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Abstract
The usual setting for learning the structure and
parameters of a graphical model assumes the avail-
ability of independent samples produced from the
corresponding multivariate probability distribu-
tion. However, for many models the mixing time
of the respective Markov chain can be very large
and i.i.d. samples may not be obtained. We study
the problem of reconstructing binary graphical
models from correlated samples produced by a
dynamical process, which is natural in many ap-
plications. We analyze the sample complexity of
two estimators that are based on the interaction
screening objective and the conditional likelihood
loss. We observe that for samples coming from a
dynamical process far from equilibrium, the sam-
ple complexity reduces exponentially compared
to a dynamical process that mixes quickly.

1. Introduction
A graphical model (GM) is a convenient description of a
probabilistic distribution which highlights the structure of
the conditional dependencies existing between a set of ran-
dom variables. We focus our attention on GMs that can
be expressed as elements of an exponential family and are
naturally associated with a graph that captures the underly-
ing structure of the conditional dependencies. These GMs,
sometimes referred as positive Markov random fields or
Boltzmann distributions, are ubiquitous tools used to de-
scribe behaviors of random systems across a broad range
of sciences such as physics (Chaves et al., 2015), biol-
ogy (Jansen et al.), medicine (Constantinou et al., 2016),
data mining (Buczak & Guven, 2016) and computer vi-
sion (Wang et al., 2013). The expression of GMs can
sometimes be deduced from first principles, but often it
has to be learned from observed data accessible through
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measurements and experiments. As these samples are time-
consuming or costly to produce, it is not surprising that
efficient GM learning methods play an important role in
various fields such as in the study of gene expression (Mar-
bach et al., 2012), protein interactions (Morcos et al., 2011),
neuroscience (Schneidman et al., 2006a), image processing
(Roth & Black, 2005), sociology (Eagle et al., 2009) and
even grid science (He & Zhang, 2011).

The practical problem of learning a GM from observed data
has a long-standing and rich history that can be traced back
to the seminal work of Chow-Liu (Chow & Liu, 1968). How-
ever, it wasn’t until recently and after further developments
that a body of work showed one can efficiently reconstruct
GMs from independent and identically distributed (i.i.d.)
samples (Bresler, 2015; Vuffray et al., 2016; Hamilton et al.,
2017; Klivans & Meka, 2017; Lokhov et al., 2018; Vuffray
et al., 2019). In these papers, two methods stand out for
being essentially optimal in the number of samples that they
require (Lokhov et al., 2018). These methods are named
Regularized Interaction Screening Estimator (RISE) and
Regularized Pseudo-likelihood Estimator (RPLE) and both
rely on the minimization of a convex loss function. The sam-
ple complexity of these estimators scales exponentially with
a quantity named β that represents the maximum magnitude
of the parameters in the GM. This exponential dependence
in β is a fundamental limit of GM learning from i.i.d. sam-
ples (Santhanam & Wainwright, 2012) with heavy practical
consequences as it restricts the possibility of learning GMs
when data is scarce. However, the assumption of having
access to independent samples is a modeling hypothesis that
is convenient in many ways, but for which we can challenge
the limits of its validity as it is known that sampling from ar-
bitrary GMs is an NP-hard task. In most of the experimental
settings mentioned earlier, the samples are actually obtained
from a dynamic process whose stationary distribution is cap-
tured by a GM. Even the state of the art sampling techniques
for GMs are implemented through Markov Chain Monte-
Carlo (MCMC) dynamics (Levin & Peres, 2017; Gotovos
et al., 2015). It is therefore natural to wonder if learning a
graphical model from a dynamical process can be beneficial
from a sample complexity standpoint.

Surprisingly, GM learning from dynamics has been rigor-
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ously studied very little with the notable exception of the
paper of Bresler, Gamarnik and Shah (Bresler et al., 2017).
In an attempt to demonstrate that learning GMs from non-
i.i.d. samples can be tractable, a question that was still
widely debated at the time of the paper’s initial release,
Bresler, Gamarnik and Shah proved that one can efficiently
learn GMs using samples coming from Glauber dynamics
(Glauber, 1963), an iconic MCMC sampling dynamics. This
result was regrettably overshadowed by the progress made
in the following years in GM learning and their algorithm
suffers from an impractical scaling much worse compared
to what one could obtain with RISE or RPLE in the i.i.d.
sample setting. The question of whether correlated samples
from dynamics can improve the sample complexity of GM
learning remains unanswered.

