
Exact Optimization of Conformal Predictors
via Incremental and Decremental Learning

Giovanni Cherubin 1 Konstantinos Chatzikokolakis 2 Martin Jaggi 3

Abstract
Conformal Predictors (CP) are wrappers around
ML models, providing error guarantees under
weak assumptions on the data distribution. They
are suitable for a wide range of problems, from
classification and regression to anomaly detection.
Unfortunately, their very high computational com-
plexity limits their applicability to large datasets.
In this work, we show that it is possible to speed
up a CP classifier considerably, by studying it in
conjunction with the underlying ML method, and
by exploiting incremental&decremental learning.
For methods such as k-NN, KDE, and kernel LS-
SVM, our approach reduces the running time by
one order of magnitude, whilst producing exact so-
lutions. With similar ideas, we also achieve a lin-
ear speed up for the harder case of bootstrapping.
Finally, we extend these techniques to improve
upon an optimization of k-NN CP for regression.
We evaluate our findings empirically, and discuss
when methods are suitable for CP optimization.

1 Introduction

Conformal prediction refers to a set of techniques provid-
ing error guarantees on the predictions of an ML algo-
rithm (Vovk et al., 2005). Its increasing popularity is due to
the fact that these guarantees do not require strict assump-
tions on the underlying data distribution; one only needs to
assume that the observed examples are exchangeable (i.e.,
any permutation of them is equally likely to appear) – a
weaker requirement than IID. These guarantees hold for any
desired ML algorithm, even if underspecified or overfitting.

A conformal predictor (CP) can be instantiated for vari-
ous tasks: classification and regression (Vovk et al., 2005),
anomaly detection (Laxhammar & Falkman, 2010), and

1Alan Turing Institute, London, UK 2University of Athens
3EPFL. Correspondence to: Giovanni Cherubin <gcheru-
bin@turing.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

clustering (Cherubin et al., 2015). Furthermore, they can
be used to test if data is exchangeable (or IID) (Vovk et al.,
2003). Our work focuses on classification, and it can be
directly applied to tasks such as anomaly detection, cluster-
ing, and sequence prediction (Section 9). We discuss CP
regression separately, in Section 8.

In this paper, we consider the original definition of CP (also
referred to as “full” or transductive CP), which is known
to have a good predictive power and to attain the desired
coverage intervals. Unfortunately, full CP requires running
a leave-one-out (LOO) procedure on the entire training set
for every test point. This makes its complexity prohibitive
for most real world cases: if training the ML method on n
examples takes T (n) time, the cost of a CP prediction for m
test points is proportional toO(T (n)n`m), for a training set
of n examples in an `-label classification setting. A number
of time-efficient modifications of CP exist (Vovk et al., 2005;
Vovk, 2015; Carlsson et al., 2014; Barber et al., 2019), which
although have a weaker predictive power and/or coverage
guarantees (e.g., Linusson et al. (2014)).

In this work, we focus on exact optimizations of the full
CP classification algorithm. We first observe that, while
a CP can be constructed around virtually any ML method,
most applications of CP classification only use a handful of
models. It therefore makes sense to optimize the CP routine
in conjunction with its underlying model. In this paper, we
use this idea and exploit incremental&decremental learning
principles to produce exact optimizations of CP for: i) k-
NN, ii) Kernel Density Estimation (KDE), iii) kernel Least-
Squares SVM (LS-SVM); all these reduce the complexity by
at least one order of magnitude. Furthermore, iv) we show
that bootstrapping methods can be marginally improved by
similar ideas, and v) we extend our optimizations to CP
regression. Our results demonstrate that full CP is practical
for several choices of underlying methods.

1.1 Related work

We first review computationally-efficient alternatives to CP,
and then discuss related work on full CP optimization.

Alternatives to full CP. Despite the desirable properties of
full CP, its computational complexity makes it impractical

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

Table 1. Time complexity of the optimized (our contribution) and standard nonconformity measures used for full CP classification.
Complexities refer to an `-label classification setting, with n training and m test examples. Standard full CP requires no training.

Full CP Train Predict Exact optimization

(Simplified) k-NN Standard O(1) O(n2`m)
Optimized O(n2) O(n`m) 3

KDE Standard O(1) O(PKn
2`m)

Optimized O(PKn
2) O(PKn`m) 3

PK : time complexity of computing kernelK for 1 point

LS-SVM Standard O(1) O(nω+1`m)
Optimized O(nω) O(q3n`m) 3
q: dimensionality of feature vector φ(x). For ω ∈ [2, 3], nω is the training cost of an LS-SVM model.

Bootstrap Standard O(1) O(Sg(n)Bn`m)
Optimized O(Sg(n)e−1Bn) O(Sg(n)(1− e−1)Bn`m) 7
B: n. classifiers

Sg(n) = Tg(n) + Pg(1): time to train base classifier on n examples and make one prediction

for most applications. Researchers have therefore been in-
vestigating modifications of CP, to reduce the computational
complexity. For example, Inductive CP (ICP), also referred
to as “split CP”, trains the underlying ML method only on
part of the training set, which enables it to avoid the costly
LOO procedure of full CP; however, this has an impact on
its prediction power (e.g., Appendix G). Several methods
were proposed after ICP, such as cross-CP (Vovk, 2015),
aggregated CP (Carlsson et al., 2014), CV+ and the jack-
knife+ (Barber et al., 2019). These methods mitigated ICP’s
statistical inefficiency, whilst preserving a good computa-
tional complexity. However, they have a weaker prediction
power than the full CP formulation (Linusson et al., 2014;
Carlsson et al., 2017; Lei et al., 2018; Barber et al., 2019).
It is therefore important to have access to efficient optimiza-
tions of full CP, for applications with strict requirements on
statistical efficiency (e.g., Lei (2019)).

