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Abstract
We propose XOR-Contrastive Divergence learn-
ing (XOR-CD), a provable approach for con-
strained structure generation, which remains dif-
ficult for state-of-the-art neural network and con-
straint reasoning approaches. XOR-CD harnesses
XOR-Sampling to generate samples from the
model distribution in CD learning and is guar-
anteed to generate valid structures. In addition,
XOR-CD has a linear convergence rate towards
the global maximum of the likelihood function
within a vanishing constant in learning exponen-
tial family models. Constraint satisfaction en-
abled by XOR-CD also boosts its learning per-
formance. Our real-world experiments on data-
driven experimental design, dispatching route gen-
eration, and sequence-based protein homology
detection demonstrate the superior performance
of XOR-CD compared to baseline approaches in
generating valid structures as well as capturing
the inductive bias in the training set.

1. Introduction
Generative modeling has received tremendous success in
recent years. Notable examples include image synthesis
(Goodfellow et al., 2014; Radford et al., 2015; Isola et al.,
2017; Brock et al., 2018), music composition (Briot et al.,
2017; Engel et al., 2017; Prenger et al., 2019), molecule
synthesis, drug discovery (Liu et al., 2018; Kusner et al.,
2017; Jin et al., 2018) and more.

Nevertheless, learning generative models over a constrained
space still remains a major research challenge. Take the
example of protein homology detection, an important bi-
ological application considered in this paper, to align two
protein sequences, where each amino acid in one sequence
can be aligned either to another amino acid in the other
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Figure 1. An illustration of sequence-based protein homology de-
tection problem. (Left) The problem is to predict the alignment
two amino acids sequences S1 and S2, where one amino acid
from one sequence can be aligned to either one amino acid from
the other sequence (match), or to a gap (insertion, marked by �).
(Right) Biological constraint: such an alignment must form a path
from the top-left to the bottom-right corner in the alignment matrix,
where a diagonal transition represents a match, a horizontal or a
vertical transition represents an insertion.

sequence or a gap. Biological constraints require such an
alignment forms a continuous path from the top-left cor-
ner to the bottom-right corner in the alignment matrix (see
Figure 1). Given two protein sequences, the learning prob-
lem is to predict which alignment is more likely based on
samples from the training set. Previous constrained satis-
faction approaches (Rychlewski et al., 2000) identify an
alignment satisfying all constraints, yet are optimal only
regarding a rigid expert-defined objective, which may fail
to include essential biological factors. Learning-based ap-
proaches (Söding, 2005; Ma et al., 2014) harness highly
flexible neural models for alignment prediction. However,
the predictions often violate constraints (i.e., they do not
form paths). Similar challenges are present in many real-
world problems: it is difficult to generate structures which
simultaneously (i) satisfy constraints, and (ii) effectively
capture the inductive bias present in the training set.

We present XOR-CD, a constrained generative model based
on contrastive divergence and XOR-Sampling, which con-
verges to the global optimum of the likelihood function of
an exponential family model within a vanishing constant in
linear number of steps. Rather than using Markov Chain
Monte Carlo (MCMC) to sample from the current model
distribution as in the classical case of contrastive divergence,
XOR-CD generates samples using XOR-Sampling, a recent
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approach with provable guarantees. XOR-Sampling reduces
the sampling problem into queries to NP oracles subject
to randomized XOR constraints. The empirical probability
of getting one sample can be bounded within a constant
multiplicative factor of the true probability. Our main con-
tribution is to embed XOR sampling into contrastive di-
vergence learning, which yields a learning approach with
provable guarantees. XOR-CD advances the state-of-the-art
in constrained structure generation in the following way:

1. Constraint Satisfaction: Because XOR-CD reduces
the sample generation problem into constraint satisfac-
tion subject to randomized constraints, the structures
generated from XOR-CD are guaranteed to satisfy con-
straints, addressing a key limitation of many neural
network based structure generation approaches.

2. Linear Convergence Speed to the Global Optimum:
We are able to prove that XOR-CD has a linear conver-
gence rate towards the global maximum of the likeli-
hood function within a vanishing constant when learn-
ing exponential family models.

3. Constraint Satisfaction Improves Learning Perfor-
mance: We observe empirically that XOR-CD learns
faster and better than state-of-the-art neural-based ap-
proaches in constrained generation domains. We hy-
pothesize that the improvement in learning perfor-
mance is due to better constraint satisfaction offered
by XOR-CD. Because the samples generated from the
model distribution always satisfy constraints, XOR-
CD can focus on learning the structural differences of
the samples generated from the model distribution and
from data. Baseline approaches, contrarily, spend most
of their time struggling in generating valid structures.

