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Abstract

The Variational Autoencoder (VAE) performs ef-
fective nonlinear dimensionality reduction in a
variety of problem settings. However, the black-
box neural network decoder function typically em-
ployed limits the ability of the decoder function to
be constrained and interpreted, making the use of
VAEs problematic in settings where prior knowl-
edge should be embedded within the decoder. We
present DeVAE, a novel VAE-based model with a
derivative-based forward mapping, allowing for
greater control over decoder behaviour via specifi-
cation of the decoder function in derivative space.
Additionally, we show how DeVAE can be paired
with a sparse clustering prior to create BasisDe-
VAE and perform interpretable simultaneous di-
mensionality reduction and feature-level cluster-
ing. We demonstrate the performance and scala-
bility of the DeVAE and BasisDeVAE models on
synthetic and real-world data and present how the
derivative-based approach allows for expressive
yet interpretable forward models which respect
prior knowledge.

1. Introduction
Variational Autoencoders (VAEs) (Kingma & Welling,
2014) have become ubiquitous in modern machine learning
and are applied in a wide range of settings, including the
generation and disentangled latent coding of images (Gre-
gor et al., 2015; Higgins et al., 2017; Kumar et al., 2018),
text generation (Bowman et al., 2016a; Xu et al., 2020) and
semi-supervised learning (Kingma et al., 2014; Maaløe et al.,
2016). They have also played an important role in interpret-
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ing high-dimensional biological data, such as that produced
in genomics settings (Lopez et al., 2018; Simidjievski et al.,
2019; Qiu et al., 2020).

1.1. Extensions of VAEs

The standard VAE integrates Bayesian latent variable mod-
elling, deep neural networks (DNNs) and variational infer-
ence, the combination of which results in a probabilistic
encoder which maps a (high-dimensional) input onto a (low-
dimensional) latent space and a corresponding probabilistic
decoder which maps each position in the latent space onto a
distribution in the observation space.

Many variants of the standard VAE have been developed, in-
cluding the conditional VAE (cVAE) (Sohn et al., 2015)
which conditions the behaviour of the encoder and de-
coder on additional fixed inputs, the neural decomposition
VAE (Märtens & Yau, 2020) which imposes a functional
ANOVA structure on the decoder, and the beta-VAE (Hig-
gins et al., 2017) which incorporates additional regularisa-
tion to encourage latent variable disentanglement. Recently,
an approach that combines dimensionality reduction and
feature-level clustering within a VAE framework (Basis-
VAE) has been developed (Märtens & Yau, 2020). This
type of model is of particular utility on tabular datasets
where each feature may have a distinct standalone meaning
(e.g. it represents a protein, gene or age). BasisVAE groups
subsets of features together whose behaviour is similar over
the latent dimensions. Figure 1 demonstrates the overall
pipeline of such a simultaneous dimensionality reduction
and feature-level clustering method. It can be seen that the
application of dimensionality reduction via a standard VAE
uncovers structure only in the rows (samples) of tabular data
X ∈ RN×d, whereas simultaneous dimensionality reduc-
tion and feature-level clustering aims to uncover structure
in both the rows (samples) and columns (features).

These developments recognise the benefit of introducing ad-
ditional structure into the flexible VAE framework in order
to encourage desirable model behaviour. However, specify-
ing particular functional characteristics with current VAE
decoders remains an open challenge. For example, Basis-
VAE allows us to identify features which share exactly the
same functional shape or dynamics, but it does not provide
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Figure 1. Simultaneous dimensionality reduction and feature-level clustering. Given an observed data matrix X ∈ RN×d, we would
like to i) learn a low-dimensional representation z (dimensionality reduction) and ii) cluster features according to their behaviour as a
function of z (feature-level clustering). The standard VAE framework allows us to perform only i). With our proposed BasisDeVAE
model we can perform both tasks simultaneously and guarantee interpretability of the inferred cluster assignments.

a mechanism to define a broader group of shared patterns
among features, e.g. to cluster together all monotonically
increasing functions. The ability to characterise certain func-
tional behaviours is important in applications where a priori
knowledge or physical laws constrain feature dynamics.