In our experiments, we use ICP as a time complexity base-
line for our optimizations, since it is the most computation-
ally efficient among the above techniques. We report the
time complexity of the other methods in Appendix A.

Optimization of full CP classifiers. A CP is built for an
ML method, by converting the method into a scoring func-
tion, the nonconformity measure. Informally, this function
quantifies the strangeness of an example w.r.t. training data.

Makili et al. (2013) optimized CP by defining a noncon-
formity measure based of the Lagrangian multipliers of a
trained SVM. Thanks to this, they could use an incremental
version of SVM to avoid the LOO step in CP. Unfortunately,
this is only a special case of SVM nonconformity measure,
and being incremental is not sufficient to optimize CP in
general: as we observe in this paper, in order to optimize CP,
an ML method must be both incremental and decremental.

Vovk et al. (2005) optimized CP with the k-NN noncon-
formity measure for online learning settings when param-
eter k increases slowly with n; they achieved an impres-
sive O(log(n)) time for 1 prediction given n training
points. This method is limited to the Euclidean metric on
X = [0, 1], or contingent on embedding the object space
X in [0, 1]. Our k-NN CP optimization works for any met-
ric space, by exploiting a simple incremental&decremental
version of k-NN we devise. Additionally, we show our idea
can be used to optimize KDE CP.

Vovk et al. (2005) noticed that a linear LS-SVM nonconfor-
mity measure can be computed efficiently in the LOO step.
In our work, we use the incremental&decremental LS-SVM
by Lee et al. (2019) to generalize this to multiple kernels.

CP regression. The regression task in CP has been tradi-
tionally tackled separately from classification. In regression,
one needs to reformulate CP (and ICP) to support an infinite
label space. For ICP, this is straightforward and efficient (Pa-
padopoulos et al., 2002). Other CP modifications for regres-
sion exist, e.g., conformal predictive distributions (Vovk
et al., 2017), jackknife+, CV+ (Barber et al., 2019). As for
full CP, regression is a harder goal, which was achieved only
for: ridge regression (Nouretdinov et al., 2001), k-NN (Pa-
padopoulos et al., 2011), and the Lasso (Lei, 2019). In
Section 8, by using incremental&decremental learning, we
produce an exact optimization of the k-NN CP regressor.

Contributions. To summarize our contributions:
• We introduce exact optimizations of full CP for the

following methods: k-NN, “simplified” k-NN, KDE,
and kernel LS-SVM. Each improves at least by one
order of magnitude the original complexity (Table 1).

• We further use the incremental&decremental learning
idea to optimize bootstrap CP by a linear factor.

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

• We empirically compare our techniques with i) original
implementations of full CP, and ii) the most computa-
tionally efficient CP modification, ICP.

• We extend our ideas to CP regression. In particular,
we improve on an optimization of the k-NN CP re-
gressor by Papadopoulos et al. (2011), and reduce its
time complexity fromO(n2m) toO(n log(2n)m), for
predicting m test objects given n training points.

• Discuss further optimization avenues for full CP.
Code to reproduce the experiments: https://github.
com/gchers/exact-cp-optimization.

2 Preliminaries

Consider an `-label classification setting, where
we are given a training set of examples Z =
{(x1, y1), ..., (xn, yn)} ∈ (X × Y)n and we are
asked to predict the label for a test object x.

We build a nonconformity measure on top of an ML method,
as described in Subsection 2.1. A nonconformity measure
is a real-valued function A : (X × Y)× (X × Y)n → R,
which quantifies how much an example (x, y) “conforms to”
(or is similar to) a set of training examples {(xi, yi)}ni=1.

For a chosen significance level ε ∈ [0, 1] and nonconformity
measure A, a CP classifier outputs a set Γε ⊆ Y as its
prediction for test point x. CP guarantees that this prediction
set contains the correct label y with at least 1−ε probability.
Formally, if the set {(xi, yi)}ni=1∪{(x, y)} is exchangeable
then Pr

(
y /∈ Γε

)
≤ ε (Vovk et al., 2005).

Because a bound ε on the probability of error Pr
(
y /∈ Γε

)
is chosen in advance, an analyst only needs to assert that
Γε is statistically efficient (i.e., it contains one or very few
labels). The underlying ML method serves this purpose: the
better A is, the more efficient the prediction set Γε will be.

In the remainder of this section, we describe how to obtain
nonconformity measures from popular ML methods, we out-
line the CP algorithm and its complexity, and describe ICP,
the computationally-ideal baseline for our optimizations.

2.1 Nonconformity measures

We call A’s output a nonconformity score; it takes a smaller
value if example (x, y) conforms more to the training set.
We give two examples of nonconformity measures.

Nearest neighbor. Let d be a metric on X . The Nearest
Neighbor (NN) nonconformity measure is:

A((x, y); {(xi, yi)}ni=1) =
mini=1,...,n:yi=y d(x, xi)

mini=1,...,n:yi 6=y d(x, xi)
.