We demonstrate the power of XOR-CD on three real-world
applications. Aside from the protein homology detection
problem, our second application is on the optimal experi-
ment design, which tests n crops in a n-by-n field. Agri-
culturalists require very crop to be planted exactly once in
every row and column, forming a so-called Latin square.
Yet, other implicit criteria can only be learned from a dataset
of good designs, therefore making it a learning problem. Our
third application is on dispatching route generation, in which
we suggest routes for delivery drivers. The routes have to
form a Hamilton cycle, visiting each requested location once
and only once. Aside from this hard requirement, they also
need to be similar to historical routes, satisfying drivers’
implicit preferences. In all 3 applications, our method gen-
erates structures that not only have higher likelihood than
competing approaches, but also 100% satisfy constraints,
while the validity rate of competing approaches are less
than 20%. In addition, the distributions of the valid struc-
tures generated by XOR-CD closely resemble those in the

training set, demonstrating that XOR-CD can successfully
capture the inductive bias in the training set. Furthermore,
the learned XOR-CD model can be used to complete par-
tially filled structures. These completed structures 100%
satisfy constraints and are close to those in the training set.

2. Preliminaries
2.1. Exponential Family Models

We consider discrete exponential family models over ran-
dom variables X 2 X ✓ {0, 1}n with parameters ✓ 2 Rd:

P✓(X) = c(X)e✓
T�(X)�⇤(✓)

, (1)

where c(X) is the carrier measure, � : X ! Rd is the
sufficient statistics and ⇤(✓) is the log partition function:

⇤(✓) = log
X

x2X
c(x)e✓

T�(x)
. (2)

Notice that ⇤(✓) contains a discrete integral over a con-
strained structure space X , which makes the entire problem
computationally intractable. For example, in the protein
homology detection application, X represents the space of
all alignments that form valid paths. Given x1, x2, . . . , xN

from the training set, the learning problem is to find the
optimal parameters ✓ which maximize the log likelihood
l(✓) = 1

N

PN
i=1 logP✓(xi):

max
✓

l(✓) =
1

N

NX

i=1

✓
T
�(xi)� ⇤(✓) + constant. (3)

Given the learned model, the inference problem is to com-
plete a partial structure to maximize the joint probability:

(xp, x
⇤) = arg max

(xp,x)2X
P✓(xp, x).

Here, xp represents a partially filled structure, and x
⇤ are the

assignment to the remaining variables. Back to the protein
homology detection example, the learning problem is to
identify which types of alignments are more likely in the
training dataset, while the inference problem is to predict an
alignment given the amino acid sequences of two proteins.
⇤(✓) is a convex function of ✓. Denoter⇤(✓) the gradient
vector of ⇤(✓). We can prove r⇤(✓) is the expectation of
the sufficient statistics �(x) under P✓. That is,

r⇤(✓) = EP✓ [�(x)] =
X

x2X
�(x)P✓(x). (4)

2.2. Contrastive Divergence Learning

Contrastive Divergence (CD) (Hinton, 2002b) applies
stochastic gradient ascent to maximize the log likelihood of
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an exponential family model. From Equations 3 and 4, the
gradient of the log likelihood can be written as:

rl(✓) = ED[�(X)]� EP✓ [�(X)]. (5)

Here, ED denotes the expectation over the data distribution,
and EP✓ denotes the expectation over the current model dis-
tribution P✓. Let {x1, . . . , xM} be a mini-batch of training
data, CD uses the sample mean 1

M

PM
i=1 �(xi) to approxi-

mate ED[�(X)]. Denote x
(k)
i as the sample after taking k

Markov Chain Monte-Carlo (MCMC) steps following the
current model distribution P✓(x) starting from data xi. CD
uses 1

M

PM
i=1 �(x

(k)
i ) to approximate EP✓ [�(X)]. Overall,

the gradient of the log likelihood is approximated by

gcd(✓) ⇡
1

M

MX

i=1

�(xi)�
1

M

MX

i=1

�(x(k)
i ). (6)

CD hence iterates the following update ✓t+1 = ✓t+⌘gcd(✓t)
until convergence, where ⌘ is the learning rate.