1.2. Contribution

In this work, we present two novel VAE models, namely
DeVAE and BasisDeVAE, which model feature-level be-
haviour x in terms of derivatives with respect to the latent
dimensions z, i.e. ∂x

∂zj
= f

(j)
θ (zj), where f (j)θ is a DNN.

We show how this allows for greater control over decoder
behaviour in settings where certain forms of a priori knowl-
edge and/or physical constraints, such as monotonicity and
transience, are desirable without having to explicitly define
parametric functional forms.

Our work is particularly motivated by modelling disease
or biological progression from cross-sectional data. In this
problem, a cross-sectional collection of input samples is
projected on to a one-dimensional latent space. If the domi-
nant latent source of variation in the cross-sectional data is
temporal, the positioning of samples in the latent space then
corresponds to relative ordering in time or pseudotime. This
type of analysis has been used to determine temporal pat-
terns associated with biological processes, such as cellular
differentiation and cancer progression, where longitudinal
time series data may be difficult or impossible to collect
directly. Figure 2 provides a pictorial representation of this
modelling context.

We demonstrate the real-world utility of DeVAE and Basis-
DeVAE by applying them to synthetic data, image-derived
brain pathology biomarkers from the OASIS-3 dataset (La-
Montagne et al., 2019) and large-scale single-cell RNA
sequencing data (Ernst et al., 2019).

2. Background
2.1. Variational Autoencoders

The original VAE framework (Kingma & Welling, 2014) is
constructed from a latent variable model with the generative
process

zi ∼ p(zi), i = 1, . . . , n

xi|zi ∼ pθ̃(xi|zi),

where zi ∈ Rp is the latent variable corresponding to the
i-th data point xi ∈ Rd in the dataset X = {xi}i=1,...,N .
The conditional likelihood pθ̃(x|z) is modelled via a DNN
fθ (the decoder), typically such that E [x|z] = fθ(z). For
example, in the case of a Gaussian conditional likelihood,
pθ̃(xj |z) = N

(
xj |f (j)θ (z), σ2

j

)
, with j denoting output

dimension, θ representing neural network parameters and
θ̃ =

(
θ, {σ2

j }
)
. The prior p(z) can be chosen to match the

problem of interest but is generally restricted to distributions
which are easy to sample from. In this work, we set z ∼
N (0, Ip) throughout.

Parameter inference for θ̃ is based on maximum marginal
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Figure 2. Modelling biological progression. If the dominant source of variation in a cross-sectional dataset is associated with biological
or disease progression, we can use a VAE to encode and map the samples onto a one-dimensional latent space (pseudotime) and decode to
understand the feature-level variability with pseudotime.

likelihood estimation, however the log-marginal likelihood

log pθ̃(x) = log

∫
pθ̃(x|z)p(z)dz (1)

is in general intractable and cannot be optimised directly,
and amortised variational inference is adopted. This in-
volves introducing a variational posterior on zi with distribu-
tional parameters (e.g. mean and covariance for a Gaussian)
given by a neural network mapping hφ(xi) referred to as
the encoder. We denote this variational posterior qφ(z|x).
By applying Jensen’s inequality to (1), a lower bound on
the log-marginal likelihood of the form

ELBO(θ̃, φ;X ) =

N∑
i=1

E
zi∼qφ(zi|xi)

[
log pθ̃(xi|zi)

]
−

N∑
i=1

KL [qφ(zi|xi)‖p(zi)] (2)

is obtained which is typically referred to as the ELBO (see
e.g. Blei et al. (2017); Jordan et al. (1999) for a detailed
discussion of variational inference methodology and bound
derivations). Inference in the VAE framework therefore
reduces to minimisation of the loss

L(θ̃, φ;X ) = −ELBO(θ̃, φ;X ),

with respect to the decoder parameters θ̃ and encoder pa-
rameters φ. This minimisation is typically performed jointly
over (θ̃, φ) using variants of stochastic gradient descent
and the reparameterisation trick (Kingma & Welling, 2014;
Rezende et al., 2014) with a Gaussian variational posterior
such that qφ (zi|xi) = N

(
zi|µφ (xi) , σ

2
φ (xi)

)
in order to

facilitate the calculation of φ gradients.

