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Abstract
Algorithmic risk assessments are used to inform
decisions in a wide variety of high-stakes settings.
Often multiple predictive models deliver simi-
lar overall performance but differ markedly in
their predictions for individual cases, an empiri-
cal phenomenon known as the “Rashomon Effect.”
These models may have different properties over
various groups, and therefore have different pre-
dictive fairness properties. We develop a frame-
work for characterizing predictive fairness prop-
erties over the set of models that deliver similar
overall performance, or “the set of good models.”
Our framework addresses the empirically relevant
challenge of selectively labelled data in the setting
where the selection decision and outcome are un-
confounded given the observed data features. Our
framework can be used to 1) audit for predictive
bias; or 2) replace an existing model with one that
has better fairness properties. We illustrate these
use cases on a recidivism prediction task and a
real-world credit-scoring task.

1. Introduction
Algorithmic risk assessments are used to inform decisions
in high-stakes settings such as health care, child welfare,
criminal justice, consumer lending and hiring (Caruana et al.,
2015; Chouldechova et al., 2018; Kleinberg et al., 2018;
Fuster et al., 2020; Raghavan et al., 2020). Unfettered use
of such algorithms in these settings risks disproportionate
harm to marginalized or protected groups (Barocas & Selbst,
2016; Dastin, 2018; Vigdor, 2019). As a result, there is
widespread interest in measuring and limiting predictive
disparities across groups.

The vast literature on algorithmic fairness offers numer-

*Equal contribution 1Heinz College and Machine Learning
Department, Carnegie Mellon University 2Department of
Economics, Harvard University 3Heinz College, Carnegie
Mellon Univesrity. Correspondence to: Amanda Cos-
ton <acoston@andrew.cmu.edu>, Ashesh Rambachan
<asheshr@g.harvard.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

ous methods for learning anew the best performing model
among those that satisfy a chosen notion of predictive fair-
ness (e.g. Zemel et al. (2013), Agarwal et al. (2018), Agar-
wal et al. (2019)). However, for real-world settings where a
risk assessment is already in use, practitioners and auditors
may instead want to assess disparities with respect to the
current model, which we term the benchmark model. For ex-
ample, the benchmark model for a bank may be an existing
credit score used to approve loans. The relevant question
for practitioners is: Can we improve upon the benchmark
model in terms of predictive fairness with minimal change
in overall accuracy?

We explore this question through the lens of the “Rashomon
Effect,” a common empirical phenomenon whereby multi-
ple models perform similarly overall but differ markedly
in their predictions for individual cases (Breiman, 2001).
These models may perform quite differently over various
groups, and therefore have different predictive fairness prop-
erties. We propose an algorithm, Fairness in the Rashomon
Set (FaiRS), to characterize predictive fairness properties
over the set of models that perform similarly to a chosen
benchmark model. We refer to this set as the set of good
models (Dong & Rudin, 2020). FaiRS is designed to effi-
ciently answer the following questions: What are the range
of predictive disparities that could be generated over the set
of good models? What is the disparity minimizing model
within the set of good models?

A key empirical challenge in domains such as credit lending
is that outcomes are not observed for all cases (Lakkaraju
et al., 2017; Kleinberg et al., 2018). This selective labels
problem is particularly vexing in the context of assessing
predictive fairness. Our framework addresses selectively
labelled data in contexts where the selection decision and
outcome are unconfounded given the observed data features.

Our methods are useful for legal audits of disparate impact.
In various domains, decisions that generate disparate impact
must be justified by “business necessity” (civ, 1964; ECO,
1974; Barocas & Selbst, 2016). For instance, financial regu-
lators investigate whether credit lenders could have offered
more loans to minority applicants without affecting default
rates (Gillis, 2019). Employment regulators may investigate
whether resume screening software screens out underrep-
resented applicants for reasons that cannot be attributed to
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the job criteria (Raghavan et al., 2020). Our methods pro-
vide one possible formalization of the business necessity
criteria. An auditor can use FaiRS to assess whether there
exists an alternative model that reduces predictive disparities
without compromising performance relative to the bench-
mark model. If possible, then it is difficult to justify the
benchmark model on the grounds of business necessity.

Our methods can also be a useful tool for decision makers
who want to improve upon an existing model. A decision
maker may use FaiRS to search for a prediction function
that reduces predictive disparities without compromising
performance relative to the benchmark model. We empha-
size that the effective usage of our methods requires careful
thought about the broader social context surrounding the
setting of interest (Selbst et al., 2019; Holstein et al., 2019).

Contributions: We (1) develop an algorithmic framework,
Fairness in the Rashomon Set (FaiRS), to investigate pre-
dictive disparities over the set of good models; (2) provide
theoretical guarantees on the generalization error and predic-
tive disparities of FaiRS [§ 4]; (3) propose a variant of FaiRS
that addresses the selective labels problem and achieves the
same guarantees under oracle access to the outcome regres-
sion function [§ 5]; (4) use FaiRS to audit the COMPAS
risk assessment, finding that it generates larger predictive
disparities between black and white defendants than any
model in the set of good models [§ 6]; and (5) use FaiRS on
a selectively labelled credit-scoring dataset to build a model
with lower predictive disparities than a benchmark model
[§ 7]. All proofs are given in the Supplement.