2.3. XOR Sampling

Our method leverages recent advancements in XOR sam-
pling (Ermon et al., 2013b), which reduces the sampling
problem into queries to NP oracles subject to XOR con-
straints. XOR sampling guarantees that the probability of
drawing a sample is sandwiched between a multiplicative
constant of the true probability. We only present the gen-
eral idea of XOR-Sampling on unweighted functions here
and refer the readers to the paper (Ermon et al., 2013b)
for the weighted case. For the unweighted case, assuming
w(x) takes binary values, we need to draw samples from
the set W = {x : w(x) = 1} uniformly at random; i.e.,
suppose |W| = 2l, then each member in W should have
2�l probability to be sampled. XOR proceeds by adding k

randomized XOR constraints XORk(x) = 1 to the original
problem and returns an element uniformly at random from
the constrained set Wk = {x : w(x) = 1, XORk(x) = 1}
when |Wk| is small enough and can be sampled by an exact
sampler. k is increased from 1 until |Wk| becomes small.
Because the k-th XOR constraint removes at random half
of the elements from the previous set Wk�1, one can prove
a constant bound on the probabilities of getting one sample
from XOR sampling (Gomes et al., 2007a;b).

For the weighted case, one needs to draw samples from an
unnormalized function w(x), i.e., the probability of getting
a sample x0, P (x0) is proportional to w(x). The idea is to
discretize w(x) and transform the weighted problem into
an unweighted one with additional variables. Our paper
uses the constant approximation bounds of XOR sampling
on weighted functions through the following theorem. The
details on the discretization scheme and the choice of the
parameters of the original algorithm to reach the bound in
Theorem 1 are in the supplementary materials.

Theorem 1. (Ermon et al., 2013b) Let 1 < � 
p
2,

0 < � < 1, w : {0, 1}n ! R+
be an unnormalized prob-

ability density function. P (x) / w(x) is the normalized

distribution. Then, with probability at least 1 � �, XOR-

Sampling(w, �, �) succeeds and outputs a sample x0 by

querying O(n ln(n� )) NP oracles. Upon success, each x0 is

produced with probability P
0(x0). We must have

1/�P (x0)  P
0(x0)  �P (x0).

Moreover, let � : {0, 1}n ! R+
be one non-negative func-

tion, then the expectation of one sampled �(x) satisfies,

1

�
EP (x)[�(x)]  EP 0(x)[�(x)]  �EP (x)[�(x)]. (7)

3. XOR-Contrastive Divergence
We propose XOR-CD, a new contrastive divergence method
for constrained structure generation on exponential fam-
ily models, which is guaranteed to converge to the global
maximum of the likelihood function within a vanishing con-
stant in linear number of CD iterations. XOR-CD breaks
down the gradient of the log likelihood function into the
divergence of the expectations of the sufficient statistics
over the training data and over the current model distribu-
tion, following the CD framework. However, XOR-CD
leverages XOR-sampling to generate samples in estimating
EP✓ [�(X)].

The detailed procedure of XOR-CD is shown in Algorithm 1.
XOR-CD takes the exponential family model P✓(X) with
sufficient statistics �(X), carrier measure c(X), training
data {xi}Ni=1, initial model parameter ✓0, the learning rate
⌘, the number of CD iterations T , XOR-Sampling parame-
ters (�, �), and batch sizes M , K as input, and outputs the
learned parameter ✓T . To approximate EP✓t

[�(X)] at step t,
XOR-CD draws K samples x0

1, . . . , x
0
K from P✓t(X) using

XOR-Sampling, where K is a user-determined sample size.
Because XOR-Sampling has a failure rate, XOR-CD repeat-
edly call XOR-Sampling until all K samples are obtained
successfully (line 2 – 6). Then, XOR-CD also draws M sam-
ples from the training set {xi}Ni=1 uniformly at random to
approximate ED[�(X)]. Once all the samples are obtained,
XOR-CD uses gt = 1

M

PM
j=1 �(xj) � 1

K

PK
j=1 �(x

0
j) as

an approximation for the gradient of the log likelihood. ✓ is
updated following the rule ✓t+1 = ✓t + ⌘gt for T steps, and
⌘ is the learning rate. Finally, the average ✓T = 1

T

PT
t=1 ✓t

is the final output of the algorithm.

3.1. Linear Convergence to the Global Optimum

We can show that XOR-CD converges to the global optimum
of the log likelihood function in addition to a vanishing
term. Moreover, the speed of the convergence is linear
with respect to the number of contrastive divergence steps.
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Denote V arD(�(x)) = ED[||�(x)||22]� ||ED[�(x)]||22 and
V arP✓ (�(x)) = EP✓ [||�(x)||22]�||EP✓ [�(x)]||22 as the total
variations of �(x) w.r.t. the data distribution PD and model
distribution P✓. The precise mathematical theorem states:
Theorem 2. (main) Let P✓(X) : X ! R+

be the exponen-

tial family model denoted in Equation 1. Given data points

{xi}Ni=1, the log likelihood l(✓) = 1
N

PN
i=1 logP✓(xi).