2.2. BasisVAE

BasisVAE (Märtens & Yau, 2020) enables simultaneous
dimensionality reduction and feature-level clustering within
the VAE framework. It achieves this by modifying the

form of the decoder function, introducing additional cluster-
associating latent variables into the generative model and
devising an efficient collapsed variational inference scheme
for learning.

The generative model of BasisVAE, in the case of a Gaussian
conditional likelihood, takes the form

zi ∼ N (0, I)

π|α ∼ Dirichlet(α)(
wj1, . . . , wjK

)
|π ∼ Categorical (π1, . . . , πK)

x
(j)
i |w

j , zi, θ̃ ∼ N

(
K∑
k=1

wjkλjkf
(k)
basis (zi + δjk) , σ2

j

)
,

where θ̃ = (θ, {λjk}, {δjk}, {σj}). Here δjk and λjk are
parameters representing the amount of translation and scal-
ing respectively associated with feature j and component
k, and a Dirichlet prior is introduced on π to induce sparse
cluster assignments. It is therefore a mixture model where
each feature is assigned to one of K basis functions f (k)basis.

Inference is carried out on this model using collapsed vari-
ational inference (Hensman et al., 2012; Hensman et al.,
2015) by introducing a categorical variational posterior

qξ(w) =

d∏
j=1

qξ(wj) =

d∏
j=1

Categorical (ξj1, . . . , ξjK)

over cluster assignments, and a variational lower bound on
the marginal log-likelihood is derived by repeated applica-
tion of Jensen’s inequality and by additionally marginalising
out π (see Appendix A of Märtens & Yau (2020) for details).
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Figure 3. Feature behaviours. Schematic representations of the
monotonically increasing, monotonically decreasing and transient
feature behaviours often present within biological data that Basis-
DeVAE aims to capture.

The resulting loss function is

L(θ̃, φ, ξ) = −
N∑
i=1

Eqφ(zi|yi)Eqξ(w) log pθ̃ (xi|zi,w) (3)

− γ(log B(n + α)− log B(α)) (4)
+ γEqξ(w) log qξ(w) (5)

+ β

N∑
i=1

KL [qφ (zi|yi) ‖p (zi)] (6)

−
d∑
j=1

K∑
k=1

[log (N (δjk|0, 1) Γ (λjk|0, 1))] (7)

where

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi
)

is the multivariate beta function. Term (7) arises from priors
on the translation and scale parameters (these are estimated
via MAP), and β and γ are hyperparameters allowing the
relative importance of the prior p(z) and sparse clustering
prior to be edited in the case of large d and/or N (Higgins
et al., 2017). Inference in the BasisVAE setting therefore
equates to minimising L jointly over the decoder parameters
θ̃, posterior cluster assignments ξ and encoder parameters
φ, which is performed via mini-batch gradient descent.

3. Derivative-based VAE (DeVAE)
The functional form of the decoder in a standard VAE is
challenging to control due to its specification as a DNN and
training being performed in the DNN’s weight space. In our
biological progression modelling applications, biomarkers
often only exhibit a limited number of high-level behaviours,
namely monotonic increases, monotonic decreases or a time-
limited transient signal (see Figure 3). While a standard
VAE could “learn” these behaviours given a sufficiently
large number of low-noise samples, we would like to be able
to robustly enforce such structures in low-sample or high-
noise settings while still maintaining flexibility to model
complex feature behaviours.

