b ∈ {0, 1} we denote
the set of functions φ whose encoding has bit b in position j
by Φj,b:

Φj,b := {φ ∈ Φ | bool(φ(j)) = b}. (1)

We can now describe the randomizer, which we refer to as
Pairwise-Independent (PI) RAPPOR for general α1 > α0.

Algorithm 2 PI-RAPPOR randomizer
Input: An index j ∈ [k], 0 < α0 < α1 < 1, prime

p ≥ k + 1 s.t. α0p ∈ N
1: Sample b from Bernoulli(α1)
2: Sample randomly φ from Φj,b defined in eq. (1)
3: Send φ

The server side of the frequency estimation with pairwise-
independent RAPPOR consists of a decoding step that con-
verts φ to bool(φ[k]) and then the same debiasing and ag-
gregation as for the standard RAPPOR. We describe it as
a frequency oracle to emphasize that each count can be
computed individually.

Algorithm 3 Server-side frequency for PI-RAPPOR
Input: 0 < α0 < α1 < 1, k, index j ∈ [k] and prime

p > k. Reports φ1, . . . , φn from n users.
1: sum = 0
2: for i ∈ [n] do
3: sum+ = bool(φi(j))
4: end for
5: c̃j = sum−α0n

α1−α0

6: Return c̃j

We start by establishing several general properties of PI-
RAPPOR. First we establish that the privacy guarantees for
PI-RAPPOR are identical to those of RAPPOR.

Lemma 4.1. PI-RAPPOR randomizer (Alg. 2) is deletion
max

{
α1

α0
, 1−α0

1−α1

}
-DP and replacement α1(1−α0)

α0(1−α1) -DP.

Second we establish that the utility guarantees of PI-
RAPPOR are identical to those of RAPPOR. This follows
directly from the fact that the utility is determined by the
variance of the estimate of each individual count in each
user’s contribution. The variance of the estimate of c(S)j
is a sum of c(S)j variances for randomization of 1 and
n − c(S)j variances of randomization of 0. These vari-
ances are identical for RAPPOR and PI-RAPPOR leading
to identical exact bounds.

Lemma 4.2. For any dataset S ∈ [k]n, the estimate c̃
computed by PI-RAPPOR algorithm (Algs. 2,3) satisfies
E[c̃] = c(S), and for all j ∈ [k],

Var[c̃j ] = c(S)j
1− α0 − α1

α1 − α0
+ n

α0(1− α0)

(α1 − α0)2

For the symmetric case α0 = 1 − α1 this simplifies to
Var[c̃j ] = nα0(1−α0)

(1−2α0)2 . In addition, the expected `2 squared
error is

E
[
‖c̃− c(S)‖22

]
= n

1− α0 − α1

α1 − α0
+ nk

α0(1− α0)

(α1 − α0)2
.
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Plugging α0 = 1/(eε + 1) and α1 = 1/2 for replacement
privacy and α0 = 1− α1 = 1/(eε + 1) for deletion privacy
gives the following utility bounds for ε-DP versions of PI-
RAPPOR.

Corollary 4.3. For any ε > 0 and a setting of p that ensures
that p/(eε + 1) ∈ N we have that PI-RAPPOR for α0 =
1− α1 = 1/(eε + 1) satisfies deletion ε-DP and for every
dataset S ∈ [k]n, the estimate c̃ computed by PI-RAPPOR
satisfies: E[c̃] = c(S), for all j ∈ [k], Var[c̃j ] = n eε

(eε−1)2

and E
[
‖c̃− c(S)‖22

]
= nk eε

(eε−1)2 .

Corollary 4.4. For any ε > 0 and a setting of p that ensures
that p/(eε + 1) ∈ N we have that PI-RAPPOR for α0 =
1/(eε + 1) and α1 = 1/2 is replacement ε-DP and for
every dataset S ∈ [k]n, the estimate c̃ computed by PI-
RAPPOR satisfies: E[c̃] = c(S), for all j ∈ [k], Var[c̃j ] =
c(S)j + n 4eε

(eε−1)2 and E
[
‖c̃− c(S)‖22

]
= n+ nk 4eε

(eε−1)2 .

Finally, we analyze the computational and communication
cost of PI-RAPPOR. Clearly, the communication cost of
PI-RAPPOR is 2dlog2 pe bits. In addition, it is not hard to
see that all computations performed by PI-RAPPOR can be
implemented in essentially the same time as single multipli-
cation in Fp. The analysis of the running time of decoding
and aggregation is similarly straightforward since decoding
every bit of message takes time that is dominated by the
time of a single multiplication in Fp.