2. Background and Related Work
2.1. Rashomon Effect

In a seminal paper on statistical modeling, Breiman (2001)
observed that often a multiplicity of good models achieve
similar accuracy by relying on different features, which
he termed the “Rashomon effect.” Even though they have
similar accuracy, these models may differ along other key
dimensions, and recent work considers the implications of
the Rashomon effect for model simplicity, interpretability,
and explainability (Fisher et al., 2019; Marx et al., 2020;
Rudin, 2019; Dong & Rudin, 2020; Semenova et al., 2020).

We introduce these ideas into research on algorithmic fair-
ness by studying the range of predictive disparities that can
be achieved over the set of good models. We provide com-
putational techniques to directly and efficiently investigate
the range of predictive disparities that may be generated
over the set of good models. Our recidivism risk prediction
and credit scoring applications demonstrate that the set of
good models is a rich empirical object, and we illustrate how
characterizing the range of achievable predictive fairness
properties over this set can be used for model learning and

evaluation.

2.2. Fair Classification and Fair Regression

An influential literature on fair classification and fair re-
gression constructs prediction functions that minimize loss
subject to a predictive fairness constraint chosen by the de-
cision maker (Dwork et al., 2012; Zemel et al., 2013; Hardt
et al., 2016; Menon & Williamson, 2018; Donini et al., 2018;
Agarwal et al., 2018; 2019; Zafar et al., 2019). In contrast,
we construct prediction functions that minimize a chosen
measure of predictive disparities subject to a constraint on
overall performance. This is useful when decision makers
find it difficult to specify acceptable levels of predictive dis-
parities, but instead know what performance loss is tolerable.
It may be unclear, for instance, how a lending institution
should specify acceptable differences in credit risk scores
across groups, but the lending institution can easily specify
an acceptable average default rate among approved loans.
Our methods allow users to directly search for prediction
functions that reduce disparities given such a specified loss
tolerance. Similar in spirit to our work, Zafar et al. (2019)
provide a method for selecting a classifier that minimizes
a particular notion of predictive fairness, “decision bound-
ary covariance,” subject to a performance constraint. Our
method applies more generally to a large class of predic-
tive disparities and covers both classification and regression
tasks.

While originally developed to solve fair classification and
fair regression problems, we show that the “reductions ap-
proach” used in Agarwal et al. (2018; 2019) can be suitably
adapted to solve general optimization problems over the set
of good models. This provides a general computational ap-
proach that may be useful for investigating the implications
of the Rashomon Effect for other model properties.

In constructing the set of good models with comparable
performance to a benchmark model, our work bears resem-
blance to techniques that “post-process” existing models.
Post-processing techniques typically modify the predictions
from an existing model to achieve a target notion of fairness
(Hardt et al., 2016; Pleiss et al., 2017; Kim et al., 2019).
By contrast, our methods only use the existing model to
calibrate the performance constraint, but need not share any
other properties with the benchmark model. While post-
processing techniques often require access to individual
predictions from the benchmark model, our approach only
requires that we know its average loss.

2.3. Selective Labels and Missing Data

In settings such as criminal justice and credit lending, the
training data only contain labeled outcomes for a selectively
observed sample from the full population of interest. For
example, banks use risk scores to assess all loan applicants,
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yet the historical data only contains default/repayment out-
comes for those applicants whose loans were approved. This
is a missing data problem (Little & Rubin, 2019). Because
the outcome label is missing based on a selection mecha-
nism, this type of missing data is known as the selective la-
bels problem (Lakkaraju et al., 2017; Kleinberg et al., 2018).
One solution treats the selectively labelled population as if
it were the population of interest, and proceeds with train-
ing and evaluation on the selectively labelled population
only. This is also called the “known good-bad” (KGB) ap-
proach (Zeng & Zhao, 2014; Nguyen et al., 2016). However,
evaluating a model on a population different than the one
on which it will be used can be highly misleading, partic-
ularly with regards to predictive fairness measures (Kallus
& Zhou, 2018; Coston et al., 2020). Unfortunately, most
fair classification and fair regression methods do not offer
modifications to address the selective labels problem. Our
framework does [§ 5].

Popular in credit lending applications, “reject inference” pro-
cedures incorporate information from the selectively unob-
served cases (i.e., rejected applicants) in model construction
and evaluation by imputing missing outcomes using aug-
mentation, reweighing or extrapolation-based approaches
(Li et al., 2020; Mancisidor et al., 2020). These approaches
are similar to domain adaptation techniques, and indeed the
selective labels problem can be cast as domain adaptation
since the labelled training data is not a random sample of the
target distribution. Most relevant to our setting are covariate
shift methods for domain adaptation. Reweighing proce-
dures have been proposed for jointly addressing covariate
shift and fairness (Coston et al., 2019; Singh et al., 2021).
While FaiRS similarly uses iterative reweighing to solve our
joint optimization problem, we explicitly use extrapolation
to address covariate shift. Empirically we find extrapolation
can achieve lower disparities than reweighing.

3. Setting and Problem Formulation
The population of interest is described by the random vector
(Xi, Ai, Di, Y

∗
i ) ∼ P , where Xi ∈ X is a feature vector,

Ai ∈ {0, 1} is a protected or sensitive attribute, Di ∈ D is
the decision and Y ∗i ∈ Y ⊆ [0, 1] is a discrete or continuous
outcome. The training data consist of n i.i.d. draws from
the joint distribution P and may suffer from a selective
labels problem: There exists D∗ ⊆ D such that the outcome
is observed if and only if the decision satisfies Di ∈ D∗.
Hence, the training data are {(Xi, Ai, Di, Yi)}ni=1, where
Yi = Y ∗i 1{Di ∈ D∗}) is the observed outcome and 1{·}
denotes the indicator function.