(1)
It is useful to think of a nonconformity measure as a scoring
function determining how suitable label y is for an object x;

note that this is equivalent to determining the conformity of
the pair (x, y) to the training data. The NN nonconformity
measure takes low values if the nearest neighbor to x that
has label y is closer than its nearest neighbor with label
different from y; it takes a high value otherwise. We discuss
extensions of this measure in Section 3.

Nonconformity measure from generic ML methods. Let
f : X 7→ [0, 1]` be a classifier returning a confidence score
for each of the ` = |Y | labels. We can construct a noncon-
formity score from f as follows:

A((x, y); {(xi, yi)}ni=1) = −fy(x) ,

where f is trained on {(xi, yi)}ni=1 and fy(x) is its score
for label y. The negative sign ensures that A takes a lower
value if the classifier believes y is an appropriate label for x.

2.2 Full CP classifier

Algorithm 1 CP: computing a p-value for (x, ŷ)

1 COMPUTE PVALUE(x, ŷ, A, Z = {(xi, yi)}ni=1)
2 α = A((x, ŷ);Z)
3 for i in 1, ..., n
4 αi = A((xi, yi); {(x, ŷ)} ∪ Z \ {(xi, yi)})
5 p(x,ŷ) = #{i=1,...,n :αi≥α}+1

n+1

6 return p(x,ŷ)

Let Z = {(xi, yi)}ni=1 be a training set, and x a test object.
For each possible label ŷ ∈ Y , CP computes a p-value
p(x,ŷ) (Algorithm 1) based on the hypothesis that (x, ŷ)
comes from the same distribution as Z; intuitively, p(x,ŷ)
attests on whether ŷ is a good label for x. CP outputs the
following set as its prediction: Γε = {ŷ ∈ Y : p(x,ŷ) > ε},
for a desired value ε ∈ [0, 1].

Time complexity of CP. Let TA(n) be the time to train A
on a dataset Z of n examples, and PA(m) that of using the
trained A(·;Z) to predict m examples. Algorithm 1 has
complexity O((TA(n) + PA(1))n). If we assume the non-
conformity measure should at least inspect every training
point (i.e., TA(n) = n), a lower bound on the complexity
to compute the p-value for one test point is O(n2).

When used for classifying a test object x in a set of labels
Y , CP needs to run Algorithm 1 for every possible pair-
ing (x, ŷ), ŷ ∈ Y . Therefore, the complexity becomes
O((TA(n) + PA(1))n`), where ` = |Y |. The lower bound
is O(n2`) for classifying one test point.

2.3 Inductive CP classifier

The most computationally-efficient – alas statistically ineffi-
cient, alternative to CP is inductive CP (ICP) (Vovk et al.,
2005). For a parameter t ∈ {1, ..., n}, ICP splits the train-
ing set Z into: proper training set Ztrain and calibration

https://github.com/gchers/exact-cp-optimization
https://github.com/gchers/exact-cp-optimization

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

set Zcalib, where Ztrain ∪ Zcalib = Z, and |Ztrain| = t.
Then it trains the nonconformity measure A on Ztrain, and
it computes the scores αi = A((xi, yi);Ztrain) only for
the calibration examples (xi, yi) ∈ Zcalib, instead of the
entire training set; this avoids the LOO step (Lines 3-4,
Algorithm 1). ICP is outlined in Appendix A.

Time complexity of ICP. Consider an ICP trained on n
examples, t of which are used for the proper training set.
The running time for training and calibration is O(TA(t) +
PA(n − t)). The time for computing the p-value for one
example is O(PA(1) + n− t). This becomes O((PA(1) +
n− t)`) when classifying one test object into ` labels.

3 Nearest neighbor nonconformity measures

We describe nonconformity measures based on the nearest
neighbor principle, and introduce an optimization for their
use in CP. Let d be a distance metric in the object space X .

k-NN. Equation (1) is the NN nonconformity measure, mea-
suring the ratio of the smallest distance from examples with
the same label and examples with a different label. We study
a generalization of this according to the k-NN principle.

Let δj(x, S) be the j-th smallest distance of object x from
the points in set S. The k-NN measure is (Vovk et al., 2005):

A((x, y);{(xi, yi)}ni=1) =∑k
j=1 δ

j(x, {xi : i = 1...n, yi = y})∑k
j=1 δ

j(x, {xi : i = 1...n, yi 6= y})
.

(2)

Simplified k-NN. Another version of the k-NN nonconfor-
mity measure, useful for anomaly detection (Laxhammar
& Falkman, 2010), is defined as the nominator of Equa-
tion (2): A((x, y); {(xi, yi)}ni=1) =

∑k
j=1 δ

j(x, {xi : i =
1...n, yi = y}). Because it only contains information for
one label, we refer to it as the simplified k-NN measure.

Complexity. CP classification of m test points takes
O(n2`m) for both Simplified k-NN and k-NN. We report
the derivation for all the complexities in Appendix C and
Appendix D. They are summarized in Table 1.

3.1 Optimizing nearest neighbor CP

The bottleneck of Algorithm 1 is computing the non-
conformity score for each training example, αi =
A((xi, yi); {(x, y)} ∪Z \ {(xi, yi)}) , where Z is the train-
ing set. We observe that, in order to speed this up, the
nonconformity measure should be able to efficiently both
learn a new example (the test example), and unlearn an ex-
ample (the i-th example in the LOO step). That is, we need
to devise an incremental&decremental version of k-NN.

d(xi, x)

xi

∆2
i

∆1
i

x

(a) α′
i is updated

xi

∆3
i

∆2
i

∆1
i

x

(b) No update

Figure 1. Intuition behind the Simplified k-NN optimization. Train-
ing points: , test point: x ; k = 3. The nonconformity score
αi for training point xi only depends on its k closest points. The
provisional nonconformity score α′

i is updated if test point x is a
k-NN of xi (a); otherwise, no update occurs: αi = α′

i (b).