Denote OPT = max✓ l(✓). Let V arD(�(x))  �
2
1 ,

max✓ V arP✓ (�(x))  �
2
2 and ||EP✓ [�(x)]||22  "

2
. Sup-

pose 1  � 
p
2 is used in XOR-sampling, the learning

rate ⌘  2��2

�2
2�

, and ✓T is the output of XOR-CD. We have:

OPT � E[l(✓T )] 
�||✓0 � ✓

⇤||22
2⌘T

+
⌘(�2

2 + "
2)

K
+

⌘�
2
1

�M
.

XOR-CD is the first provable algorithm which converges
to the global maximum of the likelihood function and a
tail term for exponential family models. Moreover, the rate
of the convergence is linear in the number of SGD itera-
tions T . Previous approaches do not have such tight bounds.
Variational inference approaches such as the Variational
Auto-encoders (VAEs) (Kingma & Welling, 2013) optimize
the Evidence Lower Bound (ELBO). However, the gap be-
tween the lower bound and the true likelihood can become
arbitrarily large. Expectation Propagation (EP) methods
(Minka, 2013; Dehaene & Barthelmé, 2015) computes an
upper bound of the likelihood, which can be arbitrarily
loose as well. Various Generative Adversarial Nets (GANs)
(Goodfellow et al., 2014; Radford et al., 2015; Isola et al.,
2017) and flow models (Kingma & Dhariwal, 2018; Prenger
et al., 2019) do not have theoretic bounds.

The main challenge to prove Theorem 2 lies in the fact that
we cannot ensure the unbiasedness of the gradient. Because
the partition function ⇤(✓) is convex with respect to ✓ in
exponential family models, a gradient descent algorithm can
be proven to be linearly convergent towards the maximum
of the likelihood function, if the expectation of the estimated
gradient is unbiased, ie, E[gt] = rl(✓t). However, even
though we apply XOR-sampling, we still cannot guarantee
the unbiasedness of gt. Instead, using Theorem 1, our bound
for gt is in the following form:

1

�
[rl(✓t)]+  E[gt+]  �[rl(✓t)]+, (8)

�[rl(✓t)]�  E[gt�] 
1

�
[rl(✓t)]�. (9)

Here, [f ]+ means the positive part of f , ie, [f ]+ =
max{f,0}, and [f ]� means the negative part of f , ie,
[f ]� = min{f,0}. The bound in Equation 8 and 9 can
be proven following the fact that rl(✓) = ED[�(X)] �
EP✓ [�(X)] and applying Equation 7. The proof of Theo-
rem 2 relies on our following new result (Theorem 3) on
Stochastic Gradient Descent (SGD) algorithms which only

Algorithm 1 XOR-CD
Input: ✓0, c(X),�(X), T, ⌘, �, �,M,K, {xi}Ni=1.

1 for t = 0 to T do
2 j  1

while j  K do
3 x

0  XOR-Sampling
⇣
c(X)e✓t

T�(X)
, �, �

⌘

if x0 6= Failure then
4 x

0
j  x

0; j  j + 1

5 end
6 end
7 Sample {xj}Mj=1 uniformly from {xi}Ni=1.

gt =
1
M

PM
j=1 �(xj)� 1

K

PK
j=1 �(x

0
j)

✓t+1 = ✓t + ⌘gt

8 end
9 return ✓T = 1

T

PT
t=1 ✓t.

have access to constant approximate gradient vectors. As
far as we know, previous SGD convergence analysis largely
requires the unbiasedness of the gradient. We are the first to
extend SGD convergence bounds to biased cases. Theorem
3 requires function f to be L-smooth. f(✓) is L-smooth if
and only if ||f(✓1)� f(✓2)||2  L||✓1 � ✓2||2. Notice that
the conditions of Theorem 2 automatically guarantee the
L-smoothness of the log likelihood.

Theorem 3. Let f : Rd ! R be a L-smooth convex func-

tion and ✓
⇤ = argmin✓f(✓). In iteration t of SGD, gt is the

estimated gradient, i.e., ✓t+1 = ✓t � ⌘gt. If V ar(gt)  �
2
,

and there exists 1  c 
p
2 s.t.

1
c [rf(✓t)]

+  E[g+t ] 
c[rf(✓t)]+ and c[rf(✓t)]�  E[g�t ]  1

c [rf(✓t)]
�

, then

for any T > 1 and step size ⌘  2�c2

Lc , let ✓T = 1
T

PT
t=1 ✓t,

we have

E[f(✓T )]� f(✓⇤)  c||✓0 � ✓
⇤||22

2⌘T
+

⌘�
2

c
. (10)

The proofs of Theorems 2 and 3 are left to the supplementary
materials. Here we outline the sketch to prove Theorem 3.