In order to do this, we introduce DeVAE. DeVAE specifies
the decoder via its derivatives with respect to the latent

variable z. Formally, we model

∂x

∂zp
= f

(p)
θ (zp), (8)

with f (p)θ (zp) a neural network-based function. Note that
the range of values output by a neural network is easy to
control. For example, setting the final activation of f (p)θ to
be a softplus function ensures positivity of the derivative
and hence monotonicity of x(zp), whilst a sigmoid-based
final activation of f (p)θ limits short-scale variation of x(zp).

This derivative-based specification leads to the overall de-
coder output being expressed via the integral

x(z) = x0 +

∫ z

0

fθ(z
′) · dz′, (9)

where x0 = x(0) and [fθ(z)]p = f
(p)
θ (zp). The form of (8)

implies that the integral in (9) decomposes into a sum of
dim(z) one-dimensional integrals of the form

Iθ(z) =

∫ z

0

fθ(z
′)dz′.

which can be rewritten as

Iθ(z) =
z

2

∫ 1

−1
fθ

(z
2

(u+ 1)
)

du

and evaluated using Gauss-Legendre (GL) quadrature. The
explicit calculation of Iθ(z) using GL quadrature of order n
(we use n = 15 throughout) is

Iθ(z) =
z

2

n∑
i=1

wifθ

(z
2

(ui + 1)
)
,

with ui, wi the order n GL quadrature nodes and weights
computed via Legendre polynomials (see e.g. Press et al.
(2007) for details), implying that the overall computation of
the decoder’s output becomes

x(z) = x0 +
∑
i,p

zp
2
wif

(p)
θ

(zp
2

(ui + 1)
)
. (10)

The final form of the decoder computation (10) therefore
reduces to a weighted sum of neural network evaluations.
Hence, backpropagation through the decoder is straightfor-
ward and the computation is fully parallelisable over data
points, p, and i during optimisation using mini-batch gra-
dient descent. We provide a GPU-aware PyTorch (Paszke
et al., 2019) implementation of our approach at https:
//github.com/djdanks/BasisDeVAE and demon-
strate its application to multiple settings in Section 5.

https://github.com/djdanks/BasisDeVAE
https://github.com/djdanks/BasisDeVAE


BasisDeVAE: Interpretable Simultaneous Dimensionality Reduction and Feature-Level Clustering with Derivative-Based VAEs

4. Basis Derivative-based VAE (BasisDeVAE)
We next embed DeVAE within the BasisVAE framework to
perform simultaneous feature-level clustering and dimen-
sionality reduction with control over the behaviour and
meaning of the feature clusters. Let gjk

θ̃
(z) be the DeVAE-

derived behaviour of feature xj(z) given cluster k. The
generative model of BasisDeVAE is then

zi ∼ N (0, I)

π|α ∼ Dirichlet(α)(
wj,1, . . . , wj,K

)
|π ∼ Categorical (π1, . . . , πK)

x
(j)
i |w

j , zi, θ̃ ∼ N

(
K∑
k=1

wj,kgjk
θ̃

(zi), σ
2
j

)
,

which is obtained by starting with the BasisVAE generative
model (see Section 2.2) and inserting gjk

θ̃
(zi) in place of

f
(k)
basis (zi + δjk). Intuitively, this equates to removing the

notion of feature j being obtained via the translation and
scaling of one ofK underlying basis functions and replacing
it with the idea that feature j is described by a function
from one of K families, each with interpretable properties
specified via their derivatives.

In order to illustrate our approach in the context of the run-
ning example (Figure 3), let k = 1 and k = 2 correspond to
monotonically increasing and decreasing behaviour respec-
tively, and let k = 3 correspond to Gaussian-like transient
behaviour. Additionally, let fθ : R 7→ Rdim(x)×K be a
neural network with a softplus output layer. Then gj1

θ̃
(zi)

and gj2
θ̃

(zi) can be modelled as

gj1
θ̃

(zi) = [x0]j +

∫ zi

0

[fθ(z)]j1 dz

gj2
θ̃

(zi) = [x0]j −
∫ zi

0

[fθ(z)]j2 dz.