To this end, we get inspiration from classical techniques for
LOO k-NN cross validation (e.g. Fukunaga & Hummels
(1989); Hamerly & Speegle (2010)), although these are not
directly applicable to our setting. The main difference is
that in CP we can precompute the distances that are subse-
quently used to predict a test point; this enables improving
the performance further.

We focus on optimizing Simplified k-NN, although the same
arguments apply to k-NN. Our proposal is based on the
observation that nearest neighbor measures only depend on
a subset of (k) examples. We exploit this as follows. In the
training phase, we precompute provisional scores:

α′i = A((xi, yi);Z \ {(xi, yi)}) =

k∑
j=1

∆j
i ,

where, for j = 1, ..., k:

∆j
i = δj(xi, {xa : (xa, ya) ∈ Z \ {(xi, yi)}, ya = yi}) .

Scores α′i are provisional, because they do not account for
the test example (x, y). In the prediction phase, to compute
the p-value for (x, y), we update the scores as follows:

αi =

{
α′i −∆k

i + d(xi, x) if ∆k
i > d(xi, x) and yi = y

α′i otherwise ,

where ∆k
i is the k-th smallest distance from xi to the train-

ing examples (excluding (xi, yi)) with the same label as xi.
That is, we only update score αi, associated with (xi, yi), if
(x, y) is among its k nearest neighbors. This is illustrated in
Figure 1. The cost is O(1).

The k-NN measure is optimized similarly, by keeping for
each training example its k best distances from both objects
with the same label and from those with a different label.

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

Complexity. For both measures, the training cost is O(n2).
Classifying m test examples is O(n`m).

4 Kernel Density Estimation

For a kernel function K, the Kernel Density Estimation
(KDE) nonconformity measure is:

A((x, y); {(xi, yi)}ni=1) = − 1

nyhp

∑
xi:yi=y

K

(
x− xi
h

)
,

where ny = #{i = 1, ..., n : yi = y}, h is the bandwidth,
and p is the objects’ dimensionality.

Complexity. If computing the kernel for one object is PK ,
CP classification takes O(PKn

2`m).

4.1 Optimizing KDE CP

We use a similar idea to that of our k-NN optimization;
however, in this case A depends on all the training points,
not just a subset. To the best of our knowledge, this incre-
mental&decremental adaptation of KDE is also novel. For
training, we compute preliminary scores:

α′i =
∑

xj :yj=yi

K

(
xi − xj
h

)
i = 1, ..., n .

To calculate the p-value for an example (x, y) in the test
phase, we update the scores as follows:

αi =

− 1
nyhd

(
α′i +K

(
x−xi

h

))
if yi = y

− 1
nyhdα

′
i otherwise .

Complexity. Training takes O(PKn
2). CP classification

runs in O(PKn`m).

5 Least Squares Support Vector Machine

Assume Y = {−1, 1}. Consider a feature map φ : X → F .
The least-squares SVM (LS-SVM) regressor, defined by
φ and a vector w, returns a prediction for an object x as:
w>φ(x). The model w is trained with Tikhonov regulariza-
tion (ridge regression); details in Appendix B. We define
the nonconformity measure for the LS-SVM regressor as:

A((x, y); {(x1, y1), ..., (xn, yn)}) = −yf(x) ;

it takes high values if the prediction f(x) is different (in
sign) from y. Extension of this to ` = |Y | > 2 can be done
via one-vs-rest approaches (e.g., Vovk et al. (2005)).

Complexity. Depending on algorithm choices, training LS-
SVM takes nω , ω ∈ [2, 3]. CP LS-SVM takes O(nω+1`m).

5.1 Optimizing LS-SVM CP

We exploit recent work by Lee et al. (2019), which enables
exact incremental and decremental learning of LS-SVM.
Given a trained model w, their proposal enables updating w
by adding/removing an example in time O(q3), where q is
the dimensionality of the feature space F (Appendix B).

We apply this for optimizing LS-SVM CP. In the training
phase, we learn the model w on the training data. Then, to
compute the nonconformity score for an example (xi, yi),
we: i) update the model with the test example by using the
approach by Lee et al., ii) make a prediction for (xi, yi).

Complexity. Training LS-SVM takesO(nω), for ω ∈ [2, 3]
(one-off cost). CP classification is O(q3n`m).

Discussion. Other options are possible for optimizing SVM
nonconformity measures. Cauwenberghs & Poggio (2001)
proposed an incremental&decremental version of SVM,
which differently from the one we used has a larger memory
footprint. Another promising avenue for optimization is the
classical linear SVM formulation using coordinate-descent,
in combination with incremental updates (Tsai et al., 2014).

6 Bootstrapping methods

Let integer B > 1 be a hyperparameter, and select a base
classifier (e.g., decision tree). In bootstrapping, the training
data Z = {(x1, y1), ..., (xn, yn)} is sampled B times with
replacement to produce B bootstrap samples, Z1, ..., ZB .
On each sample we fit the base classifier, obtaining an en-
semble ofB classifiers (g1, ..., gB), which we jointly denote
with f : X → [0, 1]`, ` = |Y |.

