
Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

A. Equivariance and invariance properties
In this section, we verify that the implementations of the marginal distributions qφ(z1:Lk | x, z0k) and pθ(z1:Lk ), the decoder
network, and the refinement network all achieve the desired equivariance property. Additionally, we demonstrate that
EfficientMORL is also invariant to permutations applied to the order of the N inputs xn ∈ RD, n = 1, . . . , N , where
N = HW and H,W are the dimensions of the image. The verification itself is mostly straightforward, as we mainly rely
on weight-tying in the neural network architectures to symmetrically process each element of any set-structured inputs.

Definition 1 (Permutation invariance) Given X ∈ RN×D1 , f : RN×D1 → RN×D2 , and any N ×N permutation matrix
Π, we say that f is permutation invariant if

f(ΠX) = f(X).

Definition 2 (Permutation equivariance) Given X ∈ RN×D1 , f : RN×D1 → RN×D2 , and any N × N permutation
matrix Π, we say that f is permutation equivariant if

f(ΠX) = Πf(X).

A.1. Equivariance

Bottom-up posterior Recall that there is an initial symmetry-breaking step of sampling K times from N (µ0, (σ0I)2) and
consider the first layer of the marginal, qφ(z1 | x, z0), which is conditioned on samples z0. First, the samples are used to
predict set-structured features Θ ∈ RK×D using scaled dot-product set attention (Locatello et al., 2020). By appealing to
the proof in Section D.2 of Locatello et al. (2020), all operations within the scaled dot-product set attention (Lines 8-11
of Algorithm 1) preserve permutation equivariance of the features Θ. Following this, we concatenate Θ with itself along
the D-dimension and pass it to the DualGRU. The DualGRU uses weight-tying across K to symmetrically process inputs
[Θ,Θ] and previous state [µ0,σ0]. Next, the two MLPs also use weight-tying across K to output K means and variances.
Finally, we sample z1 from qφ(z1 | x, z0). We only sample once from each of the K marginals to generate the input with
which to condition qφ(z2 | x, z1). Each stochastic layer thereafter is computed identically, and therefore the marginals of
the bottom-up posterior are equivariant with respect to permutations applied to their ordering.

The hierarchical prior preserves the symmetry of its marginals since it consists of only feed-forward layers applied
individually to each element of a sample z via weight-tying across K. Both considered decoders are permutation invariant
since they aggregate the K masks and RGB components with a summation over K, which is a permutation invariant
operation (see Section F for decoder details). This ensures that the reconstructed/generated image does not depend on the
ordering of the posterior/prior marginals.

The refinement network simply consists of feed-forward and recurrent layers with weights tied across K that are again
applied individually to each element of the set of posterior parameters λ.

A.2. Invariance

Due to the use of Slot Attention’s scaled dot-product set attention mechanism to process the inputs in each stochastic layer of
the posterior, EfficientMORL inherits the property that it is invariant to permutations applied to the order of the x1, . . . , xN ,
xn ∈ RD. An inspection of Line 11 of Algorithm 1 verifies that the N -element input x is aggregated with a permutation
invariant summation over N .

B. EfficientMORL vs. GENESIS
In this section, we provide arguments as to why models that learn unordered (i.e., permutation equivariant) latents might be
preferred over those that learn ordered latents. Many of the discussion points here are adapted from Appendix A.3 of Greff
et al. (2019). We also empirically show one key advantage using a variant of the Multi-dSprites dataset.