Note that if gj1
θ̃

(zi) or gj2
θ̃

(zi) as defined above are mapped
through a monotonically increasing function, their mono-
tonicity properties are retained. One can therefore constrain
the output range of these decoder constituents (e.g. by pass-
ing through a scaled sigmoid function) in addition to their
monotonicity within this framework.

Next, for the transient component (k = 3), we define
a Gaussian-like transient to be any function of the form
Gt0(t) = A exp

(
−[ht0(t)]2

)
with A > 0, ht0(t0) = 0, and

ht0(t) a monotonically increasing (or decreasing, but we
restrict attention to the former without loss of generality)
function. This ensures that Gt0 has only one stationary
point, namely a unique maximum point at t = t0 and that
the function decays away from this point. These conditions

are met by the derivative-based function

ht0(t) = (t− t0)× softplus

(
c+

∫ t

0

(τ − t0)f(τ)dτ

)
,

where f(τ) is any (locally) integrable function with positive
range (see Appendix A for more details and a proof). Note
that we use softplus for concreteness and due to its imme-
diate availability within typical deep learning frameworks,
but it could be replaced with any smooth monotonically
increasing function u : R 7→ R>0 without invalidating the
proof provided in Appendix A. We utilise this observation
to define

hj3
θ̃

(zi) = (zi−z0)softplus

(
c+

∫ zi

0

(z − z0) [fθ(z)]j3 dz

)
and

gj3
θ̃

(zi) = Aj exp

(
−
[
hj3
θ̃

(zi)
]2)

,

hence providing our Gaussian-like transient component.
Samples of the Gaussian-like transient appearance of gj3

θ̃
(zi)

given different hj3
θ̃

(zi) functions are provided in Appendix
B.

Inference in the BasisDeVAE model is carried out using the
collapsed variational inference scheme applied to BasisVAE,
noting the removal of the necessity to learn the translation
and scale parameters δ and λ.

We conclude this section by emphasising that it is the
derivative-based approach of DeVAE that has allowed us
to specify monotonic components without having to adopt
parametric constraints (e.g. linearity, sigmoid-like models)
or neural network weight constraints. It has also allowed
us to specify a general form of Gaussian-like transient com-
ponent. The BasisDeVAE framework has then enabled the
data-driven learning of cluster assignments, linking each
feature with an interpretable behaviour cluster.

5. Experiments1

5.1. Synthetic data

We first illustrate the performance of BasisDeVAE via
synthetic data experiments. We generate a dataset with
N = 500 samples and d = 50 features. Thirty features
are randomly translated and scaled Gaussians, and the other
20 are randomly translated and scaled monotonic functions
specified using softplus functions, with 10 positive and 10
negative (see Figure 4, upper-left panel). Each feature is
also corrupted with Gaussian noise (σ = 0.1). Ground-
truth pseudotimes were drawn uniformly to produce the

1All computations were performed on a Linux (Ubuntu) desk-
top with an Intel i7-4790K 4GHz CPU and NVIDIA GTX 980
GPU (4GB VRAM).
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Figure 4. Synthetic data. BasisVAE and BasisDeVAE are applied
to synthetic data with the ground-truth trajectories and clusterings
shown in the upper-left panel. BasisDeVAE infers both feature
behaviour and cluster assignments correctly (bottom left), whereas
BasisVAE learns degenerate basis functions (bottom right), frus-
trating clustering performance (top right).

data but withheld from analyses. Note that both models are
well-specified with respect to this data.

Figure 4 shows a comparative analysis of BasisVAE and
BasisDeVAE fits to the data. We see that BasisDeVAE
faithfully recovers both the pseudotemporal trajectories and
cluster assignments. In contrast, while BasisVAE captures
the overall pseudotemporal behaviour, it loses accuracy at
the extremities of the latent dimension and produces erro-
neous clustering. This behaviour is explained by examining
the basis functions learnt by BasisVAE (Figure 4, bottom-
right panel), which do not appear to properly distinguish the
monotonic and transient characteristics, instead merging the
behaviours in each of the clusters.