Classifier f outputs a confidence vector, f(x) ∈ [0, 1]`,
over the labels. The y-th element of this vector, denoted by
fy(x), is computed as the normalized count of classifiers gi
that predict y. That is:

fy(x) =
1

B
#{i = 1, ..., B : gi(x) = y} y ∈ Y .

We define the bootstrapping nonconformity measure as:

A((x, y); {(x1, y1), ..., (xn, yn)}) = −fy(x) .

Complexity. Let Tg(n) be the time needed to train the base
classifier on n training points, and Pg(m) its cost to predict
m points. Bootstrap CP runs inO((Tg(n) +Pg(1))Bn`m).

6.1 Optimizing bootstrap CP

Standard bootstrap CP requires training a bootstrap ensem-
ble for each training example (xi, yi) and one for the test
example (x, y); this entails creating, for each example, B
bootstrap samples that do not contain that example. The

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

0 20 k 40 k 60 k 80 k 100 k
Training set size

10−2

10−1

100

101

102

103

104

105

A
ve

ra
ge

pr
ed

ic
tio

n
tim

e
(s

)

k-NN

Standard
Optimized
ICP

0 20 k 40 k 60 k 80 k 100 k
Training set size

LS-SVM

0 20 k 40 k 60 k 80 k 100 k
Training set size

KDE

0 20 k 40 k 60 k 80 k 100 k
Training set size

Random Forest

Figure 2. Comparison between the standard and optimized full CP. ICP serves as a baseline for these measurements. Prediction time for
one test point w.r.t. the size of training data. Black dashed line is the experiment timeout (10 hours).

optimization we propose maintains the spirit of bootstrap,
although it may lead to different results from the standard
version because of changes in the sampling strategy.

We first explain the basic idea for training and prediction,
and then improve it with two remarks. Let “∗” be a place-
holder for the test point (x, y), which is unavailable during
training, and let Z∗ = Z ∪ {∗} be the augmented training
set. For a numberB′ > B to be later specified, we createB′

bootstrap samples of Z∗, denoted {Z∗1 , ..., Z∗B′}. We con-
tinue creating samples until, for every point (xi, yi) ∈ Z∗,
there are at least B bootstrap samples that do not con-
tain (xi, yi); that is, we increase the number of samples
B′ until #{b = 1, ..., B′ : (xi, yi) /∈ Z∗b } ≥ B for all
(xi, yi) ∈ Z∗. This ensures that each training point (and the
placeholder test point) have at least B bootstrap samples.1

Let Ei = {b = 1, ..., B′ : (xi, yi) /∈ Z∗b } be the samples
associated with (xi, yi), andE = {b = 1, ..., B′ : ∗ /∈ Z∗b }
the ones associated with the (placeholder) test example. In
the prediction phase, we compute a prediction for test point
(x, y) by using the base classifiers trained on the bootstrap
samples in E. We make the prediction for a training point
(xi, yi) in the LOO procedure of CP as follows: i) in Ei’s
bootstrap samples, replace the placeholder ∗ with the test
point (x, y), ii) train the base classifiers on the samples from
Ei and compute a prediction for (xi, yi).

Remarks. The procedure explained so far preemptively
samplesB bootstraps for each point. We apply the following
improvements. Because some bootstrap samples Z∗b ∈ Ei
associated with (xi, yi) do not contain the placeholder ∗, in
the training phase we: i) pretrain the base classifiers gb(x)
on them, and ii) compute their predictions for (xi, yi). This
saves up considerable time in the prediction phase. The
optimized bootstrap algorithm is listed in Appendix B.

Complexity. Optimized CP classification for m test points

1If at the end of the procedure an example has more than B,
we can truncate them to B to save up on computational resources.

isO((Tg(n)+Pg(1))(1−e−1)B`m), a factor (1−e−1) ≈
0.632 speed up on the standard one. The speed up of this
optimization is not as prominent as our other proposals.
However, we suspect one can further improve bootstrap CP
for base classifiers that support incremental&decremental
learning (Section 9). We leave this to future work.

7 Empirical evaluation

We compare the running time of the original and optimized
CP, using ICP as a baseline. We detail hardware, precau-
tions taken to ensure the fidelity of the measurements, and
hyperparameters in Appendix E. We instantiate bootstrap
CP to Random Forest.

7.1 Comparison between standard and optimized CP

Setup. In our experiments, the data distribution is irrelevant.
We generate data for a binary classification problem with 30
features, by using the make classification() rou-
tine of the scikit-learn library. (In Appendix G, we
further compare CP and ICP on the MNIST dataset.)

For every training size n, chosen in the space [10, 105], we
train the CP with a nonconformity measure, and use it to
predict 100 test points. We set a timeout of 10 hours, which
is verified after the prediction of every test point; therefore,
the timeout may be exceeded if the prediction for a point has
already started. We measure both the training time and the
average prediction time for a test point. Each experiment is
repeated for 5 different initialization seeds.

Prediction time. Figure 2 shows the comparison between
standard and optimized CP. Results confirm the complex-
ity we derived analytically. For 100k training points, the
optimized k-NN CP ensures a prediction in 0.63 seconds,
whilst the respective unoptimized version takes roughly 2
hours for the same prediction. Since k-NN and Simplified
k-NN behave very similarly, results for the latter are in
Appendix F. The largest speed up is with LS-SVM: the

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

0 20 k 40 k 60 k 80 k 100 k
Training set size

10−2

10−1

100

101

102

103

104

105

Tr
ai

ni
ng

tim
e

(s
)

LS-SVM
k-NN
Simplified k-NN
KDE
Random Forest

Figure 3. Training time of optimized CP.

optimized version has a running time of 0.21 seconds; the
standard implementation takes on average more than 24.5
hours for 1 prediction. Our bootstrap CP optimization only
gives a marginal improvement over the original implemen-
tation. For n = 46415, optimized Random Forest takes 43
hours for one prediction, the standard one 82 hours.

