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Abstract
Since the introduction of DQN, a vast majority of
reinforcement learning research has focused on
reinforcement learning with deep neural networks
as function approximators. New methods are typi-
cally evaluated on a set of environments that have
now become standard, such as Atari 2600 games.
While these benchmarks help standardize evalua-
tion, their computational cost has the unfortunate
side effect of widening the gap between those
with ample access to computational resources,
and those without. In this work we argue that,
despite the community’s emphasis on large-scale
environments, the traditional small-scale environ-
ments can still yield valuable scientific insights
and can help reduce the barriers to entry for un-
derprivileged communities. To substantiate our
claims, we empirically revisit the paper which
introduced the Rainbow algorithm (Hessel et al.,
2018) and present some new insights into the al-
gorithms used by Rainbow.

1. Introduction
Since the introduction of DQN (Mnih et al., 2015) reinforce-
ment learning has witnessed a dramatic increase in research
papers (Henderson et al., 2018). A large portion of these
papers propose new methods that build on the original DQN
algorithm and network architecture, often adapting methods
introduced before DQN to work well with deep networks
(e.g., (van Hasselt et al., 2016; Bacon et al., 2017; Castro,
2020)). New methods are typically evaluated on a set of
environments that have now become standard, such as the
Atari 2600 games made available in the Arcade Learning
Environment (ALE) (Bellemare et al., 2012) and the control
tasks available in MuJoCo and DM control suites (Todorov
et al., 2012; Tassa et al., 2020).
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While these benchmarks have helped to evaluate new meth-
ods in a standardized manner, they have also implicitly es-
tablished a minimum amount of computing power in order
to be recognized as valid scientific contributions. Although
classic reinforcement learning tasks such as MountainCar,
CartPole, Acrobot, and grid worlds have not gone away, they
are now used mostly for evaluating theoretical contributions
(e.g., (Nachum et al., 2019; Lyle et al., 2019)); indeed, in
our experience it is quite difficult to have a paper proposing
a new reinforcement learning method accepted at one of
the major machine learning conferences unless it includes
experiments with one of the benchmarks just mentioned.
This is unfortunate, as the low computational cost and speed
at which one can train on small-scale environments enables
broad hyper-parameter sweeps and more thorough investi-
gations into the nuances of the methods being considered,
as well as the reevaluation of certain empirical choices that
have become “folk wisdom” in these types of experiments.

Furthermore, at a time when efforts such as Black in AI
and LatinX in AI are helping bring people from underrepre-
sented (and typically underprivileged) segments of society
into the research community, these newcomers are faced
with enormous computational hurdles to overcome if they
wish to be an integral part of said community.

It thus behooves the reinforcement learning research com-
munity to incorporate a certain degree of flexibility and
creativity when proposing and evaluating new research; of
course, this should not be at the expense of scientific rigour.
This paper is partly a position paper, partly an empirical
evaluation. We argue for a need to change the status-quo in
evaluating and proposing new research to avoid exacerbat-
ing the barriers to entry for newcomers from underprivileged
communities. In section 4 we complement this argument
by revisiting the Rainbow algorithm (Hessel et al., 2018),
which proposed a new state of the art algorithm by com-
bining a number of recent advances, on a set of small- and
medium-sized tasks. This allows us to conduct a “counter-
factual” analysis: would Hessel et al. (2018) have reached
the same conclusions if they had run on the smaller-scale
experiments we investigate here? In section 5 we extend this
analysis by investigating the interaction between the differ-
ent algorithms considered and the network architecture used,
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varying the distribution parameterization and bootstrapping
methodology, and the base loss used by DQN. Finally, in
section 6 we compare the Rainbow variants we considered,
as well as provide insights into the properties of the different
environments used in our study.

2. Preliminaries
Reinforcement learning methods are used for learning how
to act (near) optimally in sequential decision making prob-
lems in uncertain environments. In the most common sce-
nario, an agent transitions between states in an environment
by making action choices at discrete time steps; upon per-
forming an action, the environment produces a numerical
reward and transitions the agent to a new state. This is
formalized as a Markov decision process (Puterman, 1994)
〈S,A,R,P, γ〉, where S is a finite set of states,A is a finite
set of actions, R : S × A → [Rmin, Rmax] is the reward
function, P : S × A → ∆(S) is the transition function,
where ∆(X) denotes the set of probability distributions
over a set X , and γ ∈ [0, 1) is a horizon discount factor.