Table 1. Synthetic data clustering performance. Adjusted Rand
Index (ARI) values associated with the clusterings learnt from the
“low z” (Cl) and “high z” (Ch) datasets (see Section 5.1 text). GT
represents the ground-truth clustering.

BASISVAE BASISDEVAE (OURS)

ARI(GT, CL) 0.381 0.524
ARI(GT, CH) 0.102 0.455
ARI(CL, CH) 0.258 0.280

In real-world settings, one may not observe a set of samples
which spans the entire range of pseudotime. Furthermore,
the observed region may vary between experiments. It is
therefore of interest to test whether clustering performance
agrees across different pseudotemporal segments. As an
empirical example, we segment the synthetic data into two
(overlapping) datasets. The first, referred to as “low z”,

contains only x values associated with t < 1 in the ground-
truth dataset (plotted in the upper-left panel of Figure 4).
The second, referred to as “high z”, contains only x values
associated with t > −1. Each dataset therefore totally ex-
cludes one-third of the complete trajectory. Table 1 shows
the Adjusted Rand Index (ARI) values associated with the
feature clusterings obtained by BasisVAE and BasisDeVAE
on the “low z” and “high z” datasets, with GT denoting
ground truth. It can be seen in Table 1 that the cluster-
ings inferred by BasisDeVAE from the restricted data are
more consistent with the ground truth than those of Basis-
VAE (rows 1 and 2), and that there is more consistency
between each dataset’s clusterings within the BasisDeVAE
framework (row 3). These observations suggest that the
presence of an underlying structured decoder model can
improve extrapolation capability compared to the purely
data-driven decoder approach of BasisVAE.

5.2. OASIS

The Open Access Series of Imaging Studies (OASIS) is
a project led by the Knight Alzheimer Disease Research
Center of Washington University to collect and openly re-
lease anonymised patient data originating from a number
of studies carried out there over the past 30 years. We use
OASIS-3 (LaMontagne et al., 2019) which is the latest iter-
ation of released data and contains entries from over 2,000
MRI sessions of patients at various stages of cognitive de-
cline.

It is well known that cognitive decline is associated with the
reduction of regional brain volumes (Fox & Schott, 2004).
We would therefore like the decoder of a VAE-based pseu-
dotime model applied to tabular regional brain volume data
to be monotonically decreasing, as can be easily defined
within our DeVAE framework.

To test whether the explicit specification of negative mono-
tonicity aids performance, we extract the MRI sessions with
associated FreeSurfer volume segmentations to create a tab-
ular dataset of size N = 2047, d = 13 (see Appendix C for
details on the preparation of the data and meaning of each
feature) and train: i) a linear VAE, ii) a standard VAE and iii)
a monotonically decreasing DeVAE. Each model is trained
for 50 epochs using Adam (Kingma & Ba, 2015) with a
5× 10−3 learning rate and employs a Gaussian conditional
log-likelihood in the decoder. The neural networks within
the VAE and DeVAE have the same architecture apart from
the final layer of the DeVAE network applying a negative
softplus to enforce negative monotonicity. The pseudotem-
poral trajectories inferred by DeVAE for features associated
with atrophy in the hippocampus, caudate, frontal lobe and
thalamus are shown in Figure 5.

We quantitatively evaluate the performance of each model by
performing 10 train-evaluate iterations. Each iteration con-
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Figure 5. OASIS regional brain volumes. Inferred pseudotem-
poral profiles of 4 regional brain volumes. DeVAE extracts the
monotonically decreasing pseudotemporal trajectories associated
with cognitive decline.

Table 2. OASIS performance metrics. Test set predictive log-
likelihood and ELBO values for the OASIS-3 data.