Proof. (sketch for Theorem 3) One can show under the
conditions of Theorem 3, we must have (via Lemma 2,
stated and proved in supplementary materials):

1

c
||E[gt]||22  hrf(✓t),E[gt]i  c||E[gt]||22.

1

c
hE[gt], ✓t � ✓

⇤i  hrf(✓t), ✓t � ✓
⇤i  chE[gt], ✓t � ✓

⇤i.

By the L-smoothness of f , for the t-th iteration,

f(✓t+1)  f(✓t) + hrf(✓t), ✓t+1 � ✓ti+
L

2
||✓t+1 � ✓t||22,
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P(X)

X

Data distribution
Model distribution
Training set
Samples from model
Update Direction

(a) Updating steps of traditional CD
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X
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(b) Updating steps of XOR-CD

Figure 2. An intuitive explanation of why constraint satisfaction enabled by XOR-CD improves the overall learning performance. In
training data, valid structures are scattered across several isolated regions due to combinatorial constraints (green curves in both plots
denote the training data distribution and green dots denote the training samples). Many negative samples generated by traditional CD do
not satisfy constraints (blue triangles in the left plot). Therefore, traditional CD spends many iterations minimizing the likelihood of
invalid structures (blue arrows in the left plot). XOR-CD converges faster to the ground-truth data distribution because all its updates are
used to match the data distribution within the regions that satisfy constraints (orange arrows in the right plot).

= f(✓t)� ⌘hrf(✓t), gti+
Lt

2

2
||gt||2. (11)

By the convexity of f , we have

f(✓t)  f(✓⇤) + hrf(✓t), ✓t � ✓
⇤i. (12)

The following inequalities can be shown, combining Lemma
2, Equation 11 and 12:

E[f(✓t+1)]  f(✓⇤) + cE
h
hgt, ✓t � ✓

⇤i � ⌘

2
||gt||22

i
+

⌘

c
�
2
.

which implies E[f(✓t+1)] � f(✓⇤)  c
2⌘E[(||✓t � ✓

⇤||22 �
||✓t+1 � ✓

⇤||22)] +
⌘
c�

2. Sum this inequality for t =
0, . . . , T � 1, we get

T�1X

t=0

E[f(✓t+1)� f(✓⇤)]

 c

2⌘
(||✓0 � ✓

⇤||22 � E[||✓T � ✓
⇤||22]) +

T⌘

c
�
2

 c||✓0 � ✓
⇤||22

2⌘
+

T⌘

c
�
2
.

Finally, by Jensen’s inequality, tf(✓T ) 
PT

t=1 f(✓t),

T�1X

t=0

E[f(✓t+1)� f(✓⇤)] = E[
TX

t=1

f(✓t)]� Tf(✓⇤)

� TE[f(✓T )]� Tf(✓⇤).

Combining the above equations we get

E[f(✓T )]  f(✓⇤) +
c||✓0 � ✓

⇤||22
2⌘T

+
⌘

c
�
2
.

This completes the proof.

The proof of Theorem 2 is to apply Theorem 3 on the log
likelihood function and noticing that l(✓) is L-smooth when
the total variation V ar(�(x)) is bounded (proved by a sepa-
rate lemma). The lemmas and the proofs are left to section
B.4 in supplementary materials. Theorem 2 states that in
expectation, the difference between the output of XOR-CD
algorithm ✓T and the true optimum OPT is bounded by a
term that is inversely proportional to the number of itera-
tions T and a tail term ⌘(�2

2+"2)
K + ⌘�2

1
�M . To reduce the tail

term with fixed steps ⌘, we can generate more samples at
each iteration to reduce the variance (increase M and K).
In addition, to quantify the computational complexity of
XOR-CD, we prove the following theorem in the supple-
mentary materials detailing the number of queries to NP
oracles needed for XOR-CD.

Theorem 4. XOR-CD in Algorithm 1 uses O(Tn ln n
� +

TK) queries to NP oracles.

3.2. Constraint Satisfaction Improves Learning

In the previous section we prove the theoretic convergence
of XOR-CD towards the global optimum of the likelihood
function. Despite XOR-CD has to query NP oracles, which
are significantly more expensive than e.g., MCMC sam-
pling, we notice that XOR-CD converges to the global op-
timum faster than classical CD approaches in real-world
experiments, especially on constrained structure generation
problems (see the experiment section). Notice that our ob-
servation is different from that of (Hinton, 2002a), where
they observe CD works reasonably well even if the number
of the MCMC steps k is kept far less than that required for
well mixing. We attribute the observational difference to
the types of problems we consider, which are mainly con-
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strained structure generation problems. The capability to
generate negative samples that satisfy constraints becomes
important for likelihood learning in this setting.