GENESIS (Engelcke et al., 2020) is a generative model for multi-object representation learning that, like MONet, uses
sequential attention over the image to discover objects. Its design is motivated by efficiency and the task of unconditional
scene generation. It uses an autoregressive prior and autoregressive posterior to induce an ordering on its K object-centric
latent variables which enables fast inference and generation. The authors demonstrate that the autoregressive prior also
facilitates coherent generation of multi-object scenes.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

On biased decomposition However, GENESIS is not equivariant to permutations applied to the K latents. That is,
GENESIS infers a ordered scene decomposition. Due to the autoregressive prior and posterior, the pixels assigned to the ith

latent depends on latents < i, which biases the model towards specific decomposition strategies that incorporate global scene
information (Figure 11). GENESIS uses a deterministic stick-breaking process to implement sequential attention, which
encourages it to learn fixed strategies such as always placing the background in the first or last component. Additionally, this
can occasionally lead the model towards learning poor strategies that are overly dependent on color.

On ambiguity Only updating each object-centric latent once makes GENESIS potentially less capable of handling am-
biguous and complex cases. EfficientMORL assigns pixels to latents across multiple iterations, which can facilitate
disambiguating parts of a scene that are difficult to parse.

On multi-stability GENESIS also does not share the multi-stability property enjoyed by EfficientMORL and IODINE.
That is, running inference multiple times with EfficientMORL can produce different scene decompositions, particularly for
ambiguous cases, due to randomness in the iterative assignment (see Figure 10 of Greff et al. (2019)).

On sequential extensions Finally, we highlight that IODINE has been demonstrated to be straightforward to extend to
sequences, and we expect EfficientMORL could be similarly applied to sequences since it shares with IODINE the use of
adaptive top-down refinement. This has been accomplished in a few different ways. One way is to simply pass a new image
at each step of iterative inference (Greff et al., 2019). Or, initialize the posterior at each time step with the posterior from the
previous time step before performing I refinement steps (Li et al., 2020). In the model-based reinforcement learning setting,
a latent dynamics model has been used to predict the initial posterior at each time step using the posterior from the previous
time step, followed by I refinement steps (Veerapaneni et al., 2019). Ordered models have been used for sequential data by
adding an extra matching step to align the object latents over time, resembling unsupervised multi-object tracking (Watters
et al., 2019a).

GENESIS-v2 We note that the authors of GENESIS recently released GENESIS-v2 (Engelcke et al., 2021), which appeared
after the initial submission of this work. We comment briefly on it here. GENESIS-v2 appears to remove GENESIS’s
autoregressive posterior and adds a non-parametric randomized clustering algorithm to obtain an ordered set of of attention
masks. These attention masks are then mapped in parallel to K latents (GENESIS-v2 is able to adjust K on-the-fly via
early-stopping of the clustering algorithm). Due to the random initialization of the clustering algorithm, the model cannot
learn a fixed sequential decomposition strategy. We highlight that GENESIS-v2 keeps GENESIS’s autoregressive prior and
that GENESIS-v2 is not equivariant with respect to permutations applied to the set of cluster seeds used to obtain attention
masks. Like GENESIS, GENESIS-v2 uses a stick-breaking process such that the last (K th) component is assigned the
remaining scope; this suggests that global information may still be leaking into the representations (see Figure 11). The
authors note that on some training runs, the model learns to always place the background into the last component.

B.1. Multi-colored and textured Multi-dSprites

We illustrate how global scene-level information leaks into the object-centric representations in GENESIS in Figure 11. For
this, we created a variant of the Multi-dSprites dataset that has as background a simple uniform texture and foreground
objects that are multi-colored with a distinctive pattern. Models that successfully decompose these images cannot do so by
only grouping using color cues.

We invested considerable effort into tuning GENESIS to solve this dataset. What worked was using the Gaussian image
likelihood with σ = 0.1 (EfficientMORL uses the same) instead of the Gaussian mixture model (see Section F; we tried
various values for σ for the mixture model likelihood as well) and decreasing GENESIS’s GECO parameter update rate to
avoid increasing the KL too much early on. The Gaussian mixture model likelihood consistently caused GENESIS to learn
to segment the images purely based on color. We trained both GENESIS and GENESIS-S models, where GENESIS-S uses
a single set of latents instead of splitting them into masks and components [zm, zc]. GENESIS converged significantly faster
than GENESIS-S and obtained the best results, whereas the latter did not finish converging after 500K steps.