An agent’s behaviour is formalized as a policy π : S →
∆(A) which induces a value function V π : S → R:

V π(s) := E

[ ∞∑
t=0

γtR(st, at)|s0 = s, st, at

]
= Ea∼π(s)

[
R(s, a) + γEs′∼P(s,a)V

π(s′)
]
,

where st ∼ P(st−1, at−1) and at ∼ π(st). The second
line is the well-known Bellman recurrence. It is also con-
venient to consider the value of actions that differ from
those encoded in π via the function Qπ : S × A → R:
Qπ(s, a) := R(s, a) + γEs′∼P(s,a)V

π(s′).

It is well known that there exist policies π∗ that are optimal
in the sense that V ∗(s) := V π

∗
(s) ≥ V π(s) for all poli-

cies π and states s ∈ S. In reinforcement learning we are
typically interested in having agents find these policies by
interacting with the environment. One of the most popular
ways to do so is via Q-learning, where an agent maintains
a function Qθ, parameterized by θ (e.g. the weights in a
neural network), and updates it after observing the transition
s
a,r→ s′ using the method of temporal differences (Sutton,

1988):

Qθ(s, a)← Qθ(s, a) + α (Q∗(s′, a′)−Qθ(s, a)) (1)

where α is a learning rate and the optimal target values
Q∗(s′, a′) = r + γmaxa′∈AQθ(s

′, a′)

2.1. DQN

Mnih et al. (2015) introduced DQN, which combined Q-
learning with deep networks. Some of the most salient
design choices are:

• The Q function is represented using a feed forward
neural network consisting of three convolutional layers
followed by two fully connected layers. Two copies of
the Q-network are maintained: an online network (pa-
rameterized by θ) and a target network (parameterized
by θ̄). The online network is updated via the learning
process described below, while the target network re-
mains fixed and is synced with the online weights at
less frequent (but regular) intervals.

• A large replay buffer D is maintained to store experi-
enced transitions (s, a, r, s′) (Lin, 1992).

• The update in Equation 1 is implemented using the
following loss function to update the online network:

L(θ) = E(s,a,r,s′)∼U(D)[
(
Y DQN −Qθ(s, a)

)2
] (2)

using Y DQN = (r + γmaxa′∈AQθ̄(s
′, a′)) and mini-

batches of size 32.

2.2. Rainbow

In this section we briefly present the enhancements to DQN
that were combined by Hessel et al. (2018) for the Rainbow
agent.

Double Q-learning: van Hasselt et al. (2016) added double
Q-learning (Hasselt, 2010) to mitigate overestimation bias
in the Q-estimates by decoupling the maximization of the
action from its selection in the target bootstrap.

Prioritized experience replay: Instead of sampling uni-
formly from the replay buffer (U(D)), prioritized expe-
rience replay (Schaul et al., 2016) proposed to sample a
trajectory t = (s, a, r, s′) with probability pt proportional
to the temporal difference error.

Dueling networks: Wang et al. (2016) introduced duel-
ing networks by modifying the DQN network architecture.
Specifically, two streams share the initial convolutional
layers, separately estimating V ∗(s), and the advantages
for each action: A(s, a) := Q∗(s, a) − V ∗(s). The out-
put of the network is a combination of these two streams.
Multi-step learning: Instead of computing the tempo-
ral difference error using a single-step transition, one can
use multi-step targets instead (Sutton, 1988), where for
a trajectory (s0, a0, r0, s1, a1, · · · ) and update horizon n:
R

(n)
t :=

∑n−1
k=0 γ

krt+k+1, yielding the multi-step temporal
difference: R(n)

t + γn maxa′∈AQθ̄(st+n, a
′)−Qθ(st, at).

Distributional RL: Bellemare et al. (2017) demonstrated
that the Bellman recurrence also holds for value distribu-
tions: Z(x, a)

D
= R(s, a) + γZ(X ′, A′), where Z, R, and

(X ′, A′) are random variables representing the return, im-
mediate reward, and next state-action, respectively. The
authors present an algorithm (C51) to maintain an estimate
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Zθ of the return distribution Z by use of a parameterized
categorical distribution with 51 atoms.

Noisy nets: Fortunato et al. (2018) propose replacing the
simple ε-greedy exploration strategy used by DQN with
noisy linear layers that include a noisy stream.

3. The cost of Rainbow
Although the value of the hybrid agent uncovered by Hessel
et al. (2018) is undeniable, this result could have only come
from a large research laboratory with ample access to com-
pute. Indeed, each Atari 2600 game from the ALE (there
are 57 in total) takes roughly 5 days to fully train using
specialized hardware (for example, an NVIDIA Tesla P100
GPU).1 Additionally, in order to be able to report perfor-
mance with confidence bounds it is common to use at least
five independent runs (Henderson et al., 2018; Machado
et al., 2018).