We use Figure 2 as an intuitive explanation of why the con-
straint satisfaction enabled by XOR-CD leads to improve-
ment in the learning performance. Figure 2(a) depicts one
iteration of a traditional CD process. Here, CD tries to match
the current model distribution (shown in the blue dashed
line) with the data distribution (shown in the green line),
by increasing the likelihood of the training samples and
decreasing the likelihood of the negative samples generated
typically by MCMC (denoted by the pulling of blue arrows).
Because MCMC does not guarantee the constraint satisfac-
tion of the negative samples, traditional CD spends much
time pulling down the model likelihood in regions which
violate constraints. On the contrary, Figure 2(b) depicts
one iteration of XOR-CD. Because the negative samples
are generated provably from XOR-sampling, they satisfy
constraints. This allows XOR-CD to focus on matching the
likelihood within the region that satisfy constraints; hence
leading towards faster matching to the data distribution.

4. Related Work
There is a fruitful line of work for generative machine learn-
ing. Energy-based models (Hinton & Salakhutdinov, 2006;
Bengio & Delalleau, 2009; Carreira-Perpinan & Hinton,
2005) take advantage of either exponential families (Hinton,
2002b; Jiang et al., 2018; Durkan et al., 2020) or neural
networks (Belanger & McCallum, 2016; Belanger et al.,
2017) for structure modelling. Qiu et al. (2019) leverages
coupling of Markov chains to get unbiased samples in Con-
trastive Divergence framework, which however is hard to
reach in practice. Score matching based methods (Bao
et al., 2020; Song & Ermon, 2020; Pang et al., 2020) try
to estimate the score function in order to get rid of the in-
tractable partition function. Deep generative models like
graph neural networks (Grover et al., 2019; Zhou et al.,
2018) and normalizing flow models (Kingma & Dhariwal,
2018; Prenger et al., 2019) are widely used recently. Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014; Radford et al., 2015; Isola et al., 2017) learn the
structure in a likelihood-free manner. While learning the
evidence lower bound, soft constraints were embedded to
Variational Auto-Encoder (VAE) (Kingma & Welling, 2013)
for molecule design (Kusner et al., 2017; Jin et al., 2018).
However, these deep generative methods can hardly deal
with hard combinatorial constraints.

Previous approaches embed machine learning models into
the optimization by, e.g., integrating neural networks and
decision trees with constraint programming (Lallouet &
Legtchenko, 2007), or introducing a Neuron global con-
straint that represents a pre-trained neural network (Lom-

Figure 3. Averaged log likelihood of 100 structures generated by
different learning algorithms on a discrete exponential family
model varying the number of variables. The structures generated
by XOR-CD have the highest average log-likelihoods.

bardi & Gualandi, 2016; Lombardi et al., 2017). Machine
learning approaches have also been used to solve constraint
reasoning and optimization problems (Galassi et al., 2018;
Vinyals et al., 2015; Khalil et al., 2017). Graves et al. (2016)
employs neural networks for discrete structure generation,
while Wang et al. (2019); Amos & Kolter (2017); Agrawal
et al. (2019) and de Avila Belbute-Peres et al. (2020) inte-
grate logical reasoning and differentiable optimization prob-
lems within deep learning architectures. Parity constraints
are proposed for both sampling (Gomes et al., 2007a; Er-
mon et al., 2013b) and counting problems (Ermon et al.,
2013a; Chakraborty et al., 2014; Achlioptas & Theodor-
opoulos, 2017; Achlioptas et al., 2018; Ding et al., 2019) in
probabilistic inference. These approaches provide constant
approximation guarantees on either the probability of the
samples or the estimated values of discrete integration.

5. Experiments
In this section we show the superior performance of XOR-
CD on 4 structure generation experiments, one on synthetic
data generated by a known model and the other three are
dispatching route generation, optimal experimental design,
and sequence-based protein homology detection. One base-
line is Contrastive Divergence CD100, denoted as Gibbs-CD,
which uses Gibbs Sampling (Carreira-Perpinan & Hinton,
2005) of 100 steps to obtain the samples from the model dis-
tribution. We also compare with Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014), belief propagation-
based CD approaches, BP-CD, and the recent BPChain-CD
(Fan & Xue, 2020). Various experiment settings are left to
the supplementary materials. In Figure 3, we show XOR-
CD learns the highest log likelihood on a synthetic dataset
(details in the supplementary materials).