A hint on the fact that such a reduction in sample complex-
ity is possible is provided by a number of empirical studies
in the statistical physics literature that considered recon-
struction using mean-field methods (Roudi & Hertz, 2011;
Mézard & Sakellariou, 2011; Zeng et al., 2011; Zhang, 2012;
Bachschmid-Romano & Opper, 2015) and using pseudo-
likelihood (Besag, 1975) based estimators (Zeng et al., 2013;
Decelle & Zhang, 2015; Decelle et al., 2016) in various set-
tings, although most of these studies focus on a simpler
setting of asymmetric couplings known as kinetic Ising
model that does not contain the GM as its equilibrium state.
We do not consider mean-field based methods here because
these methods are not exact and typically only work for
high-temperature (weakly coupled) models, see (Lokhov
et al., 2018) for an extensive discussion on the value of
exact algorithms. Existing studies of pseudo-likelihood
based estimators have been mostly conducted in a setting of
reconstruction of single instances, and with a focus on pa-
rameter estimation (instead of structure learning for which
the sample complexity bounds are known); hence, it is hard
to extract the sample complexity scalings with model pa-
rameters such as β from these works. Still, single-instance
reconstruction results indicate that in practice the number
of samples required for an accurate model learning in the
dynamic case seems to be significantly smaller compared to
the i.i.d. learning setting.

In this work, we quantify through a carefully designed set
of experiments and a rigorous mathematical analysis the
reduction in sample complexity that one can achieve using
samples from Glauber dynamics. We focus our attention
on Ising models, the celebrated class of pairwise and binary
GMs for which information-theoretic lower-bounds on sam-
ple complexity exist both for i.i.d. samples (Santhanam &
Wainwright, 2012) and samples coming from Glauber dy-
namics (Bresler et al., 2017). We propose an adaptation of
the efficient learning algorithms RISE and RPLE for learn-
ing GMs with dynamical samples; Interaction Screening
method has never been previously considered for learning in

the dynamic setting. We extract the β scaling of the sample
complexity for different instances of Ising models in two
different dynamical regimes. The first, denoted as T-regime,
consists in learning an Ising model from a single Glauber
dynamic trajectory that mixes quickly toward its stationary
distribution. The second, referred to as M-regime, consists
in learning an Ising model from a series of one step evolu-
tions of the Glauber dynamics from an initial distribution
thus mimicking the trajectory of a system far from its mixed
state. A similar setting of learning from a number of short
trajectories starting with uniformly sampled configurations
instead of one long trajectory has been considered in (De-
celle et al., 2016). We find that the β scaling in the T-regime
is similar to the one obtained from learning GMs with i.i.d.
samples, an expected result since the Glauber dynamics
produces i.i.d. samples once it has mixed. However, our
main finding is that in the M-regime the β scaling depends
crucially on the initial distribution, and for dynamics far
from equilibrium we achieve a β exponent scaling up to
ten times better than in the i.i.d. case. This exponential
improvement in the sample complexity concretely trans-
lates into a reduction in sample requirements by a factor
104 − 105 in typical regimes where variables of the GMs
display non-trivial correlations. Our results also have a deep
theoretical implication as we show that samples acquired
far from the equilibrium carry more information about the
structure of the problem. Based on this intuition, we design
an active learning algorithm that modifies the trajectory of
the dynamics on the fly to optimize the sample complexity
of the learning task.

The paper is organized as follows. In Sec. 2, we define the
problem of learning an Ising model from Glauber dynamics
and describe two different regimes under which learning
can take place. In Sec. 3, we present our learning algo-
rithms and a theoretical analysis of their scaling properties.
Additionally, we assess their performance experimentally
on a variety of Ising models of different topologies and
interaction strengths. In Sec. 4, we illustrate a real world
application of our algorithms and present how active learn-
ing can be used to gain further advantage in learning from
dynamics. The conclusion can be found in Sec. 5.