Thus, to provide the convincing empirical evidence for Rain-
bow, Hessel et al. (2018) required approximately 34,200
GPU hours (or 1425 days). Note that this cost does not
include the hyper-parameter tuning that was necessary to
optimize the various components. Considering that the cost
of a Tesla P100 GPU is around US$6,000, providing this
evidence will take an unreasonably long time as it is pro-
hibitively expensive to have multiple GPUs in a typical
academic lab so they can be used in parallel. As a refer-
ence point, the average minimum monthly wage in South
America (excluding Venezuela) is approximately US$3132;
in other words, one GPU is the equivalent of approximately
20 minimum wages. Needless to say, this expectation is far
from inclusive.

In light of this, we wish to investigate three questions:

1. Would Hessel et al. (2018) have arrived at the same
qualitative conclusions, had they run their experiments
on a set of smaller-scale experiments?

2. Do the results of Hessel et al. (2018) generalize well
to non-ALE environments, or are their results overly-
specific to the chosen benchmark?

3. Is there scientific value in conducting empirical re-
search in reinforcement learning when restricting one-
self to small- to mid-scale environments?

We investigate the first two in Section 4, and the last in
Sections 5 and 6.

1The computational expense is not limited to the ALE: MuJoCo
tasks from the DM control suite take about 2 days with the same
hardware.

2Taken from https://www.statista.com/statistics/953880/latin-
america-minimum-monthly-wages/

4. Revisiting Rainbow
4.1. Methodology

We follow a similar process as Hessel et al. (2018) in evalu-
ating the various algorithmic variants mentioned above: we
investigate the effect of adding each on top of the original
DQN agent as well as the effect of dropping each from the
final Rainbow agent, sweeping over learning rates for each.
Our implementation is based on the Dopamine framework
(Castro et al., 2018). Note that Dopamine includes a “lite”
version of Rainbow, which does not include noisy networks,
double DQN, nor dueling networks, but we have added all
these components in our implementation3.

We perform our empirical evaluation on small-scale environ-
ments (CartPole, Acrobot, LunarLander, and MountainCar)
which are all available as part of the OpenAI Gym library
(Brockman et al., 2016) (see Appendix A for a detailed
description of each environment). We used multilayer per-
ceptrons (MLPs) with 2 layers of 512 units each for these
experiments. The agents were all trained on a CPU; it is
worth noting that of these environments the one that took
longest to train (LunarLander) is still able to finish in under
two hours.

In order to strengthen the Rainbow Connection, we also ran
a set of experiments on the MinAtar environment (Young
and Tian, 2019), which is a set of miniaturized versions
of five ALE games (Asterix, Breakout, Freeway, Seaquest,
and SpaceInvaders). These environments are considerably
larger than the four classic control environments previously
explored, but they are significantly faster to train than regular
ALE environments. Specifically, training one of these agents
takes approximately 12-14 hours on a P100 GPU. For these
experiments, we followed the network architecture used by
Young and Tian (2019) consisting of a single convolutional
layer followed by a linear layer.

4.2. Empirical evaluation

Under constant hyper-parameter settings (see appendix for
details), we evaluate both the addition of each algorithmic
component to DQN, as well as their removal from the full
Rainbow agent on the classic control environments (Fig-
ure 1) and on Minatar (Figure 2).

We analyze our results in the context of the first two ques-
tions posed in Section 3: Would Hessel et al. (2018) have
arrived at the same qualitative conclusions, had they run
their experiments on a set of smaller-scale experiments? Do
the results of Hessel et al. (2018) generalize well to non-
ALE environments, or are their results overly-specific to the
chosen benchmark?

3Source code available at
https://github.com/JohanSamir/revisiting rainbow
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Figure 1. Comparison of the different algorithmic components on the four small environments using the optimal hyper-parameters from
Table 1 for each, averaged over 100 independent runs (shaded areas show 95% confidence intervals). Top row explores adding on top of
DQN, bottom row explores removing from Rainbow.

Figure 2. Comparison of the different algorithmic components on the five MinAtar games, averaged over 10 independent runs (shaded
areas show 90% confidence intervals). Top row explores adding on top of DQN, bottom row explores removing from Rainbow.

What we find is that the performance of the different compo-
nents is not uniform throughout all environments; a finding
which is consistent with the results observed by Hessel et al.
(2018). However, if we were to suggest a single agent that
balances the tradeoffs of the different algorithmic compo-
nents, our analysis would be consistent with Hessel et al.
(2018): combining all components produces a better overall
agent.

Nevertheless, there are important details in the variations
of the different algorithmic components that merit a more
thorough investigation. An important finding of our work
is that distributional RL, when added on its own to DQN,
may actually hurt performance (e.g. Acrobot and Freeway);
similarly, performance can sometimes increase when distri-
butional RL is removed from Rainbow (e.g. MountainCar

and Seaquest); this is in contrast to what was found by
Hessel et al. (2018) on the ALE experiments and warrants
further investigation. As Lyle et al. (2019) noted, under
non-linear function approximators (as we are using in these
experiments), using distributional RL generally produces
different outcomes than the non-distributional variant, but
these differences are not always positive.