We defer the details to SM. As these complexities depend on
log pwe also need to discuss the choice of p. It is not hard to
show (see SM for details) that p ≥ c1 max{k, eε, 1/ε} for
a sufficiently large constant c1 ensures that PI-RAPPOR
will have essentially the same guarantees as RAPPOR.
This means that the communication cost of PI-RAPPOR
is 2 log2(max{k, eε, 1/ε}) + O(1). Also we are typically
interested in compression when k � max{eε, 1/ε} and in
such case the communication cost is 2 log2(k) +O(1).

5 Mean Estimation
In this section, we consider the problem of mean estima-
tion in `2 norm, for `2-norm bounded vectors. Formally,
each client has a vector xi ∈ Bd, where Bd := {x ∈
Rd | ‖x‖2 ≤ 1}. Our goal is to compute the mean of these
vectors privately, and we measure our error in the `2 norm.
In the literature this problem is often studied in the statistical
setting where xi’s are sampled i.i.d. from some distribution
supported on Bd and the goal is to estimate the mean of this
distribution. In this setting, the expected squared `2 distance
between the mean of the distribution and the mean of the
samples is at most 1/n and is dominated by the privacy error
in the regime that we are interested in (ε < d).

In the absence of communication constraints and ε < d,
the optimal ε-LDP protocols for this problem achieve an ex-
pected squared `2 error of Θ( d

nmin(ε,ε2) ) (Duchi et al., 2018;

Duchi & Rogers, 2019). Here and in the rest of the section
we focus on the replacement DP both for consistency with
existing work and since for this problem the dependence
on ε is linear (when 1 < ε < d) and thus the difference
between replacement and deletion is less important.

If one is willing to relax to (ε, δ) or concentrated differ-
ential privacy (Dwork & Rothblum, 2016; Bun & Steinke,
2016; Mironov, 2017) guarantees, then standard Gaussian
noise addition achieves the asymptotically optimal bound.
When ε ≤ 1, the randomizer of Duchi et al. (2018) (which
we refer to as PrivHS) also achieves the optimal O( d

nε2 )
bound. Recent work of Erlingsson et al. (2020) gives a
low-communication version of PrivHS. Specifically, in the
context of federated optimization they show that PrivHS
is equivalent to sending a single bit and a randomly and
uniformly generated unit vector. This vector can be sent
using a seed to a PRG. Bhowmick et al. (2019) describe the
PrivUnit algorithm that achieves the optimal bound also
when ε > 1. Unfortunately, PrivUnit has high communi-
cation cost of Ω(d).

By applying Theorem 3.4 to PrivUnit or Gaussian noise
addition, we can immediately obtain a low communication
algorithm with negligible effect on privacy and utility. This
gives us an algorithm that communicates a single seed, and
has the asymptotically optimal privacy utility trade-off. Im-
plementing PrivUnit requires sampling uniformly from a
spherical cap {v | ‖v‖2 = 1, 〈x̃,v〉 ≥ α} for α ≈

√
ε/d.

Using standard techniques this can be done with high ac-
curacy using Õ(d) random bits and Õ(d) time. Further,
for every x the resulting densities can be computed easily
given the surface area of the cap. Overall rejection sampling
can be computed in Õ(d) time. Thus this approach to com-
pression requires time Õ(eεd). This implies that given an
exponentially strong PRG G, we can compress PrivUnit
to O(log(dn) + ε) bits with negligible effects on utility and
privacy. In most settings of interest, the computational cost
Õ(eεd) is not much larger than the typical cost of comput-
ing the vector itself, e.g. by back propagation in the case of
gradients of neural networks (e.g. ε = 8 requires ≈ 3000
trials in expectation).

We can further reduce this computational overhead. We
show a simple reduction from the general case of ε > 1 to a
protocol for ε′ = ε/m that preserves asymptotic optimality,
where m ≤ 2ε is an integer. The algorithm simply runs m
copies of the ε′-DP randomizer and sends all the reports.
The estimates produced from these reports are averaged by
the server. This reduces the expected number of rejection
sampling trials to meε/m. We describe the formal details of
this simple reduction in SM.