2. Problem statement
2.1. Ising model

Consider the Ising model on a graph G = (V,E) with n
nodes where V = [n] is the set of nodes and E ⊂ V × V is
the set of undirected edges. Each node i ∈ V is associated
with a spin which we will denote by σi and is a binary ran-
dom variable taking values in {−1,+1}. The neighborhood
of a node i is denoted by ∂i = {j ∈ V | (i, j) ∈ E}. The
probability measure of a particular configuration of spins
σ ∈ {−1,+1}n is given by the Gibbs distribution



Learning of Ising Model Dynamics

p(σ) =
1

Z
exp

 ∑
(i,j)∈E

J?ijσiσj +
∑
i∈V

H?
i σi

 , (1)

where J? = {J?ij}(i,j)∈E is the vector of non-zero
interactions associated with each edge, and H? =
{H?

i }i∈V is the vector of magnetic fields associated
with each node. The normalization factor Z =∑

σ exp
(∑

(i,j)∈E J
?
ijσiσj +

∑
i∈V H

?
i σi

)
is referred to

as the partition function and is in general NP-hard to com-
pute (Sly & Sun, 2012).

2.2. Glauber dynamics and observations

Glauber dynamics is a reversible Markov chain that was
originally introduced in (Glauber, 1963) for Ising models
and can be generalized for any Markov random field. The
Glauber dynamics is specified by the update rule that de-
termines its transition probabilities. The spin configuration
at any time t is denoted by σt with the initial configuration
being σ0. At each time step t, a node is chosen uniformly
at random. The corresponding random variable is given
by It+1. Conditioned on It+1 = i, the spin σi is updated
according to the following conditional distribution:

p(σt+1
i |σt) =

exp
[
σt+1
i (

∑
j∈∂i J

?
ijσ

t
j +H?

i )
]

2 cosh
[∑

j∈∂i J
?
ijσ

t
j +H?

i

] . (2)

The initial configuration σ0 is assumed to be drawn from
some distribution p0(σ0). Executing m steps of the Glauber
dynamics yields the samples σ1, σ2, ..., σm and the corre-
sponding sequence of node identities is then I1, I2, ..., Im.
It can be used to draw i.i.d. samples from the Gibbs dis-
tribution in (1) when run long enough to allow for mixing.
However, for a large class of models this mixing time is
exponentially high (Martinelli & Olivieri, 1994), limiting
its computational tractability. At the same time, many out-
of-equilibrium natural systems such as biological neural net-
works naturally generate temporally correlated spike train
data (Berry et al., 1997; Pillow et al., 2008) that is well
described and is modeled by the Glauber dynamics (Marre
et al., 2009; Tyrcha et al., 2013). This raises the problem of
learning the graphical model associated with the sequence
of time-correlated samples produced by Glauber dynamics,
with the goals of inferring the connectivity of the system,
predicting the final state of the dynamics, or for building a
reliable model that can be used to simulate and predict the
dynamics starting from other configurations.

2.3. Glauber dynamics with multi-start and the model
selection problem

Suppose that the Glauber dynamics is run in batches of
size mr for r = 1, . . . , R with total number of samples

∑
rmr = m. For each r, the initial configuration is picked

according to the probability distribution p0 and a sequence
of mr steps of the Glauber dynamics are executed to obtain
mr samples. In this paper, we consider two extreme cases.
The T-regime corresponds to R = 1 and m1 = m where
starting from an initial configuration, one batch of size m
is executed to obtain m samples. The M-regime corre-
sponds to mr = 1 ∀r and executing one step of the Glauber
dynamics m times, each time starting from a new initial
configuration. The two regimes are designed to emulate
the behaviour of the Markov chain close to the equilibrium
distribution (T-regime), and far from the equilibrium distri-
bution (M-regime).

Notation: We will denote a sample by a tuple of the input
spin configuration to a step of Glauber dynamics, the result-
ing spin configuration of Glauber dynamics and the updated
node identity. The sample produced in the (t+ 1)-th step of
T-regime is given by (σt, σt+1, It+1) and the t-th sample
produced in M-regime will be given by {σ0(t), σ1(t), I1

(t)
).

Note the difference in the superscripts. For convenience,
we will denote the set {1, 2, ..., k} = [k] for k ∈ Z+. For
stating sample complexity results, it is convenient to define
a minimum non-zero coupling α = min(i,j)∈E |J?ij |, the
maximum coupling strength β = max(i,j)∈E |J?ij |, and a
maximum nodal degree d for the Ising model in (1).

The dynamic model selection problem: Given
m samples of {(σt, σt+1, It+1)}t=0,...,m−1 or
{σ0(t), σ1(t), I1

(t)}t∈[m] observed from the Glauber
dynamics from either the T-regime or M-regime, the model
selection problem consists of two parts:

1. Parameter estimation: Compute estimates Ĵij of J?ij
such that for all 1 ≤ i, j ≤ n, we have ‖Ĵij − J?ij‖≤
α̃/2, where ‖.‖ is the norm of interest and α̃ is the
required precision.

