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A. Additional Experimental Setting
On PeMSD4, we train our model using Adam optimizer
with fixed learning rate lr = 0.003; on PeMSD8, we train
our model using Adam optimizer with an initial learning rate
lr = 0.003 and decay rate of ρ = 0.3; whilst we set learning
rate lr of 0.001 in Bytom and Decentraland datasets. The
length of Laplacianlink is set to 2 and 3 for transportation
networks and token networks, respectively. Our Z-GCNETs
is trained with batch sizes of 64 and 8 on PeMSD4 and
PeMSD8, respectively. On Ethereum token networks, we set
the batch size to 8. We run the experiments for 350 epochs
and 100 epochs on transportation networks and Ethereum
token networks, respectively. In all experiments, we set the
grid size of ZPI to 100× 100 and use CNN model to learn
zigzag persistence representation. The CNN model consists
of 2 CNN layers with number of filter set to 8, kernel size
to 3, stride to 2, and the global max-pooling with the pool
size of 5× 5.

B. The Choice of Filtration
We now perform experiments on the impact of the filtration
choice. Here, we consider the weighted-degree sublevel
filtration and the weight rank clique filtration, with edge
weights being induced either by transaction amounts or by
transaction volume. Table 1 shows a subset of illustrative
results for Ethereum token networks. For sparser graphs
such as Bytom, all filtrations tend to yield similar results,
and the weighted-degree sublevel filtration with transaction
amounts as edge weight delivers even better performance
than the power filtration which is reported in the main body
of the paper. For more heterogeneous dynamic graphs with
a richer topological structure, e.g., Decentraland, power fil-
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tration (see the main body of the paper) is the winner as
it better captures evolution of the underlying graph organi-
zation. The next best result for Decentraland is delivered
by the weight rank clique filtration with edge weight being
induced by the transaction amounts.

The proposed methodology is compatible with any filtration.

Table 1. Z-GCNETs (MAPE) for different zigzag filtrations, i.e.,
weighted-degree sublevel set and weight rank clique filtrations
with edge weights induced either by transaction amounts or by
transaction volume.
Filtration Weighted-degree Weight rank

sublevel set clique

Dataset\Edge Weight Amount Volume Amount

Bytom 30.56 30.80 31.04
Decentraland 25.18 24.93 23.81

C. Ablation study on Ethereum token
networks

To make sure that all the components of the Z-GCNETs per-
form well, we also conduct an ablation study on Ethereum
token networks. Table 2 summarizes the results obtained on
Bytom and Decentraland. The results demonstrate that our
Z-GCNETs outperforms Z-GCNETs without zigzag persis-
tence representation learning (zigzag learning), spatial graph
convolution (GCNSpatial), and temporal graph convolution
(GCNTemporal).

Table 2. Ablation study (MAPE) of Ethereum token networks.

Architecture Dataset
Bytom Decentraland

Z-GCNETs 31.04% 23.81%
W/o Zigzag learning 33.19% 24.24%
W/o GCNSpatial 34.32% 25.22%
W/o GCNTemporal 31.25% 24.62%
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D. Proof of Proposition 3.1
Let DgmZZ1

ν∗ and DgmZZ2
ν∗ be two zigzag persistence

diagrams for some fixed scale parameter ν∗, with the
corresponding zigzag persistence surfaces ρDgmZZ1

ν∗
and

ρDgmZZ2
ν∗

. Throughout the derivations, we denote the Gaus-
sian kernel exp

{
−||z − µ||2/2ϑ2

}
as κµ(z). Hence, the

zigzag persistence surface takes the form

ρDgmZZν∗
=

∑
µ∈DgmZZ′ν∗

g (µ)κ (µ) .

We also assume, without loss of generality, that the weight-
ing g is piece-wise linear.

Let γ∗ be a bijective map which delivers the infimum over
all matchings γ between the zigzag persistence diagrams
DgmZZ1

ν∗ ∪∆ and DgmZZ2
ν∗ ∪∆, where ∆ = {(t, t)|t ∈

R}:

dW1
(DgmZZ1

ν∗ ,DgmZZ2
ν∗)

= inf
γ

( ∑
x∈DgmZZ1

ν∗∪∆

||x− γ(x)||1∞
)
.

Here || · ||∞ is a norm in L∞, i.e., ||z||∞ = maxi |zi|, and
dW1

is called a 1-Wasserstein metric.

Note that DgmZZ1
ν∗ and DgmZZ2

ν∗ may have different car-
dinalities. However, since we consider bijections among
DgmZZ1

ν∗ ∪ ∆ and DgmZZ2
ν∗ ∪ ∆ (that is, the diagonal

set ∆ is included), the set of bijections is nonempty and γ∗

exists.

Now, following Adams et al. (2017), we obtain

||ρDgmZZ1
ν∗
− ρDgmZZ2

ν∗
||∞ (1)

≤
∑

µ∈DgmZZ1
ν∗

||g (µ)κ (µ)− g(γ∗ (µ))κγ∗(µ)(z)||∞

≤ C1(||g||∞|∇κ|+ ||κ||∞|∇g|)
×

∑
µ∈DgmZZ1

ν∗

||µ− γ∗ (µ) ||∞

= C1

(
||g||∞|∇κ|+ ||κ||∞|∇g|

)
×dW1

(DgmZZ1
ν∗ ,DgmZZ2

ν∗),

where DgmZZ′,1ν∗ (x, y) = (x, y − x) and C1 is a positive
constant. Here the first inequality is due to the triangle
inequality and the second inequality is due to the funda-
mental theorem of calculus (Krantz & Krantz, 1999) and
norm equivalence in R2 (see also Lemma 1 and Theorem 1
of Adams et al. (2017)).

Again, using the argument of Adams et al. (2017) and defi-
nition of the zigzag persistence, for each pixel in the zigzag

persistence image, we have

|ZPI1
ν∗pixel − ZPI2

ν∗pixel|

≤ Spixel||ρDgmZZ1
ν∗pixel

− ρDgmZZ2
ν∗pixel
||∞, (2)

where Spixel is the pixel area. Now, combining (1) and (2),
we get

||ZPI1
ν∗pixel − ZPI2

ν∗pixel||∞
≤ C1C2

(
||g||∞|∇κ|+ ||κ||∞|∇g|

)
× dW1

(DgmZZ1
ν∗ ,DgmZZ2

ν∗),

where C2 = maxpixel∈ZPI{Spixel}, which concludes the
proof.
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