Comparison with ICP. We use ICP as a baseline. For
a parameter t ∈ {1, ..., n}, ICP trains the nonconformity
measure on a subset of t examples, and computes the scores
for the remaining n− t. We fix t/n = 0.5.

As expected, results (Figure 2) show that ICP is strictly
faster than the optimized CP methods: e.g., when trained on
100k examples, LS-SVM takes 6.68 seconds per prediction,
while LS-SVM ICP takes 0.16 seconds; the worst perform-
ing is Random Forest, which as seen above improves CP
only by a linear factor. Nevertheless, in some cases ICP
and optimized CP have the same magnitude: for KDE, ICP
takes 0.31 seconds, optimized CP 0.46 seconds. In other
words, our CP optimization seems to perform comparably
well to ICP on reasonably large datasets.

This reveals a better trade-off between computational-
statistical efficiency in conformal inference: if one’s priority
is speed, they can use ICP, or other CP alternatives; however,
if they can sacrifice computational time, they can get full
CP predictions and yet scale to real-world data.

7.2 Training time

CP with the optimized nonconformity measures incurs into
a training time, while standard CP does not. We compare
the training time of the optimized measures in Figure 3.

We observe that LS-SVM has the highest training time,
whilst Random Forest the lowest. We also notice that the
training time is a reasonable price to pay in practice. In
a batch classification setting with 100k training and 20k
test examples, optimized k-NN CP would take 2.2 hours
for training and 3.3 hours for prediction. Standard k-NN
CP would have no training time, but its prediction routine
would run for 9.3 years to obtain the same solution.

It may be possible to speed up our techniques even further
via approximate incremental&decremental learning tech-
niques. We leave this to future work (Section 9).

8 Large Y and extension to regression

The classification algorithms for CP (Algorithm 1) and ICP
(Algorithm 2) are clearly unfeasible for a very large Y : they
both require repeating the calculations for each y ∈ Y .

Things are different for regression, where we assume a total
order on Y . In this case, one can avoid the ` = |Y | term in
the cost of both CP and ICP (Vovk et al., 2005). Indeed, it is
possible to find the intervals of Y where the p-value p(x,ŷ)
exceeds ε, without having to try all values ŷ ∈ Y . In ICP,
this can be done efficiently for general regressors.

As for full CP, this optimization is harder, as one needs to
update the intervals of Y for each training point when a
new point arrives. Full CP regression was optimized in this
sense for k-NN (Papadopoulos et al., 2011), ridge regression
(Nouretdinov et al., 2001), and Lasso (Lei, 2019). Ndiaye &
Takeuchi (2019) recently proposed a general method leading
to approximate but statistically valid CP regressors.

Since the above full CP regression methods do not exploit
incremental&decremental ideas, we suspect they can be
optimized further. We show this is possible for k-NN.

8.1 Improving the k-NN CP regressor

The full k-NN CP regressor works as follows. Fix an hyper-
parameter k > 0. Let ỹ ∈ Y be a candidate label (not to be
defined explicitly) for test object x. Define the nonconfor-
mity score for the i-th training example (xi, yi) as:

αi = αi(ỹ) = |ai + biỹ| ,

where, for i = 1, ..., n:

ai =

{
yi − 1

k

∑k−1
j=1 y(j)(xi) if x is one of xi’s k NNs

yi − 1
k

∑k
j=1 y(j)(xi) otherwise ,

bi =

{
− 1
k if x is one of xi’s k NNs

0 otherwise ;

here y(j)(xi) is the label of the j-th nearest neighbor of xi
in the training set Z \ (xi, yi). For the test example x, we
set a = −1/k

∑k
j=1 y(j)(x), b = 1. The p-value is:

p(x,ỹ) =
#{i = 1, ..., n : |ai + biỹ| ≥|a+ bỹ|}

n+ 1
.

The optimization idea by Papadopoulos et al. (2011) is based
on the fact that, in order to find an interval of Y for which
p(x,ỹ) > ε, it suffices to find the points ỹ ∈ Y for which
c(ỹ) = αi(ỹ)− α(ỹ) changes. This can be done efficiently,

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

0 20 k 40 k 60 k 80 k 100 k
Training set size

10−4

10−2

100

102

104

A
ve

ra
ge

pr
ed

ic
tio

n
tim

e
(s

)

Papadopoulos et al. (2011)
Optimized
ICP

Figure 4. Time comparison of k-NN CP regression: method by
Papadopoulos et al. (2011), our optimization, and ICP (baseline).

by only looking at most at 2n points. The time complexity
of one prediction is O(n2 + 2n log(2n)), where the term
O(n2) comes from computing the k nearest neighbors of
each training point, and O(2n log(2n)) comes from sorting
the critical points of c(ỹ) (required by the above algorithm).