2. Structure reconstruction: Compute an estimate Ê of
E such that the probability of perfect reconstruction
satisfies p[Ê = E] ≥ 1− δ where δ defines the confi-
dence.

Most existing methods in the literature (Vuffray et al., 2016;
2019; Klivans & Meka, 2017) use parameter estimation to
perform structure reconstruction. It is evident that whenever
the parameters can be estimated with precision α̃ = α, the
structure estimated by the thresholding procedure given by

Ê (α) = {1 ≤ (i, j) ≤ n | |Ĵij |≥ α/2}, (3)

results in a perfect reconstruction with high probability. An
information theoretic lower bound for the dynamic model
selection problem from a single trajectory was derived in
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(Bresler et al., 2017) and is given by

m ≥ e2βd/3

32dαed+3β+6
n log n (4)

In comparison, the information-theoretic sample complexity
for learning from i.i.d. samples (Santhanam & Wainwright,
2012) scales as exp(βd). It still remains unclear if either of
the information theoretic lower bounds are tight. Current
evidence or constructive proofs show a scaling of exp(4βd)
for the i.i.d. case (Lokhov et al., 2018) and exp(20βd) for
the general dynamic case (Bresler et al., 2017).

3. Learning Ising models from dynamics
3.1. Learning algorithms

We now describe how to adapt RISE and RPLE into compu-
tationally efficient estimators for learning Ising models from
Glauber dynamics. Both algorithms minimize a convex loss
function that relies on the properties of the conditional dis-
tributions rather than the full probability distribution. These
methods reconstruct the neighborhoods of each node inde-
pendently and are, therefore, fully parallelizable. Moreover,
the minimization procedure can be implemented in Õ(n2)
using entropic gradient descent for both RISE (Vuffray et al.,
2019) and RPLE (see (Klivans & Meka, 2017) for a related
stochastic first-order method with multiplicative updates).

Unlike the i.i.d. sample setting, the Glauber dynamics nat-
urally takes the form of a local neighborhood update rule
conditioned on the event that the spin i is updated, see
Eq. (2). Following the construction of the RISE estimator
in (Vuffray et al., 2016), we define the Dynamic Interac-
tion Screening Objective for each node i ∈ V as being the
inverse of the exponent of the conditional distribution,

D-ISO:Sm(J i, Hi)

=
1

mi

m∑
t=1

exp

−σt+1
i

∑
j 6=i

Jijσ
t
j +Hi

 δi,It+1 ,

(5)

where J i := {Jij | j 6= i} ∈ Rn−1 denotes the vec-
tor of pairwise interactions around a node i, and mi =∑m
t=1 δi,It+1 . The Kronecker delta δi,It+1 in Eq. (5) is used

to keep samples for which updates happened at i.

The estimators’ objectives have been stated considering the
samples come from the T-regime. Similar expressions are
stated for the M-regime in Appendix S1.

We call the corresponding estimator which uses D-ISO as
the Dynamic Regularized Interaction Screening Estimator
(D-RISE) and is defined in the spirit of (Vuffray et al., 2016)
as the following convex program,

D-RISE: (Ĵ i, Ĥi) = argmin
(Ji,Hi)

Sm(J i, Hi) + λ||J i||1, (6)

where the `1-regularization promotes sparsity and λ is a tun-
able parameter controlling the amount of sparsity enforced.

The pseudo-likelihood based estimator can be understood
as the (negative) conditional likelihood (Ravikumar et al.,
2010) of an update at node i and takes the following form
in the case of Glauber dynamics,

D-PL:Lm(J i, Hi)

= − 1

mi

m∑
t=1

ln

1 + σt+1
i tanh

∑
j 6=i

Jijσ
t
j +Hi

 δi,It+1 .

(7)

Analogous to D-RISE, the Dynamic Regularized Pseudo-
Likelihood Estimator (D-RPLE) takes the form of an `1-
regularized convex program,

D-RPLE: (Ĵ i, Ĥi) = argmin
(Ji,Hi)

Lm(J i, Hi) + λ||J i||1 (8)

The performance of the learning algorithms depends on
the regularization parameter λ. Setting it too high encour-
ages the interaction parameters to drop out and setting it
too low can make the estimation sensitive to noise. Fol-
lowing theoretical considerations explained further, a good
choice for successfully reconstructing the local neighbor-
hood of i with probability 1 − δ′ (where δ′ = δ/n and
1 − δ is the success of the whole graph reconstruction) is
to set λ = cλ

√
log(n2/δ′)/mi where the intensity of the

penalty increases in a logarithmic fashion with the size of
the system n and decreases with the number of spin updates
observed mi. The parameter cλ > 0 is a numerical constant
independent of the problem parameters such as mi and n.