Given a specified set of prediction functions F with ele-
ments f : X → [0, 1], we search for the prediction function
f ∈ F that minimizes or maximizes a measure of predictive
disparities with respect to the sensitive attribute subject to

a constraint on predictive performance. We measure per-
formance using average loss, where l : Y × [0, 1] → [0, 1]
is the loss function and loss(f) := E [l(Y ∗i , f(Xi))]. The
loss function is assumed to be 1-Lipshitz under the l1-norm
following Agarwal et al. (2019). The constraint on perfor-
mance takes the form loss(f) ≤ ε for some specified loss
tolerance ε ≥ 0. The set of prediction functions satisfying
this constraint is the set of good models.

The loss tolerance may be chosen based on an existing
benchmark model f̃ such as an existing risk score, e.g., by
setting ε = (1 + δ) loss(f̃) for some δ ∈ [0, 1]. The set
of good models now describes the set of models whose
performance lies within a δ-neighborhood of the benchmark
model. When defined in this manner, the set of good models
is also called the “Rashomon set” (Rudin, 2019; Fisher et al.,
2019; Dong & Rudin, 2020; Semenova et al., 2020).

3.1. Measures of Predictive Disparities

We consider measures of predictive disparity of the form

disp(f) := β0E [f(Xi)|Ei,0] + β1E [f(Xi)|Ei,1] , (1)

where Ei,a is a group-specific conditioning event that de-
pends on (Ai, Y

∗
i ) and βa ∈ R for a ∈ {0, 1} are chosen

parameters. Note that we measure predictive disparities over
the full population (i.e., not conditional on Di).

For different choices of the conditioning events Ei,0, Ei,1 and
parameters β0, β1, our predictive disparity measure summa-
rizes violations of common definitions of predictive fairness.

Definition 1. Statistical parity (SP) requires the predic-
tion f(Xi) to be independent of the attribute Ai (Dwork
et al., 2012; Zemel et al., 2013; Feldman et al., 2015). By
setting Ei,a = {Ai = a} for a ∈ {0, 1} and β0 = −1,
β1 = 1, disp(f) measures the difference in average predic-
tions across values of the sensitive attribute.

Definition 2. Suppose Y = {0, 1}. Balance for the
positive class (BFPC) and balance for the negative class
(BFNC) requires the prediction f(Xi) to be independent
of the attribute Ai conditional on Y ∗i = 1 and Y ∗i = 0
respectively (e.g., Chapter 2 of (Barocas et al., 2019)).
Defining Ei,a = {Y ∗i = 1, Ai = a} for a ∈ {0, 1} and
β0 = −1, β1 = 1, disp(f) describes the difference in av-
erage predictions across values of the sensitive attribute
given Y ∗i = 1. If instead Ei,a = {Y ∗i = 0, Ai = a} for
a ∈ {0, 1}, then disp(f) equals the difference in average
predictions across values of the sensitive attribute given
Y ∗i = 0.

Our focus on differences in average predictions across
groups is a common relaxation of parity-based predictive
fairness definitions (Corbett-Davies et al., 2017; Mitchell
et al., 2019).
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Our predictive disparity measure can also be used for fair-
ness promoting interventions, which aim to increase oppor-
tunities for a particular group. For instance, the decision
maker may wish to search for the prediction function among
the set of good models that minimizes the average predicted
risk score f(Xi) for a historically disadvantaged group.

Definition 3. Defining Ei,1 = {Ai = 1} and β0 = 0, β1 =
1, disp(f) measures the average risk score for the group
with Ai = 1. This is an affirmative action-based fairness
promoting intervention. Further assuming Y = {0, 1} and
defining Ei,1 = {Y ∗i = 1, Ai = 1}, disp(f) measures the
average risk score for the group with both Y ∗i = 1, Ai = 1.
This is a qualified affirmative action-based fairness pro-
moting intervention.

Our approach can accommodate other notions of predictive
disparities. In Supplement §A.4, we show how to achieve
bounded group loss, which requires that the average loss
conditional on each value of the sensitive attribute reach
some threshold (Agarwal et al., 2019).

3.2. Characterizing Predictive Disparities over the Set
of Good Models

We develop the algorithmic framework, Fairness in the
Rashomon Set (FaiRS), to solve two related problems over
the set of good models. First, we characterize the range
of predictive disparities by minimizing or maximizing the
predictive disparity measure over the set of good models.
We focus on the minimization problem

min
f∈F

disp(f) s.t. loss(f) ≤ ε. (2)

Second, we search for the prediction function that minimizes
the absolute predictive disparity over the set of good models

min
f∈F
|disp(f)| s.t. loss(f) ≤ ε. (3)

For auditors, (2) traces out the range of predictive dispar-
ities that could be generated in a given setting, thereby
identifying where the benchmark model lies on this frontier.
This is crucially related to the legal notion of “business ne-
cessity” in assessing disparate impact – the regulator may
audit whether there exist alternative prediction functions
that achieve similar performance yet generate different pre-
dictive disparities (civ, 1964; ECO, 1974; Barocas & Selbst,
2016). For decision makers, (3) searches for prediction
functions that reduce absolute predictive disparities without
compromising predictive performance.