Optimization via incremental&decremental learning.
The method by Papadopoulos et al. (2011) can be further
improved via the incremental&decremental k-NN algorithm
we proposed in this paper. We reduce theO(n2) term as fol-
lows. In the training phase, we: i) precompute the pairwise
distances of the training points in Z, ii) and precompute
temporary values a′i and b′i, for i = 1, ..., n. Specifically,
we let ai = yi − 1

k

∑k
j=1 y(j)(xi) and bi = 0, as if the

(yet unknown) test example x did not contribute to their
values. When making a prediction for x, we: iii) compute
its distance from the elements of Z (takes O(n)), and iv)
update those a′i and b′i such that x is one of the k- nearest
neighbors of (xi, yi). Then we proceed as before.

Even in this setting, using an incremental&decremental
version of the nonconformity measure enables us to re-
duce the prediction complexity by almost one order of
magnitude. Predicting m test examples reduces from
O((n2 + 2n log(2n))m) to O(2n log(2n)m).

Empirical evaluation. We compare full k-NN CP regres-
sion (Papadopoulos et al., 2011) with our optimization via
incremental&decremental learning. As a baseline we use
ICP k-NN regression, whose complexity is O(tm)), where
t ∈ {2, ..., n− 1} is the size of the proper training set, and
m the number of test points. We generate regression ex-
amples from X × Y = R30 × R with scikit-learn’s
make regression() function. We vary n ∈ [10, 105],
and measure the average prediction time across 100 test
points. Each experiment is repeated for 5 random seeds, and
confidence intervals are plotted.

Figure 4 shows that our optimization largely outperforms
the previous version of full k-NN CP regression by Pa-
padopoulos et al. (2011); the cost for one prediction with

100k training points decreases from 1 hour to 9.3 seconds.
ICP outperforms both, taking roughly 4.6 ms. We remark,
however, that ICP was observed to have a strictly weaker
statistical power in regression (Papadopoulos et al., 2011).

Discussion. We expect that our LS-SVM CP optimization
(Section 5) can be readily applied to speed up the full CP re-
gressor based on ridge regression (Nouretdinov et al., 2001).
We leave this, and the optimization of other CP regressors
using incremental&decremental ideas, to future work.

9 Discussion and conclusion

Full CP is computationally expensive because of its main
routine (Algorithm 1), which runs a leave-one-out (LOO)
procedure on the ML method (nonconformity measure) that
it wraps. In this paper, we show that if a nonconformity mea-
sure can be designed to learn and unlearn one example effi-
ciently (i.e., it can be trained incrementally&decrementally),
this can speed up considerably CP classification. Concretely,
we improved k-NN, KDE, and kernel LS-SVM CP classi-
fiers by at least one order magnitude, and bootstrap CP by
a linear factor. Furthermore, we exploited these ideas to
further optimize k-NN CP regression. Our work makes it
feasible to run full CP on large datasets.

We discuss how our optimizations are readily applicable to
other tasks (e.g., clustering, change-point detection), and
future directions for CP optimization.

Extensions to more learning tasks. In addition to classifi-
cation and regression, CP is used for tasks such as anomaly
detection (Laxhammar & Falkman, 2010), clustering, and
sequence prediction (Cherubin & Nouretdinov, 2016). Be-
cause all these techniques are based on computing a p-value
via Algorithm 1, our optimizations are immediately appli-
cable. For example, conformal clustering (Cherubin et al.,
2015) with k-NN CP costs O(n2qp), where q is the length
of a square grid constructed around p-dimensional training
points. With our optimization, the cost becomes O(nqp).
(Usually, p = 2, by using dimensionality reduction.)

CP has applications to online learning (e.g., change-point
detection (Vovk et al., 2003)). At step n + 1, the algo-
rithm trains on examples {(xi, yi)}ni=1, makes a prediction
for xn+1, and learns the true label yn+1. Adapting our
optimizations to this setting is trivial: it suffice to incremen-
tally learn the new example (xn+1, yn+1) after prediction,
which is efficient for k-NN, KDE and LS-SVM. This has a
considerable speed-up. For example, an IID test by Vovk
et al. (2003), which has further applications to feature selec-
tion (Cherubin et al., 2018), requires to incrementally com-
pute a p-value for the (n+ 1)-th point given {(xi, yi)}ni=1.
With k-NN CP, this costs O(n3); our method reduces it to
O(n2) (Appendix C). Unfortunately, this is not efficient for
bootstrap; we leave its further optimization to future work.

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

The umbrella of conformal inference also includes methods
such as Venn Predictors (VP), which give analogous guaran-
tees to CP, but for the calibration of probabilistic predictions.
Future work may investigate whether VP can be optimized
with similar techniques to the ones we proposed.

Boosting and gradient descent. We hope our work will
inspire optimization techniques for more nonconformity
measures. We foresee as particularly challenging the opti-
mization of methods such as boosting and gradient descent.
For both techniques, the contribution of a training example
depends on previous examples. Hence, unlearning an exam-
ple has a high cost, as it requires updating the contributions
of all the examples that came after. We suggest recent work
on unlearning methods may help to achieve this goal.

Approximations. Another natural avenue is to use approx-
imate incremental&decremental learning techniques. For
example, by bounding the contribution of each point it may
be possible to achieve very computationally efficient meth-
ods with little cost on statistical efficiency.

Exploiting multiple CPUs, GPUs. A further direction is
to study how to exploit a GPU or multiple CPUs to speed
up CP. Towards this goal, we conducted a preliminary com-
parison between parallel and sequential implementations
of CP and optimized CP (Appendix H); CP and optimized
CP are parallelized in the same way. Results show that, for
a small dataset (5k examples) standard CP benefits from
parallelization, while optimized CP does not substantially.
Surprisingly, in this case optimized k-NN is even faster
without parallelization, although it does benefit for larger
datasets. More research is needed to determine the best
parallelization strategies for CP, both from an algorithmic
and implementational level. We leave this, and the study of
GPUs for CP, to future work.