As shown in Figure 11, the object-centric representations learned by EfficientMORL are able to be independently manipulated.
GENESIS’s autoregressive posterior causes it to incorporate global scene-level information into the representations. We
show that manipulating a single dimension of a single object latent can change the entire scene representation.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

z3

Image Recons Mask

z3

(a) EfficientMORL
Image Recons Mask

z15

z15

(b) GENESIS-S
Image Recons Mask

z68

z68

(c) GENESIS

Figure 11. The ordered scene decomposition learned by GENESIS leaks global scene information into the object representations.
The second row of each sub-figure shows the reconstructed images generated by varying a single active latent dimension (chosen
arbitrarily) of a single component (indicated by color). We show that for GENESIS-S and GENESIS, which have autoregressive posteriors,
all objects are affected when the first component is manipulated.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

x

(a) Uses pθ(zL|zL−1) in refinement loss KL

x

(b) Uses p(zL) in refinement loss KL

x

(c) Uses pθ(z1 | z2) in refinement loss KL

Figure 12. The three variants of the hierarchical prior we explore. a) EfficientMORL w/ bottom-up prior, where p(z1) is a standard
Gaussian and the prior gets more expressive in higher layers, b) EfficientMORL w/ reversed prior where p(zL), the corresponding
prior for the top layer posterior, is a standard Gaussian, and the prior gets more expressive in lower layers, and c) EfficientMORL w/
reversed prior++ where p(zL) is also standard Gaussian but the posteriors at lower layers of the hierarchy are encouraged to match the
top layer posterior via the modified refinement KL term.

C. Limitations
For a given image, EfficientMORL requires that K is chosen a priori, although any value of K can be chosen. A way to
adapt K automatically based on the input could be useful to increase the number of latent variables dynamically if needed.

Related to this, EfficientMORL does not have any explicit mechanism for attending to a subset of objects in a scene. This
could prove useful for handling scenes containing many objects and scenes where what constitutes the foreground and
background is ambiguous.

We do not expect EfficientMORL to be able to generate globally coherent scenes due to the independence assumption in the
prior. Identifying how to achieve coherent generation without sacrificing permutation equivariance is an open problem.

EfficientMORL also inherits similar limitations to IODINE related to handling images containing heavily textured back-
grounds (see Section 5 of Greff et al. (2019)), as well as large-scale datasets that do not consist of images that represent a
dense sampling of the data generating latent factors, which is important for unsupervised learning. EfficientMORL can
handle textured and multi-colored foreground objects assuming a simplistic background (Figure 11a).

D. Additional ablation studies

Table 2. Ablation study results. All models use reversed prior++ (Figure 12c) unless specified.

Env ARI MSE (×10−4) KL
EfficientMORL w/out DualGRU CLEVR6 79.7± 22.3 8.1± 1.7 1357.4± 321.6
EfficientMORL w/out GECO CLEVR6 79.9± 9.9 9.9± 2.5 177.5± 14.7
EfficientMORL CLEVR6 82.4± 7.9 8.3± 1.1 692.7± 281.4
EfficientMORL w/out GECO Tetrominoes 82.2± 17.7 68.8± 42.2 45.9± 9.3
EfficientMORL w/ bottom-up prior Tetrominoes 85.7± 11.0 17.1± 14.6 -
EfficientMORL w/ reversed prior Tetrominoes 86.9± 16.2 22.1± 21.4 -
EfficientMORL Tetrominoes 97.9± 2.4 7.0± 6.0 98.5± 21.4