4. A Reductions Approach to Optimizing over
the Set of Good Models

We characterize the range of predictive disparities (2) and
find the absolute predictive disparity minimizing model (3)

over the set of good models using techniques inspired by
the reductions approach in Agarwal et al. (2018; 2019).
Although originally developed to solve fair classification
and fair regression problems in the case without selective
labels, we extend the reductions approach to solve general
optimization problems over the set of good models in the
presence of selective labels. For exposition, we first focus
on the case without selective labels, where D∗ = D and the
outcome Y ∗i is observed for all observations. We solve (2)
in the main text and (3) in § A.3 of the Supplement. We
cover selective labels in § 5.

4.1. Computing the Range of Predictive Disparities

We consider randomized prediction functions that select
f ∈ F according to some distribution Q ∈ ∆(F)
where ∆ denotes the probability simplex. Let loss(Q) :=∑

f∈F Q(f) loss(f) and disp(Q) :=
∑
f∈F Q(f) disp(f).

We solve

min
Q∈∆(F)

disp(Q) s.t. loss(Q) ≤ ε. (4)

While it may be possible to solve this problem directly for
certain parametric function classes, we develop an approach
that can be applied to any generic function class.1 A key
object for doing so will be classifiers obtained by thresh-
olding prediction functions. For cutoff z ∈ [0, 1], define
hf (x, z) = 1{f(x) ≥ z} and let H := {hf : f ∈ F} be
the set of all classifiers obtained by thresholding prediction
functions f ∈ F . We first reduce the optimization prob-
lem (4) to a constrained classification problem through a
discretization argument, and then solve the resulting con-
strained classification problem through a further reduction
to finding the saddle point of a min-max problem.

Following the notation in Agarwal et al. (2019), we define
a discretization grid for [0, 1] of size N with α := 1/N
and Zα := {jα : j = 1, . . . , N}. Let Ỹα be an α

2 -cover
of Y . The piecewise approximation to the loss function is
lα(y, u) := l(y, [u]α + α

2 ), where y is the smallest ỹ ∈ Ỹα
such that |y− ỹ| ≤ α

2 and [u]α rounds u down to the nearest
integer multiple of α. For a fine enough discretization grid,
lossα(f) := E [lα(Y ∗i , f(Xi))] approximates loss(f).

Define c(y, z) := N ×
(
l(y, z + α

2 )− l(y, z − α
2 )
)

and
Zα to be the random variable that uniformly samples
zα ∈ Zα and is independent of the data (Xi, Ai, Y

∗
i ). For

hf ∈ H, define the cost-sensitive average loss function as
cost(hf ) := E [c(Y ∗i , Zα)hf (Xi, Zα)]. Lemma 1 in Agar-
wal et al. (2019) shows cost(hf ) + c0 = lossα(f) for any
f ∈ F , where c0 ≥ 0 is a constant that does not depend
on f . Since lossα(f) approximates loss(f), cost(hf ) also
approximates loss(f). For Q ∈ ∆(F), define Qh ∈ ∆(H)

1Our error analysis only covers function classes whose
Rademacher complexity can be bounded as in Assumption 1.
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to be the induced distribution over threshold classifiers hf .
By the same argument, cost(Qh) + c0 = lossα(Q), where
cost(Qh) :=

∑
hf∈HQh(h) cost(hf ) and lossα(Q) is de-

fined analogously.

We next relate the predictive disparity measure defined
on prediction functions to a predictive disparity measure
defined on threshold classifiers. Define disp(hf ) :=
β0E [hf (Xi, Zα) | Ei,0] + β1E [hf (Xi, Zα) | Ei,1] .

Lemma 1. Given any distribution over (Xi, Ai, Y
∗
i ) and

f ∈ F , |disp(hf )− disp(f)| ≤ (|β0|+ |β1|)α.

Lemma 1 combined with Jensen’s Inequality imply
|disp(Qh)− disp(Q)| ≤ (|β0|+ |β1|)α.

Based on these results, we approximate (4) with its analogue
over threshold classifiers

min
Qh∈∆(H)

disp(Qh) s.t. cost(Qh) ≤ ε− c0. (5)

We solve the sample analogue in which we minimize
d̂isp(Qh) subject to ĉost(Qh) ≤ ε̂, where ε̂ := ε − ĉ0
plus additional slack, and ĉ0, d̂isp(Qh), ĉost(Qh) are the
associated sample analogues. We form the Lagrangian
L(Qh, λ) := d̂isp(Qh)+λ(ĉost(Qh)− ε̂) with primal vari-
able Qh ∈ ∆(H) and dual variable λ ∈ R+. Solving the
sample analogue is equivalent to finding the saddle point of
the min-max problem minQh∈∆(H) max0≤λ≤Bλ L(Qh, λ),
where Bλ ≥ 0 bounds the Lagrange multiplier. We search
for the saddle point by adapting the exponentiated gradi-
ent algorithm used in Agarwal et al. (2018; 2019). The
algorithm delivers a ν-approximate saddle point of the La-
grangian, denoted (Q̂h, λ̂). Since it is standard, we provide
the details of and the pseudocode for the exponentiated
gradient algorithm in § A.1 of the Supplement.

4.2. Error Analysis

The suboptimality of the returned solution Q̂h can be con-
trolled under conditions on the complexity of the model
class F and how various parameters are set.