One of our main contributions is the following theorem
which quantifies the sample complexity required for struc-
ture learning from Glauber dynamics in the M-regime.

Theorem 1 (M-regime: Structure Learning of Ising Model
Dynamics). Let {σ0(t), σ1(t), I1

(t)}t∈[m] be m samples
of spin configurations and corresponding node identities
drawn through Glauber dynamics (Eq. 2), and define mi =∑m
t=1 δi,I1(t) as the number of updates per spin i. Consider

M-regime on an Ising model with maximum degree d, max-
imum coupling intensity β, minimum coupling intensity α,
and for simplicity assume H?

i = 0 ∀i. Then for any δ > 0,
the following estimators with penalty parameter of form
λ ∝

√
log(3n3/δ)/mi reconstruct the edge-set perfectly

with probability p(Ê(λ, α) = E) ≥ 1− δ if the number of
samples satisfies

i) D-RPLE:mi ≥ Cd max(1, α−2) exp(4βd) ln(3n3/δ),

ii) D-RISE: mi ≥ C ′d max(1, α−2) exp(2βd) ln(3n3/δ),

where Cd and C ′d depend only polynomially on d.
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A more precise statement and proof of Theorem 1 is given
in Appendix S1. Notice that given the choice of the initial
distribution p(σ0) to be the uniform distribution, the total
number of samples m required to get the number of samples
mi that satisfies Theorem 1 is m = O(nmi). Notice that
unlike the i.i.d. case where the entire sample may be distinct,
in the dynamic case only a single spin is updated while the
values of other variables are kept fixed; hence, perhaps a
more natural quantity for comparison with the i.i.d. case is
the number of updates per spin mi instead of m.

We expect the worst-case scalings of learning from dynam-
ics in the T-regime to be similar to the i.i.d. setting as it
includes the fully mixed setting as a particular case. The
main contribution of Theorem 1 lies in that it establishes
with certainty that the scaling of D-RISE in the M-regime
is strictly better than in the i.i.d. setting where it was found
experimentally to be at least exp(4βd) in the worst case
(Lokhov et al., 2018). It is also interesting to compare the
above results to the theoretical analysis of the i.i.d. setting
for which RPLE and RISE have scalings upper-bounded by
exp(8βd) and exp(6βd) respectively (Lokhov et al., 2018).
However, these theoretical upper-bounds tend to be loose
and this motivates us to quantify the scalings achieved in
practice in the dynamic case experimentally.

3.2. Empirical β scaling of the sample complexity

Our main goal is to assess the empirical sample complex-
ity of our learning algorithms in both the T-regime and
M-regime. In particular, we want to extract the exponential
scaling of the sample complexity for successful structure re-
construction with respect to β, the magnitude of the largest
coupling. The sample complexity of D-RPLE and D-RISE
are tested over Ising models of different topologies and in-
teraction strengths. We do not include a comparison to the
algorithm of (Bresler et al., 2017) due to its high compu-
tational complexity, and to heuristic mean-field methods
(Roudi & Hertz, 2011; Mézard & Sakellariou, 2011; Zeng
et al., 2011; Zhang, 2012; Bachschmid-Romano & Opper,
2015) since most of them are derived for asymteric kinetic
Ising model, and are not guaranteed to reconstruct arbitrary
strongly interacting models; instead, we focus on studying
the performance of two exact methods that can be efficiently
implemented through convex optimization.

We denote the minimal number of samples required for per-
fect structure reconstruction with probability 1− δ ≥ 0.95
(for δ = 0.05) as m?. Our experimental protocol to find m?

(sample complexity of the structure learning problem) is
similar to the one from Supplementary material of (Lokhov
et al., 2018). For each graphical model topology and cou-
pling values, we determined m? by finding the minimal
value of m samples required to successively reconstruct the
structure 45 times in a row from 45 independent sets of m

samples, which guarantees a 90% confidence for δ = 0.05.