This reduction allows one to achieve different trade-offs
between computation, communication, and closeness to the
accuracy of the original randomizer. As an additional ben-
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efit, we no longer need an LDP randomizer that is optimal
in the ε > 1 regime. We can simply use m = dεe and get
an asymptotically optimal algorithm for ε > 1 from any
algorithm that is asymptotically optimal for ε′ ∈ [1, 1/2]. In
particular, instead of PrivUnit we can use the low commu-
nication version of PrivHS from (Erlingsson et al., 2020).
This bypasses the need for our compression algorithm and
makes the privacy guarantees unconditional.

Remark 5.1. We remark that the compression of PrivUnit
can be easily made unconditional. The reference distri-
bution ρ of PrivUnit is uniform over a sphere of some
radius B(d, ε) = O(

√
d/min(ε, ε2)). It is not hard

to see that both the privacy and utility guarantees of
PrivUnit are preserved by any PRG G which preserves
Prv∼ρ[〈x,v〉 ≥ θ] for every vector x sufficiently well
(up to some 1/poly(d, n, eε/ε) accuracy). Note that these
tests are halfspaces and have VC dimension d. Therefore
by the standard ε-net argument, a random sample of size
O(dB(d, ε)/γ2) from the reference distribution will, with
high probability, give a set of points S that γ-fools the
test (for any γ > 0). By choosing γ = 1/poly(d, n, eε/ε)
we can ensure that the effect on privacy and accuracy
is negligible (relative to the error introduced due to pri-
vacy). Thus one can compress the communication to
log2(|S|) = O(log(dn/ε) + ε) bits unconditionally (with
negligible effect on accuracy and privacy).

While PrivUnit, SQKR and the repeated version of
PrivHS are asymptotically optimal, the accuracy they
achieve in practice may be different. Therefore we em-
pirically compare these algorithms. In our first comparison
we consider four algorithms. The PrivHS algorithm outputs
a vector whose norm is fully defined by the parameters d, ε:

the output vector has norm B(d, ε) = eε+1
eε−1

√
π

2

dΓ( d−1
2 +1)

Γ( d
2 +1)

.

The variance is then easily seen to be (B2+1±2B)/nwhen
averaging over n samples. For large dimensional settings
of interest, B � 1 so this expression is very well approxi-
mated by B2/n and we use this value as a proxy. For SQKR,
we use the implementation provided by the authors at (Kas)
(specifically, second version of the code that optimizes some
of the parameters). We show error bars for the empirical
squared error based on 20 trials.

The PrivUnit algorithm internally splits its privacy bud-
get ε into two parts ε0, ε1 = 1 − ε0. As in the case of
PrivHS, the output of PrivUnit (for fixed d, ε0, ε1) has a
fixed squared norm which is the proxy we use for variance.
We first consider the default split used in the experiments
in (Bhowmick et al., 2019) and refer to it as PrivUnit. In
addition, we optimize the splitting so as to minimize the
variance proxy, by evaluating the expression for the vari-
ance proxy as a function of the θ = ε0/ε, for 101 values of
θ = 0.00, 0.01, 0.02, . . . , 0.99, 1.0. We call this algorithm
PrivUnitOptimized. Note that since we are optimizing

Figure 1. Expected `22 error of mechanisms
PrivHS, PrivUnit, PrivUnitOptimized and SQKR for
values of ε between 1 and 8.

θ to minimize the norm proxy, this optimization is data-
independent and need only be done once for a fixed ε. For
both variants of PrivUnit, we use the norm proxy in our
evaluation; as discussed above, in high-dimensional settings
of interest, the proxy is nearly exact.

Figure 1 compares the expected squared error of these al-
gorithms for d = 1, 000, n = 10, 000 and ε taking integer
values from 1 to 8. These plots show both PrivUnit and
PrivUnitOptimized are more accurate than PrivHS and
SQKR in the whole range of parameters While PrivHS is
competitive for small ε, it does not get better with ε for large
ε. SQKR consistently has about 5× higher expected squared
error than PrivUnitOptimized and about 2.5× higher er-
ror compared to PrivUnit. Thus in the large ε regime,
the ability to compress PrivUnitOptimized gives a 5×
improvement in error compared to previous compressed
algorithms. We also observe that PrivUnitOptimized is
noticeably better than PrivUnit. Our technique being com-
pletely general, it will apply losslessly to any other better
local randomizers that may be discovered in the future.

As discussed earlier, one way to reduce the computational
cost of compressed PrivUnitOptimized is to use the re-
duction described above. For instance, instead of running
PrivUnitOptimized with ε = 8, we may run it twice with
ε = 4 and average the results on the server. Asymptotically,
this gives the same expected squared error and we empir-
ically evaluate the effect of such splitting on the expected
error in SM.
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