Results are in Table 2. The CLEVR6 results are computed across 10 random seeds for 50k steps. At this many steps the
model has begun to converge and large differences in final performance can be easily observed. Each of the Tetrominoes
results are computed on a validation set of 320 images across 5 random seeds.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

l=1

l=2

l=3

i=1

i=2

i=3

Image Recons Mask Attention

(a) EfficientMORL w/ bottom-up prior

l=1

l=2

l=3

Image Recons Mask Attention

i=1

i=2

i=3

(b) EfficientMORL w/ reversed prior

l=1

l=2

l=3

i=1

i=2

i=3

Image Recons Mask Attention

(c) EfficientMORL w/ reversed prior++

Figure 13. Samples from the intermediate posteriors and attention from the ablated hierarchical priors. The reconstructions in the first two
rows demonstrate the efficacy of the reversed prior++ at preventing the intermediate posteriors from collapsing.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Hierarchical prior The three hierarchical prior variants are shown in Figure 12. We present the ARI and MSE scores for
Tetrominoes in Table 2, where the reversed prior++ consistently achieves the best results. By inspecting samples from the
intermediate posteriors of each model (Figure 13, second column, first two rows), we can see that the bottom-up prior and
reversed prior learn to leave the posterior at layers 1− 2 close to the initial uncorrelated Gaussian q(z0), with the reversed
prior exhibiting this most strongly. This limits the expressiveness of the posterior at layer L and on certain runs these
models would converge to poor local minima—hence the high standard deviation in ARI and MSE. On the other hand, the
reversed prior++ keeps the posterior at layers 1− 2 close to the layer L posterior. The large gap in performance suggests that
although Tetrominoes appears to be easy to solve, it may be deceptively challenging as it seems to require fitting a complex,
non-Gaussian posterior. Although we do not show the results here, we did try training EfficientMORL w/ reversed prior on
CLEVR6 and found that the less expressive posterior was sufficient to achieve comparable results to the reversed prior++.

DualGRU We replaced the DualGRU with a standard GRU of hidden dimension 2D. The DualGRU regularizes training
due to improved parameter efficiency from the block-diagonal design. With a single standard GRU, the model tends to
achieve a high KL. Some of these models converged to poor local minima, which is reflected by the lower ARI score.

GECO We trained EfficientMORL without GECO to examine the severity of posterior collapse on CLEVR6 and Tetrominoes
(Table 2). We found that posterior collapse did not affect the model on Multi-dSprites and therefore did not use GECO for
this environment. Without GECO, the KL is low due to the early collapse of many of the posterior dimensions. For most
runs, this leads to poor quality reconstructions that achieve higher MSE and lower ARI scores.

Varying refinement steps We show the test ARI, MSE, and KL for various values of I using the reversed prior++ and
bottom-up prior Tetrominoes models (Figure 14). Recall that we held I fixed at three when training on Tetrominoes. The
ARI/MSE shows a slight drop when testing with zero refine steps, whereas the KL is noticeably larger at I = 0. A single
low-dimensional refinement step does not incur a large increase in extra computation (Figure 10) if the low KL posterior is
desired at test time.

E. Additional results
E.1. Object decomposition

An extra visualization of a sample from the intermediate and final posteriors for a single scene, showing reconstruction,
masks, and attention, is provided in Figure 15.2

We also show extra qualitative scene decompositions for CLEVR6 (Figure 16), Multi-dSprites (Figure 17), and Tetrominoes
(Figure 18). Each decomposition is sampled from the final posterior after refinement.

E.2. Disentanglement

Visualizations We include additional visualizations of the disentanglement learned by our model. We randomly select one
object component and multiple latent dimensions to vary. To determine reasonable ranges to linearly interpolate between for
each latent dimension, we computed the maximum and minimum values per latent dimension across 100 images. Figure 19
shows one model trained on CLEVR6 and Figure 21 shows one trained on Multi-dSprites. In Figure 20, we visualize one
of the ablated Tetrominoes models which did not use GECO and successfully learned to decompose and reconstruct the
images, achieving a low final KL.

We emphasize that we did not tune the ELBO to emphasize disentanglement over reconstruction quality in this paper.
If desired, EfficientMORL can be trained to achieve a more highly disentangled latent representation, for example by
modulating the KL term with a β hyperparameter.