Acknowledgements

We are grateful to Vladimir Vovk for interesting discussion.

References

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Predictive inference with the jackknife+. arXiv
preprint arXiv:1905.02928, 2019.

Carlsson, L., Eklund, M., and Norinder, U. Aggregated
conformal prediction. In IFIP International Conference
on Artificial Intelligence Applications and Innovations,
pp. 231–240. Springer, 2014.

Carlsson, L., Bendtsen, C., and Ahlberg, E. Comparing
performance of different inductive and transductive con-
formal predictors relevant to drug discovery. In Confor-

mal and Probabilistic Prediction and Applications, pp.
201–212, 2017.

Cauwenberghs, G. and Poggio, T. Incremental and decre-
mental support vector machine learning. In Advances
in neural information processing systems, pp. 409–415,
2001.

Cherubin, G. and Nouretdinov, I. Hidden markov mod-
els with confidence. In Symposium on Conformal and
Probabilistic Prediction with Applications, pp. 128–144.
Springer, 2016.

Cherubin, G., Nouretdinov, I., Gammerman, A., Jordaney,
R., Wang, Z., Papini, D., and Cavallaro, L. Conformal
clustering and its application to botnet traffic. In Inter-
national Symposium on Statistical Learning and Data
Sciences, pp. 313–322. Springer, 2015.

Cherubin, G., Baldwin, A., and Griffin, J. Exchangeability
martingales for selecting features in anomaly detection. In
Conformal and Probabilistic Prediction and Applications,
pp. 157–170. PMLR, 2018.

Fisch, A., Schuster, T., Jaakkola, T., and Barzilay, R. Effi-
cient conformal prediction via cascaded inference with
expanded admission. In International Conference on
Learning Representations (ICLR), 2021.

Fukunaga, K. and Hummels, D. M. Leave-one-out proce-
dures for nonparametric error estimates. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 11
(4):421–423, 1989.

Gupta, C., Kuchibhotla, A. K., and Ramdas, A. K. Nested
conformal prediction and quantile out-of-bag ensemble
methods. arXiv preprint arXiv:1910.10562, 2019.

Hamerly, G. and Speegle, G. Efficient model selection
for large-scale nearest-neighbor data mining. In British
National Conference on Databases, pp. 37–54. Springer,
2010.

Laxhammar, R. and Falkman, G. Conformal prediction for
distribution-independent anomaly detection in streaming
vessel data. In Proceedings of the first international
workshop on novel data stream pattern mining techniques,
pp. 47–55, 2010.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Lee, W.-H., Ko, B. J., Wang, S., Liu, C., and Leung, K. K.
Exact incremental and decremental learning for LS-SVM.
In 2019 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 2334–2338. IEEE, 2019.

Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

Lei, J. Fast exact conformalization of the lasso using
piecewise linear homotopy. Biometrika, 106(4):749–764,
2019.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and
Wasserman, L. Distribution-free predictive inference for
regression. Journal of the American Statistical Associa-
tion, 113(523):1094–1111, 2018.

Linusson, H., Johansson, U., Boström, H., and Löfström,
T. Efficiency comparison of unstable transductive and
inductive conformal classifiers. In IFIP International
Conference on Artificial Intelligence Applications and
Innovations, pp. 261–270. Springer, 2014.

Makili, L., Vega, J., and Dormido-Canto, S. Incremental
support vector machines for fast reliable image recog-
nition. Fusion Engineering and Design, 88(6-8):1170–
1173, 2013.

Ndiaye, E. and Takeuchi, I. Computing full conformal
prediction set with approximate homotopy. arXiv preprint
arXiv:1909.09365, 2019.

Nouretdinov, I., Melluish, T., and Vovk, V. Ridge regression
confidence machine. In ICML, pp. 385–392. Citeseer,
2001.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman,
A. Inductive confidence machines for regression. In
European Conference on Machine Learning, pp. 345–356.
Springer, 2002.

Papadopoulos, H., Vovk, V., and Gammerman, A. Regres-
sion conformal prediction with nearest neighbours. Jour-
nal of Artificial Intelligence Research, 40:815–840, 2011.

Tsai, C.-H., Lin, C.-Y., and Lin, C.-J. Incremental and
decremental training for linear classification. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 343–352,
2014.

Vovk, V. Cross-conformal predictors. Annals of Mathemat-
ics and Artificial Intelligence, 74(1-2):9–28, 2015.

Vovk, V., Nouretdinov, I., and Gammerman, A. Testing
exchangeability on-line. In Proceedings of the 20th In-
ternational Conference on Machine Learning (ICML-03),
pp. 768–775, 2003.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world. Springer Science & Business
Media, 2005.

Vovk, V., Fedorova, V., Nouretdinov, I., and Gammerman,
A. Criteria of efficiency for conformal prediction. In
Symposium on Conformal and Probabilistic Prediction
with Applications, pp. 23–39. Springer, 2016.

Vovk, V., Shen, J., Manokhin, V., and Xie, M.-g. Non-
parametric predictive distributions based on conformal
prediction. In Conformal and Probabilistic Prediction
and Applications, pp. 82–102. PMLR, 2017.