Assumption 1. Let Rn(H) be the Radermacher complexity
of H. There exists constants C,C ′, C ′′ > 0 and φ ≤ 1/2
such that Rn(H) ≤ Cn−φ and ε̂ = ε − ĉ0 + C ′n−φ −
C ′′n−1/2.

Theorem 1. Suppose Assumption 1 holds for C ′ ≥ 2C +

2 +
√

2 ln(8N/δ) and C ′′ ≥
√
− log(δ/8)

2 . Let n0, n1 de-
note the number of samples satisfying the events Ei,0, Ei,1
respectively.

Then, the exponentiated gradient algorithm with ν ∝ n−φ,
Bλ ∝ nφ and N ∝ nφ terminates in O(n4φ) iterations and
returns Q̂h, which when viewed as a distribution over F ,
satisfies with probability at least 1− δ one of the following:
1) Q̂h 6= null, loss(Q̂h) ≤ ε + Õ(n−φ) and disp(Q̂h) ≤

disp(Q̃) + Õ(n−φ0 ) + Õ(n−φ1 ) for any Q̃ that is feasible in
(4); or 2) Q̂h = null and (4) is infeasible.2

Theorem 1 shows that the returned solution Q̂h is approxi-
mately feasible and achieves the lowest possible predictive
disparity up to some error. Infeasibility is a concern if no
prediction function f ∈ F satisfies the average loss con-
straint. Assumption 1 is satisfied for instance under LASSO
and ridge regression. If Assumption 1 does not hold, FaiRS
still delivers good solutions to the sample analogue of Eq. 5
(see Supplement § C.1.2).

A practical challenge is that the solution returned by the
exponentiated gradient algorithm Q̂h is a stochastic pre-
diction function with possibly large support. Therefore it
may be difficult to describe, time-intensive to evaluate, and
memory-intensive to store. Results from Cotter et al. (2019)
show that the support of the returned stochastic prediction
function may be shrunk while maintaining the same guaran-
tees on its performance by solving a simple linear program.
The linear programming reduction reduces the stochastic
prediction function to have at most two support points and
we use this linear programming reduction in our empirical
work (see § A.2 of the Supplement for details).

5. Optimizing Over the Set of Good Models
Under Selective Labels

We now modify the reductions approach to the empirically
relevant case in which the training data suffer from the selec-
tive labels problem, whereby the outcome Y ∗i is observed
only if Di ∈ D∗ with D∗ ⊂ D. The main challenge con-
cerns evaluating model properties over the target population
when we only observe labels for a selective (i.e., biased)
sample. We propose a solution that uses outcome modeling,
also known as extrapolation, to estimate these properties.

To motivate this approach, we observe that average loss
and measures of predictive disparity (1) that condition on
Y ∗i are not identified under selective labels without further
assumptions. We introduce the following assumption on the
nature of the selective labels problem for the binary decision
setting with D = {0, 1} and D∗ = {1}.
Assumption 2. The joint distribution (Xi, Ai, Di, Y

∗
i ) ∼

P satisfies 1) selection on observables: Di ⊥⊥ Y ∗i | Xi,
and 2) positivity: P (Di = 1 | Xi = x) > 1 with probabil-
ity one.

This assumption is common in causal inference and se-
lection bias settings (e.g., Chapter 12 of Imbens & Rubin
(2015) and Heckman (1990))3 and in covariate shift learn-
ing (Moreno-Torres et al., 2012). Under Assumption 2, the

2The notation Õ(·) suppresses polynomial dependence on
ln(n) and ln(1/δ)

3Casting this into potential outcomes notation where Y d
i is the
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regression function µ(x) := E[Y ∗i | Xi = x] is identified as
E[Yi | Xi, Di = 1], and may be estimated by regressing the
observed outcome Yi on the featuresXi among observations
with Di = 1, yielding the outcome model µ̂(x).

We can use the outcome model to estimate loss on the full
population. One approach, Reject inference by extrapola-
tion (RIE), uses µ̂(x) as pseudo-outcomes for the unknown
observations (Crook & Banasik, 2004). We consider a sec-
ond approach, Interpolation & extrapolation (IE), which
uses µ̂(x) as pseudo-outcomes for all applicants, replacing
the {0, 1} labels for known cases with smoothed estimates
of their underlying risks. Letting n0, n1 be the number
of observations in the training data with Di = 0, Di = 1
respectively, Algorithms 1-2 summarize the RIE and IE
methods. If the outcome model could perfectly recover
µ(x), then the IE approach recovers an oracle setting for
which the FaiRS error analysis continues to hold (Theorem
2 below).