DCI metric We used the disentanglement_lib (Locatello et al., 2019) to compute DCI scores (Eastwood & Williams,
2018). DCI measures three quantities, disentanglement, completeness, and informativeness and involves training a regressor
(continuous factors) or classifier (discrete factors) to predict the ground truth factors given the extracted representation from
the data. We repeat the DCI scores here in Table 3.

We take the following steps to compute DCI for the considered multi-object setting for EfficientMORL and Slot Attention
on CLEVR6. For each test image, we extracted K ×D latent codes. For EfficientMORL, these are the means of the final

2Visualizations are made using a modified script provided by Greff et al. (2019).



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

0 1 2 3 4 5 6
Test I

0.96

0.98

1.00

AR
I

(a) Tetrominoes (w/ reversed prior++) ARI vs. test I .

0 1 2 3 4 5 6
Test I

0.7

0.8

0.9

1.0

AR
I

(b) Tetrominoes (w/ bottom-up prior) ARI vs. test I .

0 1 2 3 4 5 6
Test I

0.0005

0.0010

0.0015

M
SE

(c) Tetrominoes (w/ reversed prior++) MSE vs. test I

0 1 2 3 4 5 6
Test I

0.000

0.002

0.004

0.006

M
SE

(d) Tetrominoes (w/ bottom-up prior) MSE vs. test I

0 1 2 3 4 5 6
Test I

50

100

150

200

250

300

KL

(e) Tetrominoes (w/ reversed prior++) KL vs. test I

0 1 2 3 4 5 6
Test I

100

200

300

400

500

KL

(f) Tetrominoes (w/ bottom-up prior) KL vs. test I

Figure 14. a,c) Training with I = 3 fixed and testing with I = 0 results in a fractional drop in ARI/MSE with the reversed prior++.
A larger gap in KL is again observed between zero and one test refine step, for both the reversed prior++ (e) and bottom-up prior (f).
Performance is maintained when increasing I up to 6, as the refinement GRU has learned to exploit sequential information.

posterior distribution. For Slot Attention, it is simply the output slots. We also decode the K masks. Given the ground truth
object segmentation, we compute the linear assignment using IOU as the cost function to find the best matching of ground
truth object masks to the K predicted object masks.

Finally, we concatenate all pairs of ground truth latent factors and predicted latent codes for all images into a dataset using a
random 50/50 train and test split. We use the disentanglement_lib to compute the DCI scores, which uses gradient
boosted trees. A separate predictor is trained per factor. For CLEVR6, the factors are {x, y, z, rotation, size, material, shape,
color} where the first four are continuous values and the last four are discrete values.

E.3. Efficiency

Trainable parameters IODINE has approximately 2.75M parameters and EfficientMORL has approximately 666K
parameters, a 75% decrease.

Timing metric We computed the forward and backward pass timing for the considered models on the same hardware,
using 1 RTX 2080 Ti GPU with mini-batch size of 4. We computed a running average across 10K passes after a burn in
period of about five minutes. We show results for multiple images dimensions in Figure 22.

Refinement curriculum As stated earlier, we used two approaches in our experiments: fixing I = 3 throughout training
(Tetrominoes), or decreasing I from three to one after 100K training steps (CLEVR6 and Multi-dSprites). When applying



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

R
ef

in
e 

st
ep

l=1

l=2

l=3

Recons Mask AttentionImage Recons Mask AttentionImage

Figure 15. Visualization of reconstructions, masks, and attention from a single sample from the intermediate and final posteriors on
CLEVR6.

Table 3. DCI on CLEVR6 (mean ± std dev across 5 runs). Higher is better.