5.1. Dispatching Route Generation

We consider the problem of generating dispatching routes
for delivery drivers. The delivery routes need to form Hamil-
tonian cycles, where each location is visited once and ex-
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KL=0.265
KL=0.127

KL=0.026 KL=0

KL=0.136
KL=0.355

KL=0.075 KL=0

Figure 4. XOR-CD outperforms competing approaches by producing 100% valid delivery routes and experiment designs while capturing
the inductive bias in training data. (Left) The percentage of valid routes generated by different algorithms, varying the number of locations.
(Middle) The dashed line shows the percentage of valid routes generated from different algorithms when the number of locations is 10.
The bars show the distributions of these valid routes grouped by the traveling distances d. The distribution of XOR-CD closely matches
that of the training data with the smallest KL divergence 0.026. (Right) The dashed line shows the percentage of valid experiment
designs generated from different algorithms on 5⇥ 5 grids. The bars show the distributions of these valid structures grouped by variance.
XOR-CD generates 100% valid designs, and has the minimal KL divergence 0.075 towards the training data distribution.

actly once. For this experiment, we assume the number of
delivery locations n is fixed, although it is not difficult to
extend our approach to the cases where n varies. In the learn-
ing phase, we are given a dataset of historical trips, where
each trip is represented with a permutation of n locations, de-
noting the order of in which these locations are visited. We
learn an exponential family model to capture the likelihood
of different permutations. Specifically, denote xi,j as a bi-
nary indication variable, which is 1 if and only if the i-th lo-
cation to visit is location j. The exponential family model is
Pr(x) / exp(✓0 +

P
i,j ✓i,jxi,j +

P
i,j,k ✓i,j,kxi,jxi+1,k)

and the ✓’s are the parameters to learn. Learning rate is fixed
as 0.1 and total number of epochs T is 500. There is also a
timeout of 10 hours for all algorithms. We also set both M

and K to be 100, and parameters for XOR-Sampling were
kept the same as in (Ermon et al., 2013b). We leave the data
generation process, and how we add the Hamilton cycle
constraint into XOR-CD to the supplementary materials. In
solving the inference problem during testing, we have a se-
ries of additional constraints detailing the requirement of a
new day delivery. Such constraints include e.g., certain loca-
tions must be visited first, and one location must be visited
after another location, etc. Therefore, the inference problem
is to find variable assignments to all xi,j variables, which
maximizes the likelihood, while satisfies the Hamilton cycle
and the additional constraints.

We first examine the validity of the routes generated. The
left figure in Figure 4 shows the percentage of valid Hamil-
ton cycles generated from different algorithms, varying the
numbers of delivery locations from 5 to 10. We can see
that XOR-CD can generate 100% valid Hamilton structures
while the competing methods at best generate 40% valid
routes. The red dashed line in the middle figure shows the
percentage of valid Hamilton cycles generated from differ-
ent algorithms when the number of locations is 10. We then

examine whether the generated routes resemble those in the
training data. To validate this, we evaluate the distribution of
the total lengths of the routes generated. Without imposing
additional constraints, the lengths distribution of the gener-
ated routes should closely resembles that of the training set
for a successful learning algorithm. The bars in Figure 4
(middle) demonstrate such distributions of the valid routes
generated by each algorithm. The last column shows the
distribution of the training data. We can see the distribution
from XOR-CD closely matches the data distribution, with
KL divergence of 0.026. Other approaches are worse. This
indicates that XOR-CD is able to capture the inductive bias
of the training set better than competing approaches.

5.2. Optimal Experiment Design

We further consider the optimal experiment design prob-
lem. Here, we generate an experiment design in the
form of a Latin square, which is a n by n matrix and
each entry can be planted with crop 1 to n. Each
crop needs to be planted exactly once in each row and
column. Let xi,j,k be an indicator variable which is
1 if and only if crop k is planted at the i, j-th entry.
The exponential family model is: Pr(x) / exp(✓0 +P

i,j,k ✓i,j,kxi,j,k +
P

i,j,m,l ✓
1
i,j,m,l�(xi,j,m, xi+1,j,l) +

✓
2
i,j,m,l�(xi,j,m, xi,j+1,l)). The learning parameters are set

the same as in the previous task. The learning problem is
to identify the values of ✓’s. During testing, the inference
problem is to generate experiment designs from partially
filled matrices satisfying the Latin square requirement while
closely resemble those in the training set.