Algorithm 1: Reject inference by extrapolation
(RIE) for the selective labels setting

Input: {(Xi, Yi, Di = 1, Ai)}n
1

i=1,
{(Xi, Di = 0, Ai)}n

0

i=1

Estimate µ̂(x) by regressing Yi ∼ Xi | Di = 1.
Ŷ (Xi)← (1−Di)µ̂(Xi) +DiYi
Output: {(Xi, Ŷi(Xi), Di, Ai)}n

1

i=1,
{(Xi, Ŷi(Xi), Di, Ai)}n

0

i=1

Algorithm 2: Interpolation and extrapolation (IE)
method for the selective labels setting

Input: {(Xi, Yi, Di = 1, Ai)}n
1

i=1,
{(Xi, Di = 0, Ai)}n

0

i=1

Estimate µ̂(x) by regressing Yi ∼ Xi | Di = 1.
Ŷ (Xi)← µ̂(Xi)

Output: {(Xi, Ŷi(Xi), Di, Ai)}n
1

i=1,
{(Xi, Ŷi(Xi), Di, Ai)}n

0

i=1

Estimating predictive disparity measures on the full popula-
tion requires a more general definition of predictive disparity
than previously given in Eq. 1. Define the modified predic-
tive disparity measure over threshold classifiers as

disp(hf ) =β0
E [g(Xi, Yi)hf (Xi, Zα) | Ei,0]

E[g(Xi, Yi) | Ei,0]
+

β1
E [g(Xi, Yi)hf (Xi, Zα)|Ei,1]

E[g(Xi, Yi) | Ei,1]
,

(6)

counterfactual outcome if decision d were assigned, we define
Y 0
i = 0 and Y 1

i = Y ∗
i (e.g., a rejected loan application cannot

default). The observed outcome Yi then equals Y 1
i Di.

where the nuisance function g(Xi, Yi) is con-
structed to identify the measure of interest.4 To
illustrate, the qualified affirmative action fairness-
promoting intervention (Def. 3) is identified as
E[f(Xi)|Y ∗i = 1, Ai = 1] = E[f(Xi)µ(Xi)|Ai=1]

E[µ(Xi)|Ai=1]

under Assumption 2 (See proof of Lemma 8 in the
Supplement). This may be estimated by plugging in
the outcome model estimate µ̂(x). Therefore, Eq. 6
specifies the qualified affirmative action fairness-promoting
intervention by setting β0 = 0, β1 = 1, Ei,1 = 1 {Ai = 1},
and g(Xi, Yi) = µ̂(Xi). This more general definition
(Eq. 6) is only required for predictive disparity measures
that condition on events E depending on both Y ∗ and
A; it is straightforward to compute disparities based on
events E that only depend on A over the full population. To
compute disparities based on events E that also depend on
Y ∗, we find the saddle point of the following Lagrangian:
L(hf , λ) = Ê

[
EZα

[
cλ(µ̂

i
, Ai, Zα)hf (Xi, Zα)

]]
− λε̂,

where we now use case weights cλ(µ̂
i
, Ai, Zα) :=

β0

p̂0
g(Xi, Yi)(1−Ai) + β1

p̂1
g(Xi, Yi)Ai + λc(µ̂

i
, Zα) with

p̂a = Ê[g(Xi, Yi)1 {Ai = a}] for a ∈ {0, 1}. Finally, as
before, we find the saddle point using the exponentiated
gradient algorithm.

5.1. Error Analysis under Selective Labels

Define lossµ(f) := E[l(µ(Xi), f(Xi))] for f ∈ F with
lossµ(Q) defined analogously for Q ∈ ∆(F). The error
analysis of the exponentiated gradient algorithm continues
to hold in the presence of selective labels under oracle access
to the true outcome regression function µ.

Theorem 2 (Selective Labels). Suppose Assumption 2 holds
and the exponentiated gradient algorithm is given as input
the modified training data {(Xi, Ai, µ(Xi)}ni=1.

Under the same conditions as Theorem 1, the exponentiated
gradient algorithm terminates in O(n4φ) iterations and
returns Q̂h, which when viewed as a distribution over F ,
satisfies with probability at least 1 − δ either one of the
following: 1) Q̂h 6= null, lossµ(Q̂h) ≤ ε + Õ(n−φ) and
disp(Q̂h) ≤ disp(Q̃) + Õ(n−φ0 ) + Õ(n−φ1 ) for any Q̃ that
is feasible in (4); or 2) Q̂h = null and (4) is infeasible.

In practice, estimation error in µ̂ will affect the bounds in
Theorem 2. The empirical analysis in § 7 finds that our
method nonetheless performs well when using µ̂.

6. Application: Recidivism Risk Prediction
We use FaiRS to empirically characterize the range of dis-
parities over the set of good models in a recidivism risk pre-

4Note that we state this general form of g to allow g to use Yi

for e.g. doubly-robust style estimates.
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diction task applied to ProPublica’s COMPAS data (Angwin
et al., 2016). Our goal is to illustrate (i) how FaiRS may
be used to tractably characterize the range of predictive dis-
parities over the set of good models; (ii) that the range of
predictive disparities over the set of good models can be
quite large empirically; and (iii) how an auditor may use
the set of good models to assess whether the COMPAS risk
assessment generates larger disparities than other competing
good models. Such an analysis is a crucial step to assessing
legal claims of disparate impact.

COMPAS is a proprietary risk assessment developed by
Northpointe (now Equivant) using up to 137 features (Rudin
et al., 2020). As this data is not publicly available, our
audit makes use of ProPublica’s COMPAS dataset which
contains demographic information and prior criminal his-
tory for criminal defendants in Broward County, Florida.
Lacking access to the data used to train COMPAS, our set
of good models may not include COMPAS itself (Angwin
et al., 2016). Nonetheless, prior work has shown that simple
models using age and criminal history perform on par with
COMPAS (Angelino et al., 2018). These features will there-
fore suffice to perform our audit. A notable limitation of the
ProPublica COMPAS dataset is that it does not contain infor-
mation for defendants who remained incarcerated. Lacking
both features and outcomes for this group, we proceed with-
out addressing this source of selection bias. We also make
no distinction between criminal defendants who had varying
lengths of incarceration before release, effectively assuming
a null treatment effect of incarceration on recidivism. This
assumption is based on findings that a counterfactual audit
of COMPAS yields equivalent conclusions (Mishler, 2019).