Disentanglement Completeness Informativeness
Slot Attention 0.46± 0.01 0.38± 0.02 0.34± 0.01
EfficientMORL 0.63± 0.04 0.63± 0.06 0.46± 0.01

EfficientMORL to more challenging datasets for which convergence may take a long time, we recommend trying to simply
decrement I by one following a reasonable schedule (e.g., every 100K steps). We directly decreased I from three to one
since EfficientMORL converges relatively quickly on all three of the Multi-object Benchmark datasets.

F. Implementation
Code and data are available at https://github.com/pemami4911/EfficientMORL

F.1. Architecture details and hyperparameters

DualGRU The HVAE encoder has two separate GRUs to predict the mean µ and variance σ2 for each bottom-up inference
layer’s posterior. This reduces the number of parameters in the encoder which regularizes the model and eases learning; see
Section D for an ablation study on its use.

To parallelize the computation of the two GRUs we fuse their weights to create a single GRU—the DualGRU—that has
sparse block-diagonal weight matrices. Specifically, the D-dim output of the scaled dot-product attention set attention
is concatenated with itself [Θ; Θ] ∈ RK×2D and then passed as input to the DualGRU. As an example, the DualGRU
multiplies the input with the following:

Wih =

[
W1

ih 0
0 W2

ih

]
, (9)

where W1
ih ∈ R2D×D and W2

ih ∈ R2D×D. The shape of Wih is 4D × 2D; internally, the DualGRU splits the K × 4D
output of its application to the K × 2D input into 4 D-dim activations for the two reset and update gates. All other weight
matrices Whh, Win, Whn are similarly defined as block matrices.

In practice, we predict the variance for each Gaussian using the softplus (SP) operation. In detail, let o be a K ×D
output of a linear layer. Then,

o
′

= min(o, 80 ∗ 1) (10)

σ2 = log(1 + exp(o′) + 1e− 5) (11)

Image likelihoods Let P = 3HW be the number of pixels, xp be the random variable for pixel p’s value, yk,p ∈ R3

be the RGB value for the pth pixel from the k ∈ K th component, and πk,p ∈ [0, 1] be the corresponding assignment. The

https://github.com/pemami4911/EfficientMORL


Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Figure 16. Additional CLEVR6 scene decompositions with K = 7, L = 3, and I = 1. First column is the ground truth image, second
column is the reconstruction, third column is the mask, and the remaining columns are the masked components. One example of a failure
case is shown in row 6 where the model joins a purple cylinder and an adjacent silver cube.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Figure 17. Additional Multi-dSprites scene decompositions with K = 6, L = 3, and I = 1. First column is the ground truth image,
second column is the reconstruction, third column is the mask, and the remaining columns are the masked components.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Figure 18. Additional Tetrominoes scene decompositions with K = 4, L = 3 and I = 3. First column is the ground truth image, second
column is the reconstruction, third column is the mask, and the remaining columns are the masked components. The Gaussian image
likelihood has only a weak inductive bias to encourage the background to be assigned to a single component; the model often learns to
split the simple black background across all components.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

z4

z8

z11

z17

z21

z22

z35

z59

z62

z63

Figure 19. Varying random latent dimensions for CLEVR6. We randomly select latent dimensions from a single object component to vary.
Most of the latent dimensions are deactivated and do not change the image.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

z3

z4

z5

z8

z9

z12

z15

z17

z24

z25

z27

z31

Figure 20. Varying random latent dimensions for Tetrominoes. We randomly select latent dimensions from a single object component to
vary. Most of the latent dimensions are deactivated and do not change the image. The model shown here was trained without GECO.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

z7

z11

z12

z16

z38

z41

z59

z60

z63

z6

Figure 21. Varying random latent dimensions for Multi-dSprites. We randomly select latent dimensions from a single object component to
vary. Most of the latent dimensions are deactivated and do not change the image.



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Slo
t A

ttn
.

E-
MO

RL
-0

GE
NE

SIS
E-

MO
RL

-1
E-

MO
RL

-3
IO

DI
NE

0

20

40

60

80

100

120

140

160
tim

e 
(m

s)

forward
backward

(a) 64× 64 images

Slo
t A

ttn
.