We first examine the validity of experiment designs. Here
we consider generating 5⇥ 5 Latin squares. The percentage
of valid Latin squares are shown in the red dashed curve
of Figure 4 (right). Again, XOR-CD generates 100% valid
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Partially filled
Latin Square XOR-CDGANGibbs-CD

Figure 5. XOR-CD (column 4) generates valid Latin squares from
partially filled structures (column 1), which all have variance 4,
the most frequent variance in the training dataset. Gibbs-CD (col-
umn 2) and GAN (column 3) cannot generate valid Latin squares
(constraints violation shown in red boxes).

experiment designs while competing approaches at best gen-
erate 20%. To judge how well the generated Latin squares
resemble those in the training set, we evaluate the distribu-
tion of the spatial variance of the generated Latin squares.
This metric was used as an additional criterion for good
experiment designs (see, e.g., (Gomes et al., 2004; Smith
et al.; Le Bras et al., 2012)). Without partially filled cells,
the generated Latin squares should be close in spatial vari-
ance as those in the training set. The bars in Figure 4 shows
that the distribution of the spatial variance of Latin squares
generated by XOR-CD matches that of the training set most
with KL divergence of 0.075. In addition, Figure 5 shows
that XOR-CD is able to complete a partially-filled Latin
square resembling those in the training set while Gibbs-CD
and GAN cannot generate valid structures.

5.3. Sequence-based Protein Homology Detection

We also consider a real-world task, sequence-based protein
homology detection. Our approach is based upon com-
paring protein sequence profiles, which are derived from
multiple sequence alignment (MSA) of homologies in a pro-
tein family. Let S1 and S2 be two sequences of amino acids.
Our goal is to align the two sequences. Our tasks are: (1)
(learning) given a dataset of aligned pairs of amino acid se-
quences, learn the likelihoods of different alignments of the
two sequences; (2) (inference) given a new pair of amino
acid sequences, determine their most likely alignment.

The exponential family model for protein alignment is simi-
lar to the one used in (Ma et al., 2014), where we use flow
constraints to guarantee the solution to form a valid path
in the alignment matrix. The details are left to the supple-
mentary materials. We constructed the training set from the

Dynamic
Program Gibbs-CD XOR-CD

valid align. 100% 0% 100%
Precision Recall

exact
match 4-offset exact

match 4-offset

Dynamic
Program 28.7% 39.5% 33.5% 41.2%

Gibbs-CD 39.6% 47.8% 37.9% 45.4%
XOR-CD 48.8% 54.3% 45.3% 52.1%

Table 1. (Upper) XOR-CD and dynamic programming generate
100% valid alignments for protein homology detection, while
Gibbs-CD cannot. (Lower) Precision and recall of the alignments
found by different approaches. XOR-CD outperforms two base-
lines by a large margin, even when both metrics are calculated
taking into account both valid and invalid alignments. 4-offset is a
relaxed measure.

PDB40 dataset (Wu & Xu, 2020). Following the practice of
(Ma et al., 2014), the reference alignment (groundtruth) is
generated by DeepAlign (Wang et al., 2013). Our experi-
ment data include those whose groundtruth alignment has
fewer than 50 gap positions (excluding the gap in the begin-
ning and end) and the total length is up to 200. The test set
is made up with 50 randomly sampled sequences from the
PDB40 dataset separated from the training set. Following
common practice, we use precision and recall as evaluation
metrics. Precision is the fraction of correctly aligned amino
acid pairs within all predicted ones, and recall is the fraction
of correctly aligned pairs within all ground-truth ones. No-
tice these two metrics are local, and can be computed even
when the global alignment is invalid (does not form a path in
the alignment matrix). We compare XOR-CD with dynamic
programming and Gibbs-CD. Dynamic programming uses
an expert-defined objective (Rychlewski et al., 2000) with a
few learned terms. It always produces valid alignments.

As shown in Table 1 (Upper), both dynamic programming
and XOR-CD have the ability to generate 100% valid align-
ments, while Gibbs-CD cannot. XOR-CD outperforms both
baselines in precision and recall in Table 1 (Lower). 4-
position off is a relaxed metric that considers a alignment
correct if it is off by at most 4 positions. Using this relaxed
metric, XOR-CD still outperforms both baselines by 7%
in precision and 14% in recall. Notice these metrics are
computed taking into both valid and invalid alignments. In
summary, XOR-CD outperforms baselines in all learning
metrics while also generating 100% valid alignments.

6. Conclusion
We proposed XOR-CD, a novel algorithm for constrained
structure generation. We showed theoretically that XOR-CD
has a linear convergence rate to the global optimum for ex-
ponential family models. Empirically, we demonstrated the
superior performance of XOR-CD on three real-world con-
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strained structure generation tasks. In all tasks, XOR-CD
generates 100% valid structures and these generated struc-
tures closely match those in the training set. Future work
includes extending XOR-CD to deep generative models.
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