We analyze the range of predictive disparities with respect to
race for three common notions of fairness (Definitions 1-2)
among logistic regression models on a quadratic polynomial
of the defendant’s age and number of prior offenses whose
training loss is near-comparable to COMPAS (loss tolerance
ε = 1% of COMPAS training loss).5 We split the data
50%-50% into a train and test set. Table 1 summarizes the
range of predictive disparities on the test set. The disparity
minimizing and disparity maximizing models over the set
of good of models achieve a test loss that is comparable to
COMPAS (see § D.1 of the Supplement).

For each predictive disparity measure, the set of good mod-
els includes models that achieve significantly lower dispari-
ties than COMPAS. In this sense, COMPAS generates “un-
justified” disparate impact as there exists competing models
that would reduce disparities without compromising per-
formance. Notably, COMPAS’ disparities are also larger
than the maximum disparity over the set of good models.
For example, the difference in COMPAS’ average predic-

5We use a quadratic form following the analysis in Rudin et al.
(2020).

Table 1. COMPAS fails an audit of the “business necessity” de-
fense for disparate impact by race. The set of good models (per-
forming within 1% of COMPAS’s training loss) includes models
that achieve significantly lower disparities than COMPAS. The
first panel (SP) displays the disparity in average predictions for
black versus white defendants (Def. 1). The second panel (BFPC)
analyzes the disparity in average predictions for black versus white
defendants in the positive class, and the third panel examines the
disparity in average predictions for black versus white defendants
in the negative class (Def. 2). Standard errors are reported in
parentheses. See § 6 for details.

MIN. DISP. MAX. DISP. COMPAS

SP −0.060 0.120 0.194
(0.004) (0.007) (0.013)

BFPC 0.049 0.125 0.156
(0.005) (0.012) (0.016)

BFNC 0.044 0.117 0.174
(0.005) (0.009) (0.016)

tions for black relative to white defendants is strictly larger
than that of any model in the set of good models (Table
1, SP). Interestingly, the minimal balance for the positive
class and balance for the negative class disparities between
black and white defendants over the set of good models are
strictly positive (Table 1, BFPC and BFNC). For example
any model whose performance lies in a neighborhood of
COMPAS’ loss has a higher false positive rate for black
defendants than white defendants. This suggests while we
can reduce predictive disparities between black and white
defendants relative to COMPAS on all measures, we may
be unable to eliminate balance for the positive class and
balance for the negative class disparities without harming
predictive performance.

In addition to the retrospective auditing considered in this
section, characterizing the range of predictive disparities
over the set of good models is also important for model
development and selection. The next section shows how to
construct a more equitable model that performs comparably
to a benchmark.

7. Application: Consumer Lending
Suppose a financial institution wishes to replace an exist-
ing credit scoring model with one that has better fairness
properties and comparable performance, if such a model
exists. We show how to accomplish this task by using FaiRS
to find the absolute predictive disparity-minimizing model
over the set of good models. On a real world consumer
lending dataset with selectively labeled outcomes, we find
that this approach yields a model that reduces predictive
disparities relative to the benchmark without compromising
overall performance.
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We use data from Commonwealth Bank of Australia, a large
financial institution in Australia (henceforth, ”CommBank”),
on a sample of 7,414 personal loan applications submitted
from July 2017 to July 2019 by customers that did not
have a prior financial relationship with CommBank. A
personal loan is a credit product that is paid back with
monthly installments and used for a variety of purposes such
as purchasing a used car or refinancing existing debt. In our
sample, the median personal loan size is AU$10,000 and
the median interest rate is 13.9% per annum. For each loan
application, we observe application-level information such
as the applicant’s credit score and reported income, whether
the application was approved by CommBank, the offered
terms of the loan, and whether the applicant defaulted on
the loan. There is a selective labels problem as we only
observe whether an applicant defaulted on the loan within 5
months (Yi) if the application was funded, where “funded”
denotes that the application is both approved by CommBank
and the offered terms were accepted by the applicant. In
our sample, 44.9% of applications were funded and 2.0% of
funded loans defaulted within 5 months.

Motivated by a decision maker that wishes to reduce credit
access disparities across geographic regions, we focus on
the task of predicting the likelihood of default Y ∗i = 1 based
on information in the loan application Xi while limiting pre-
dictive disparities across SA4 geographic regions within
Australia. SA4 regions are statistical geographic areas de-
fined by the Australian Bureau of Statistics (ABS) and are
analogous to counties in the United States. An SA4 region is
classified as socioeconomically disadvantaged (Ai = 1) if it
falls in the top quartile of SA4 regions based on the ABS’ In-
dex of Relative Socioeconomic Disadvantage (IRSD), which
is an index that aggregates census data related to socioeco-
nomic disadvantage.6 Applicants from disadvantaged SA4
regions are under-represented among funded applications,
comprising 21.7% of all loan applications, but only 19.7%
of all funded loan applications.