We reconstruct the topology by first solving the optimization
problems in Eq. (6) for D-RISE and in Eq. (8) for D-RPLE
with appropriate `1 regularization to obtain estimates of
(Ĵ i, Ĥi) at each node i ∈ V . We create a consensus of the
estimated couplings by averaging the reconstruction from
two nodes i.e. Ĵavg

ij = (Ĵij + Ĵji)/2. The set of pairwise

interactions Ĵ
avg

which are higher than α/2 are defined as
the estimate of the edge set Ê. The structure is declared to
be successfully reconstructed when the edge set is perfectly
recovered Ê = E.

We perform an extensive set of numerical experiments to
empirically obtain m? for a variety of graphs in both the
T-regime and the M-regime. We consider two different
topologies: the periodic two-dimensional lattice and the
random 3-regular graph. Each of these two topologies are
subdivided into three categories according to the signs of the
interaction couplings. This includes the ferromagnetic case
with positive couplings, the spin glass case with couplings
taking random signs and the ferromagnetic case with a weak
anti-ferromagnetic impurity (i.e., weak negative coupling).
For each of these six cases, all the couplings’ magnitudes
are set to |J?ij |= β with exception of one or two couplings
which are set to |J?ij |= α. In our experiments, we fixed the
value of α = 0.4 and varied β from α to a value ranging
from 1 to 4 depending on the model. All models have their
magnetic fields at each node H?

i set to zero. These cases
are identical to the test cases used in (Lokhov et al., 2018)
in the i.i.d. learning setting which enables us to draw a
comparison between the dynamic and i.i.d. settings.

In deciding the `1-regularization to be used, optimal values
of cλ which are unknown apriori were determined through
detailed numerical simulations on different Ising model
topologies as described in Appendix S3. The determined op-
timal values of cλ are summarized in Table 1 on lattices and
random regular (RR) graphs for the two different regimes.

T-regime M-regime
D-RISE D-RPLE D-RISE D-RPLE

Lattices 0.1 0.05 0.1 0.05
RR Graphs 0.45 0.1 0.7 0.3

Table 1: Optimal values of cλ for D-RISE and D-RPLE.

Our sample complexity results for the T-regime and M-
regime are shown in Figure 1a and Figure 1b respectively.
In the T-regime, the worst scalings of sample complexity
are observed for both D-RISE and D-RPLE in lattices with
purely ferromagnetic interactions (Fig. 1aA) and those with
a weak anti-ferromagnetic interaction (Fig. 1aE). The worst
cases are exp(4.2βd) and exp(4.5βd) for D-RISE and D-
RPLE respectively. The scaling of sample complexity re-
sults are similar to the i.i.d. setting for the ferromagnetic
models on lattices and random regular graphs. However,
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(a) Scaling of m? with β in T-regime.

(b) Scaling of m? with β in M-regime.

Figure 1: We assess the performance of D-RISE and D-RPLE in reconstructing Ising models of size n = 16 from samples
generated from Glauber dynamics. The different Ising model topologies with their corresponding pictorial representations
on the left-hand side of each plot are: (A) ferromagnetic model on a periodic lattice, (B) spin glass model on a periodic
lattice, and (C) ferromagnetic model on a periodic lattice with weak antiferromagnetic impurity. Edges in the pictorial
representations of the models are colored red (β), orange (α), cyan (−α) and blue (−β). Value of α = 0.4 for all the graphs.
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compared to the i.i.d. case, we obtain a 35% reduction in the
β scaling for D-RISE for the spin glass model on a lattice
and around 27% reduction for the spin glass model on a
random regular graph. For the systems studied here, the
Glauber dynamics mixes rapidly in the case of ferromag-
netic models as the number of variables is small compared
to the number of samples required to learn the structure.
Therefore the dynamics in the T-regime quickly produces
samples that behave like i.i.d. samples in these cases and
we see similar scalings. This mixing may not be as rapid in
the case of spin glass models, yielding us savings in number
of samples when learning from Glauber dynamics.

The picture drastically changes as we move to the M-regime
for which the scaling results are shown in Fig. 1b. Among
the numerical examples that we consider, the worst-case
scaling for D-RISE and D-RPLE observed are exp(0.48βd)
and exp(0.79βd) respectively, with the scalings being very
similar for all the lattices. Compared to the T-regime there
is a reduction in the β scaling between 80% and 90%, trans-
lating to a reduction in the sample requirement of orders of
magnitude. Interestingly, we observe that a constant number
of samples independent of β is required for learning the
random regular graphs. Thus, it is possible to beat exponen-
tial scalings for special topologies in the case of M-regime
which would not be possible in the i.i.d. setting. The details
of this behavior is described in Appendix S4.