METHOD log p(X|Z, θ∗) ELBO

LINEAR VAE -4929.1 -5798.9
VAE -4903.7 -5779.9
DEVAE (OURS) −4879.6 −5749.6

sists of i) randomly partitioning the data into an 80%/20%
train/test split, ii) training on the training data and iii) eval-
uating two metrics on the test data. The first metric is the
conditional log-likelihood log p(X|Z, θ∗), where X is the
test data, θ∗ are the learnt decoder parameters andZ = {zi}
with zi the posterior mean latent variable value associ-
ated with test point xi. The second metric is the ELBO,
i.e. the quantity given in (2), evaluated over the test data,
which acts as a lower bound on the marginal log-likelihood
log p(X|θ∗). We report the mean value of each metric calcu-
lated across the 10 runs in Table 2, where it can be seen that
DeVAE outperforms the linear VAE and VAE with respect
to both metrics. DeVAE also had the highest metric on each
of the 10 runs.

5.3. Single-cell expression analysis

We next demonstrate the utility and scalability of our Basis-
DeVAE model by analysing a single-cell RNA sequencing
(scRNA-seq) mouse spermatogenesis dataset (Ernst et al.,
2019) that was also used for testing BasisVAE in Märtens &
Yau (2020). The data consists of the expression values of
d = 5, 216 genes measured across N = 8, 509 cells. The
analysis task on such data is to i) recreate a representation
of the temporal variable via a one-dimensional latent pseu-

dotime z and learn the gene expression profiles with respect
to z, and ii) to group features with similar expression pro-
files into interpretable clusters (Figure 1). These two tasks
can be performed simultaneously within the BasisVAE and
BasisDeVAE frameworks.

As is common in scRNA-seq analysis, we utilise a zero-
inflated negative binomial conditional likelihood model in
the BasisVAE and BasisDeVAE decoder (Risso et al., 2018;
Lopez et al., 2018). For BasisVAE, we utilise the loss as
described by (3)–(7) with K = 3. For BasisDeVAE, we
replace the δ, λ in term (7) with the generalised Gaussians’
z0s and scale factors respectively but otherwise use the same
loss. In both models we use β = 10, γ = 1,α = 0.1 and
optimise using Adam with a 5 × 10−3 learning rate. We
apply linear KL-annealing (Bowman et al., 2016b) to (β, γ)
over the first 20% of 100 training epochs.

We have found that within the standard BasisVAE frame-
work it is often necessary to place hand-tuned constraints
on the values of the translation and scale parameters δ, λ
in order to prevent collapse to a single basis function with
regional behaviours. To demonstrate the effect of such
constraints, we train two full BasisVAE models, one with
the default constraint on λ specified within Märtens &
Yau (2020)’s implementation, namely λjk ∈ [0.25, 1.75],
which we denote BasisVAE1, and another with a looser
λjk ∈ [0.1, 3] condition, which we denote BasisVAE2. We
also train BasisVAE with a linear network using the same
hyperparameters and default constraints to serve as a base-
line. We train on a randomly sampled 90% portion of the
data and reserve the remaining 10% for test-set evaluation.

Figure 6 visualises the pseudotemporal trajectories of 8
genes highlighted in Ernst et al. (2019) according to (from
top to bottom) the BasisVAE1, BasisVAE2 and BasisDeVAE
models. BasisDeVAE clearly clusters the 8 genes into the
three distinct behaviours: monotonically increasing (red),
transient (green) and monotonically decreasing (blue). It
is less clear that the clusters identified by BasisVAE are
necessarily plausible. For example, Dmrtb1 is clustered
with Tex101 and Ly6k by BasisVAE1 but with Stra8 and
Sohlh1 by BasisVAE2.

In Table 3, we show the training time per epoch, predictive
log-likelihood and ELBO for each of the VAE models. Our
results indicate that BasisDeVAE is more computationally
efficient than BasisVAE and is also able to achieve superior
model fits in terms of log-likelihood and ELBO metrics. We
also note that BasisDeVAE tends to converge more readily
than BasisVAE, achieving BasisVAE-level metric scores
after less than half of the 100 utilised training epochs. This
is likely caused by the enforced behavioural separation of
BasisDeVAE’s clusters making the learning problem less
difficult. The lower training time per epoch for BasisDeVAE
can be explained by noting that in BasisVAE, the compu-
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Figure 6. Single-cell spermatogenesis data. Inferred clustering and pseudotemporal gene expression trajectories of eight genes from
Ernst et al. (2019) with BasisVAE1, BasisVAE2 and BasisDeVAE. BasisDeVAE provides a superior fit to observed data as well as greater
cluster interpretability.