Our experiment investigates the performance of FaiRS under
our two proposed extrapolation-based solutions to selective
labels, RIE and IE (See Algorithms 1-2), as well as the
Known-Good Bad (KGB) approach that uses only the se-
lectively labelled population. Because we do not observe
default outcomes for all applications, we conduct a semi-
synthetic simulation experiment by generating synthetic
funding decisions and default outcomes. On a 20% sam-
ple of applicants, we learn π(x) := P̂ (Di = 1|Xi = x)
and µ(x) := P̂ (Yi = 1|Xi = x,Di = 1) using random
forests. We generate synthetic funding decisions D̃i accord-
ing to D̃i | Xi ∼ Bernoulli(π(Xi)) and synthetic default

6Complete details on the IRSD may be found in Australian Bu-
reau of Statistics (2016) and additional details on the definition of
socioeconomic disadvantage are given in § D.2 of the Supplement.

outcomes Ỹ ∗i according to Ỹ ∗i | Xi ∼ Bernoulli(µ(Xi)).
We train all models as if we only knew the synthetic out-
come for the synthetically funded applications. We estimate
µ̂(x) := P̂ (Ỹi = 1|Xi = x, D̃i = 1) using random forests
and use µ̂(Xi) to generate the pseudo-outcomes Ŷ (Xi) for
RIE and IE as described in Algorithms 1 and 2. As bench-
mark models, we use the loss-minimizing linear models
learned using KGB, RIE, and IE approaches, whose respec-
tive training losses are used to select the corresponding loss
tolerances ε. We use the class of linear models for the FaiRS
algorithm for KGB, RIE, and IE approaches.

We compare against the fair reductions approach to classifi-
cation (fairlearn) and the Target-Fair Covariate Shift (TFCS)
method. TFCS iteratively reweighs the training data via
gradient descent on an objective function comprised of the
covariate shift-reweighed classification loss and a fairness
loss (Coston et al., 2019). Fairlearn searches for the loss-
minimizing model subject to a fairness parity constraint
(Agarwal et al., 2018). The fairlearn model is effectively a
KGB model since the fairlearn package does not offer mod-
ifications for selective labels.7 We use logistic regression
as the base model for both fairlearn and TFCS. Results are
reported on all applicants in a held out test set, and perfor-
mance metrics are constructed with respect to the synthetic
outcome Ỹ ∗i .

Figure 1 shows the AUC (y-axis) against disparity (x-axis)
for the KGB, RIE, IE benchmarks and their FaiRS variants
as well as the TFCS models and fairlearn models. Colors
denote the adjustment strategy for selective labels, and the
shape specifies the optimization method. The first row eval-
uates the models on all applicants in the test set (i.e., the
target population). On the target population, FaiRS with
reject extrapolation (RIE and IE) reduces disparities while
achieving performance comparable to the benchmarks and
to the reweighing approach (TFCS). It also achieves lower
disparities than TFCS, likely because TFCS optimizes a
non-convex objective function and may therefore converge
to a local minimum. Reject extrapolation achieves better
AUC than all KGB models, and only one KGB model (fair-
learn) achieves a lower disparity. The second row evalu-
ates the models on only the funded applicants. Evaluation
on the funded cases underestimates disparities across the
methods and overestimates AUC for the TFCS and KGB
models. This underscores the importance of accounting for
the selective labels problem in both model construction and
evaluation.

FaiRS is also applicable in the regression setting. On the

7To accommodate reject inference, a method must support
real-valued outcomes. The fairlearn package does not, but the
related fair regressions method does (Agarwal et al., 2019). This
is sufficient for statistical parity (Def. 1), but other parities such
as BFPC and BFNC (Def. 2) require further modifications as
discussed in § 5

https://fairlearn.github.io/v0.5.0/api_reference/fairlearn.reductions.html
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Figure 1. Area under the ROC curve (AUC) with respect to the
synthetic outcome against disparity in the average risk prediction
for the disadvantaged (Ai = 1) vs advantaged (Ai = 0) groups.
FaiRS reduces disparities for the RIE and IE approaches while
maintaining AUCs comparable to the benchmark models (first row).
Evaluation on only funded applicants (second row) overestimates
the performance of TFCS and KGB models and underestimates
disparities for all models. Error bars show the 95% confidence
intervals. See § 7 for details.

Communities & Crime dataset, FaiRS improves on statisti-
cal parity without compromising performance relative to a
benchmark loss-minimizing least squares regression model
(See Supplement §D.5).

8. Conclusion
We develop a framework, Fairness in the Rashomon Set
(FaiRS), to characterize the range of predictive disparities
and find the absolute disparity minimizing model over the
set of good models. FaiRS is suitable for a variety of appli-
cations including settings with selectively labelled outcomes
where the selection decision and outcome are unconfounded
given the observed features. The method is generic, apply-
ing to both a large class of prediction functions and a large
class of predictive disparities.

In many settings, the set of good models is a rich class, in
which models differ substantially in terms of their fairness
properties. Exploring the range of predictive fairness proper-
ties over the set of good models opens new perspectives on
how we learn, select, and evaluate machine learning models.
A model designer may use FaiRS to select the model with
the best fairness properties among the set of good models.
FaiRS can be used during evaluation to compare the predic-
tive disparities of a benchmark model against other models
in the set of good models. When this evaluation illuminates
unjustified disparities in the benchmark model, FaiRS can

be used to find a more equitable model with performance
comparable to the benchmark. Characterizing the properties
of the set of good models is a relevant enterprise for both
model designers and auditors alike. This exercise opens
new perspectives on algorithmic fairness that may provide
exciting opportunities for future research.
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