E-
MO

RL
-0

GE
NE

SIS
E-

MO
RL

-1
E-

MO
RL

-3
IO

DI
NE

0

50

100

150

200

250

tim
e 

(m
s)

forward
backward

(b) 96× 96 images

Slo
t A

ttn
.

E-
MO

RL
-0

GE
NE

SIS
E-

MO
RL

-1
E-

MO
RL

-3
IO

DI
NE

0

50

100

150

200

250

300

350

400

tim
e 

(m
s)

forward
backward

(c) 128× 128 images

Figure 22. Forward and backward pass timings

Gaussian image likelihood has xp distributed according to a Gaussian with mean given by the sum over K of πk,pyk,p:

pθ(x | zL) =

P∏
p=1

N (xp;

K∑
k=1

πk,pyk,p, σ
2) (12)

with variance σ2 fixed for all p. We use this formulation for Tetrominoes (σ = 0.3) and Multi-dSprites (σ = 0.1).

The other image likelihood we consider is a mixture of pixel-wise Gaussians (Burgess et al., 2019; Greff et al., 2019;
Engelcke et al., 2020):

pθ(x | zL) =

P∏
p=1

K∑
k=1

πk,pN (xp; yk,p, σ
2) (13)

with the variance σ2 fixed for all k and all p. As demonstrated in our experiments, this likelihood attempts to segment
the background into a single component, which is (perhaps unintuitively) more challenging for the Tetrominoes and
Multi-dSprites environments. Therefore, we only use it on CLEVR6 (σ = 0.1). As evidenced by IODINE, with sufficient
hyperparameter tuning it seems possible to use the mixture likelihood for all three environments; however, we wished to
minimize hyperparameter optimization to avoid overfitting to these specific environments. We attempted to use σ = 0.1 for
all environments (like IODINE) but found that slightly increasing σ to 0.3 on Tetrominoes helped the model converge more
rapidly.

A third image likelihood that has been previously used (van Steenkiste et al., 2020) is a layered image representation
(i.e., alpha compositing). We did not compare against this one for the following reasons. The standard way to implement
layered rendering requires imposing an ordering on the layers. This breaks the symmetry of the latent components, which
is undesirable. Alternatively, one could treat the ordering as a discrete random variable that must be inferred, but 1) this
increases the difficulty of the already-challenging inference problem, and 2) this can lead to the generation of implausible
scenes due to uncertainty about the true (unknown) depth ordering.

Bottom-up inference network Following Slot Attention and IODINE, we use latent dimensions of D = 64 for CLEVR6
and Multi-dSprites and D = 32 for Tetrominoes. Before the first layer, the provided image is embedded using a simple
CNN (Locatello et al., 2020):



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Image encoder
Type Size/Ch. Act. Func.

H ×W image 3
Conv 5× 5 64 ReLU
Conv 5× 5 64 ReLU
Conv 5× 5 64 ReLU
Conv 5× 5 64 ReLU

where each 2D convolution uses stride of 1 and padding of 2. A learned positional encoding of shape H ×W × 4 is
projected to match the channel dimension 64 with a linear layer and then added to the image embedding. Like Slot Attention,
the four dimensions of the encoding captures the cardinal directions of left, right, top, and bottom respectively. This
enables extracting spatially-aware image features while processing the image in a permutation invariant manner. The
positionally-aware image embedding is flattened along the spatial dimensions to HW × 64 and then processed sequentially
with a LayerNorm, 64-dimensional linear layer, a ReLU activation, and another 64-dimensional linear layer. The result is
used as the key and value for scaled dot-product set attention.