The fundamental difference between the two regimes is that
the Glauber dynamics comes effectively from two different
initial distributions. In the M-regime, the samples are pro-
duced from a one step Glauber dynamics initialized with a
uniform distribution. In the T-regime, however, the samples
are effectively produced from a one step Glauber dynamics
that is initialized from a distribution which is close to the
equilibrium one, as the actual dynamics mixes more rapidly.
This shows that the dynamical samples acquired far from the
equilibrium carry more information about the structure of
graphical models. A natural question to ask is then how to
empirically find such an initial distribution for the Glauber
dynamics that improves the sample complexity. We propose
a possible solution to this issue by introducing an active
learner in Section 4.2.

4. Applications
In this section, we illustrate how D-RISE/D-RPLE can be
applied to a real world system and extended to improve their
performance. In Section 4.1, we consider a multi-neuron
spike trains’ data set to learn the structure of a network
of neurons. This can be used to understand the dynamics
of the network and how it implements computations. In
Section 4.2, we highlight an approach to modify the initial
distribution to the M-regime to improve sample complexity.

4.1. Learning Ising models from neural data

Due to the high dimensionality of the space of spike pat-
terns and lack of enough data to build an exact statistical
description, it has become popular to use parametric models
such as Ising models (Schneidman et al., 2006b). In the cor-
responding Ising model (Rieke et al., 1999), the spin σi of
neuron/node i can be interpreted as spiking/firing (σi = 1)
or not (σi = −1). Studies on using Ising models for spike
trains include application to larger populations of neurons
(Cocco et al., 2009; Nirenberg & Victor, 2007), conditions
under which Ising models are good approximations (Roudi
et al., 2009a; Tkacik et al., 2009), development of faster
learning methods (Broderick et al., 2007) and comparisons
of different learning methods (Roudi et al., 2009b). Most of
previous studies consider the i.i.d. setting. However, (Hertz
et al., 2011) showed that respecting correlations in time and
the dynamics can lead to better Ising model fits to the data.
This motivates us to investigate the underlying Ising model
for spike trains considering Glauber dynamics.

We consider the dataset from (Prentice et al., 2016) contain-
ing spike trains from 152 salamander retinal ganglion cells
in response to a non-repeated natural movie stimulus, of
which we select spike trains over n = 42 neurons over 24s
for our application. To use D-RISE/D-RPLE, the dataset
is first converted into a sequence of 1.2× 105 spin config-
urations, a segment of which is shown as a spike raster in
Figure 2. Time series of spin configurations along with up-
dated node identities are then extracted from this sequence
and 3.2× 104 samples corresponding to the M-regime with
an unknown initial distribution are obtained. Details of this
procedure is given in Appendix S5.

Figure 2: Spike raster from the first 5 sec of the data over
42 neurons. Each column indicates the spiking pattern of
the neurons over a 20 ms time bin.

We discuss the statistics of Ising model parameters learned
using D-RISE on this set of samples in Appendix S5, where
we also compare the recovered parameters with those ob-
tained by RISE assuming the samples are i.i.d. Correla-
tions computed from data assuming the samples are i.i.d.
(Figure 3a) and that respecting time (Figure 3b) are very
different. This difference strengthens the importance of re-
specting dynamics when learning an effective Ising model
if one would like to capture time correlations present in
the data. The correlation matrix predicted using the model
learned with D-RISE is presented in Figure 3c, and is within
∼ 10% of that computed from data under the Frobenius
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norm (see Figure 3d), indicating a good model fit that re-
spects the time correlations present in the data. Details of
correlation computation can be found in the Appendix S5.

As we have control in such biological systems through ex-
ternal stimuli, learning an effective Ising model could be
accelerated using an active learner which we discuss next.

(a) Corr(σi, σj) (b) Corr(σ0
i , σ

1
j )

(c) Predicted Corr(σ0
i , σ

1
j ) (d) Difference in predicted and

data correlations

Figure 3: Correlation matrices are computed from data in (a)
assuming the spin configurations are i.i.d., and (b) respecting
time ordering (see definition in Appendix S5). We show the
predicted correlation matrix using D-RISE estimates in (c)
and its difference from that computed from data in (d).