Table 3. Single-cell data performance metrics. Training time and model fit metrics for the simultaneous dimensionality reduction and
feature-level clustering methods applied to the Ernst et al. (2019) scRNA-seq data.

METHOD tTRAIN /EPOCH (S) log p(X|Z, θ∗) ELBO

LINEAR 7.42± 0.19 −2.55× 106 −6.86× 107

BASISVAE1 9.24± 0.15 −2.54× 106 −6.82× 107

BASISVAE2 9.32± 0.13 −2.54× 106 −6.81× 107

BASISDEVAE (OURS) 4.67± 0.04 −2.51× 106 −6.71× 107

tation of λjkf
(k)
basis (zi + δjk) for N datapoints, d features

and K clusters requires NdK evaluations of a DNN with
K outputs, compared with Nn evaluations of a dK-output
DNN to compute the corresponding BasisDeVAE quantity.

6. Discussion
We introduced DeVAE and BasisDeVAE, two novel VAE
models with decoders specified in terms of their derivatives
with respect to the latent variable z. We demonstrated that
the derivative-based construction of the decoder employed
in these models allows the specification of functional forms
with both expressivity and interpretability, showing in par-
ticular how to specify monotonicity and transience in the
context of pseudotemporal models of biological progression.
We achieved state-of-the-art performance on both synthetic
and real-world data examples for the problem of simultane-
ous dimensionality reduction and feature-level clustering.

Our work is complementary to a number of ongoing research

areas. It has immediate links with other works which at-
tempt to introduce additional structure into the VAE, such as
the conditional VAE (Sohn et al., 2015), beta-VAE (Higgins
et al., 2017) and functional ANOVA VAE (Märtens & Yau,
2020). Our demonstration of BasisDeVAE in the context
of pseudotemporal analysis of single-cell data can be seen
as a generalisation of Campbell & Yau (2018) capable of
capturing any form of monotonic or Gaussian-like transient
behaviour, not just sigmoidal or parametric Gaussian pro-
files. It also automatically assigns features to interpretable
clusters without having to rely on pre-assigned genes as in
Campbell & Yau (2018) or on a fully data-driven forward
model as in Märtens & Yau (2020).

Our work can also be seen as another example of how the in-
corporation of derivative-based approaches into models can
lead to improved utility and performance. The application
of ODEs within machine learning has grown significantly
since the widespread attention of the Neural ODE approach
of Chen et al. (2018), particularly in the contexts of irregu-
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larly sampled time-series modelling (Rubanova et al., 2019;
Kidger et al., 2020) and, more similarly to this work, in
scientific machine learning (Rackauckas et al., 2020). With
significant volumes of related work continuing to emerge
and increased attention on the development of associated
software (Rackauckas & Nie, 2017; Bradbury et al., 2018;
Chen et al., 2018), it is likely that this will remain an active
area and may lead to further contributions related to ours in
the context of VAEs.

The specification of functional constraints has typically been
easier to adopt in a Gaussian Process (GP) framework due
to the comparative ease with which one can specify func-
tional properties relative to working in the (generally un-
interpretable) weight space of a DNN. For example, Ka-
zlauskaite et al. (2019) and (Ustyuzhaninov et al., 2020) per-
form constrained-warp unsupervised learning of sequence
alignments in a GP framework. However, our work here
shows that by operating in the derivative space we can im-
pose certain such functional constraints with relative ease
within a DNN framework.

Natural extensions of this work include formulating
derivative-based decoder specifications involving higher or-
der derivatives, as well as the consideration of the case in
which ∂x

∂zp
is allowed to depend on features x.
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