Each of the L bottom-up stochastic layers share these parameters:

lth layer
Type Size/Ch. Act. Func.

key (k) 64→ D None
value (v) 64→ D None
query (q) D → D None
DualGRU 2D → 2D Sigmoid/Tanh
MLP (µ) D → 2D → D ReLU
MLP (σ) D → 2D → D ReLU, softplus

Each of the above operations are applied symmetrically to each of the K elements of zl. The two D-dimensional outputs of
the DualGRU are passed through separate trainable LayerNorm layers before the MLPs. The posterior parameters µ0 and
σ0 provided to the DualGRU when l = 1 are trainable and are initialized to 0 and 1 respectively.

Hierarchical prior network Each of the L − 1 data-dependent layers in the prior shares parameters. These predict the
mean and variance of a Gaussian conditional on a D-dimensional random sample z. We use ELU activations (Clevert et al.,
2016) here but use ReLU activations in the inference network in the parts of the architecture similar to Slot Attention.

lth layer
Type Size/Ch. Act. Func.

MLP D → 128 ELU
Linear (µ) 128→ D None
Linear (σ) 128→ D softplus

This computation is applied symmetrically to each of the K elements of z.

Refinement The output of the refinement network is δλ = [δµ, δσ] which is used to make the additive update to the
posterior.

Refinement network
Type Size/Ch. Act. Func.

[λ,∇λL] 4D
MLP 4D → 128→ D ELU
GRU D → D Sigmoid/Tanh
Linear (δµ) D → D None
Linear (δσ) D → D SP



Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

The two vector inputs to the refinement network are first processed with trainable LayerNorm layers. We compute the update
for each of the K elements of the set of posterior parameters λ in parallel.

Decoder The spatial broadcast decoder we use is similar to IODINE’s except we adopt Slot Attention’s positional encoding
to mirror the encoding used during bottom-up inference. Each of the K elements of z are decoded independently in parallel.

Spatial broadcast decoder
Type Size/Ch. Act. Func.

Input: z D
Broadcast (H + 10)× (W + 10)×D
Pos. Enc. 4→ D Linear
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 4 None

Each convolutional layer uses a stride of 1 and no padding. The channel dimension of the positional encoding is again
projected to D before being added to the broadcasted z. For Tetrominoes, following Slot Attention we use a lighter decoder
that has just three convolutional layers with 5× 5 kernels, stride 1 and padding 1, and channel dimension of 32.

The deconvolutional decoder we use for E-MORL-X-S in Figure 10 is identical to Slot Attention’s (see Section E.3, Table 6
in their paper).

The four dimensional output of the decoder is split into K masks and RGB images. The masks are normalized over K by a
softmax and the RGB outputs are passed through a sigmoid to squash values between zero and one. Images under both
considered likelihood models are reconstructed by summing the normalized masks multiplied by the RGB components
across K.

F.2. GECO (Rezende & Viola, 2018)

Where needed, we mitigate posterior collapse while simultaneously balancing the reconstruction and KL with GECO. This
reformulates the objective as a minimization of the KL subject to a constraint on the reconstruction error. The training loss
L (Equation 8) is modified for GECO:

L(L,0) = DKL

(
qφ(z1:L | x) ‖ pθ(z1:L)

)
− ζ
(
C + LNLL

)
L(L,i) = DKL

(
q(z;λ(L,i)) ‖ p(zL)

)
− ζ
(
C + L(L,i)

NLL

)
.

Here, ζ is a Lagrange parameter that penalizes the model when the reconstruction error is higher than a manually-specified
threshold C. Depending on the hierarchical prior variant we replace p(zL), e.g., with pθ(z1|z2) for reversed prior++. We use
the recommended exponential moving average CEMA with parameter α = 0.99 to keep track of the difference between the
reconstruction error of the mini-batch and C. The Lagrange parameter is updated at every step with ζ ′ = ζ−1e-6 CEMA. For
numerical stability, we use softplus(ζ) when computing the GECO update and constrain ζ ≥ 0.55 so that softplus(ζ)
is always greater than or equal to one. For CLEVR6, we used C = −61000 and for Tetrominoes we used C = −4500.
GECO was not needed on Multi-dSprites.