4.2. Active learning in M-regime

Motivated by the previous section, we develop an active
learning algorithm that optimizes on the fly over the ini-
tial distribution in the M-regime. In the M-regime, the
initial spin configuration σ0 can be viewed as a query to
the Glauber dynamics which returns the output of (σ1, I1).
Clearly, the observations generated have a dependence on
the query distribution pσ0 from which the queries σ0 are
simulated. If no prior information about the parameter set
(J,H) is known, then a suitable choice of pσ0 is the uni-
form distribution over {−1,+1}n as we had chosen for our
numerical experiments in the previous section.

In active learning, the learner has the ability to select queries
during model learning that would be most informative. Here,
we consider a mini-batch adaptive active learning (Wei
et al., 2015) scheme where in each round a mini-batch of

initial spin configurations σ0 are selected to be queried and
then the samples obtained are combined with those from
before to produce estimates of (Ĵ , Ĥ). These estimates
are then used to determine the next mini-batch of queries.
To select these queries we use the informative measure of
entropy as in uncertainty sampling. An alternate criteria
that can be used is Fisher information but the computational
effort of the resulting query optimization typically grows
exponentially with n (Sourati et al., 2017a). In uncertainty
sampling (Settles, 2009), one query σ0 is chosen at a time

σ̂0 = argmax
σ0∈{−1,+1}n

S(σ1|σ0; Ĵ , Ĥ) (9)

where S is the entropy measure of the probability
p(σ1|σ0; Ĵ , Ĥ) based on current parameter estimates. The
entropy in the case of Glauber dynamics is

S(σ1|σ0) =
∑
k∈[n]

log(2 cosh(Ak))−Ak tanh(Ak) (10)

where Ak =
∑
l∈∂k

Jklσ
0
l +Hk. Here, we issue mini-batches

of queries sampled from distribution q that is proportional
to the the entropy S. Our algorithm is given in Algorithm 1.

Algorithm 1 Active Learning of Glauber Dynamics

Input: Initial set of samples X(0), number of mini-batches imax,
size of mini-batch mb

(Ĵ , Ĥ)← D-RISE(X(0))
for i = 1 : imax do

Compute entropy S(σ1|σ0; Ĵ , Ĥ) ∀σ0

Set q(σ0) ∝ S(σ1|σ0; Ĵ , Ĥ)
Modify distribution: q = µq + (1− µ)pU
Sample mb queries from {−1,+1}n w.p. q
Obtain corresponding samples Xb by running Glauber dy-
namics in M-regime
Set X(i) = X(i−1) ⋃Xb

(Ĵ , Ĥ)← D-RISE(X(i))
end for

Output: (Ĵ , Ĥ)

Figure 4: Scaling of m? with β in M-regime. Performance
comparison of D-RISE with active learning against a vanilla
D-RISE in reconstructing a ferromagnetic model with weak
anti-ferromagnetic impurity of size n = 16 (see Fig. 1bE).
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Note that we slightly modify the query distribution q for
each mini-batch by mixing it with the uniform distribution
pU . The mixing coefficient 0 ≤ µ ≤ 1 typically depends
on the number of samples so far. We set it to µ = 1 −
1/|X(i)|1/6 which is often used for such active learning
algorithms (Sourati et al., 2017b; Chaudhuri et al., 2015).

To determine the sample complexity, the minimal number
of samples required for successful structure reconstruction
m? is determined as described in Sec. 3.2. However, here
each trial corresponds to an independent active learning run.
In each trial for a given value of m, we consider the size of
initial set of samples to be bm/3c and size of batches mb

such that there are a total of 15 mini-batches.

In Figure 4, we compare the sample complexity of D-RISE
with and without active learning (AL) on the challenging
case of a ferromagnetic periodic lattice with a weak anti-
ferromagnetic impurity (Fig. 1bE). We consider values of β
between 1.5 and 2.7. While the scaling of sample complex-
ity with β remains unchanged (within experimental error),
there is about 47% reduction in the number of samples re-
quired for successful graph reconstruction when using AL.

5. Conclusions and future work
In this paper, we theoretically and empirically establish a
fundamental difference between learning graphical models
in the traditional framework of i.i.d. samples and samples
obtained from out of equilibrium dynamics. We show that
in the latter understudied setting, there is considerable im-
provement in sample complexity which has both theoretical
and practical consequences. In future work, it would be
interesting to further investigate general Markov Random
Fields and other Markov chain dynamics.

Code, data availability, and supplementary
material
The code for the learning algorithms, active learner and data
in this work is available on GitHub1. The supplementary
material can be found at the following link 2.
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