5. Beyond the Rainbow
In this section we seek to answer the third question posed in
section 3: Is there scientific value in conducting empirical
research in small- to mid-scale environments? We leverage
the low cost of the small-scale environments to conduct a
thorough investigation into some of the algorithmic compo-
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Figure 3. Investigating the combination of the different algorithmic components with QR-DQN (shaded areas show 95% (top) and 90%
(bottom) confidence intervals).

nents studied. Unless otherwise specified, the classic control
and MinAtar environments are averaged over 100 and 10
independent runs, respectively; in both cases shaded areas
report 95% confidence intervals.

5.1. Examining network architectures and batch sizes

We investigated the interaction of the best per-game hyper-
parameters with the number of layers and units per layer.
Due to space constraints we omit the figures from the main
paper, but include them in the appendix. We found that
in general using 2-3 layers with at least 256 units each
yielded the best performance. Further, aside from Cartpole,
the algorithms were generally robust to varying network
architecture dimensions.

Another often overlooked hyper-parameter in training RL
agents is the batch size. We investigated the sensitivity of
DQN and Rainbow to varying batch sizes and found that
while for DQN it is sub-optimal to use a batch size below
64, Rainbow seems fairly robust to both small and large
batch sizes.

5.2. Examining distribution parameterizations

Although distributional RL is an important component of
the Rainbow agent, at the time of its development Rainbow
was only evaluated with the C51 parameterization of the dis-
tribution, as originally proposed by Bellemare et al. (2017).
Since then there have been a few new proposals for parame-
terizing the return distribution, notably quantile regression
(Dabney et al., 2017; 2018a) and implicit quantile networks
(Dabney et al., 2018b). In this section we investigate the in-

teraction of these parameterizations with the other Rainbow
components.

Quantile Regression for Distributional RL

In contrast to C51, QR-DQN (Dabney et al., 2017; 2018a)
computes the return quantile values for N fixed, uniform
probabilities. Compared to C51, QR-DQN has no restric-
tions or bound for value, as the distribution of the random
return is approximated by a uniform mixture of N Diracs:
Zθ(x, a) := 1

N

∑N
i=1 δθi(x,a), with each θi assigned a quan-

tile value trained with quantile regression. In Figure 3 we
evaluate the interaction of the different Rainbow compo-
nents with Quantile and find that, in general, QR-DQN
responds favourably when augmented with each of the com-
ponents. We also evaluate a new agent, QRainbow, which
is the same as Rainbow but with the QR-DQN parameteri-
zation. It is interesting to observe that in the classic control
environments Rainbow outperforms QRainbow, but QRain-
bow tends to perform better than Rainbow on Minatar (with
the notable exception of Freeway), suggesting that perhaps
the quantile parameterization of the return distribution has
greater benefits when used with networks that include con-
volutional layers.

Implicit quantile networks

We continue by investigating using implicit quantile net-
works (IQN) as the parameterization of the return distribu-
tion Dabney et al. (2018b). IQN learns to transform a base
distribution (typically a uniform distribution in [0, 1]) to the
quantile values of the return distribution. This can result in
greater representation power in comparison to QR-DQN, as
well as the ability to incorporate distortion risk measures.
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Figure 4. Investigating the combination of the different algorithmic components with IQN (shaded areas show 95% (top) and 90% (bottom)
confidence intervals).

We repeat the “Rainbow experiment” with IQN and report
the results in Figure 4. In contrast to QR-DQN, in the classic
control environments the effect on performance of various
Rainbow components is rather mixed and, as with QR-DQN
IRainbow underperforms Rainbow. In Minatar we observe
a similar trend as with QR-DQN: IRainbow outperforms
Rainbow on all the games except Freeway.

5.3. Munchausen Reinforcement Learning

Vieillard et al. (2020) introduced Munchausen RL as a
simple variant to any temporal difference learning agent
consisting of two main components: the use of stochastic
policies and augmenting the reward with the scaled log-
policy. Integrating their proposal to DQN yields M-DQN
with performance superior to that of C51; the integration of
Munchausen-RL to IQN produced M-IQN, a new state-of-
the art agent on the ALE.

In Figure 5 we report the results when repeating the Rainbow
experiment on M-DQN and M-IQN. In the classic control
environments neither of the Munchausen variants seem to
yield much of an improvement over their base agents. In
Minatar, while M-DQN does seem to improve over DQN,
the same cannot be said of M-IQN. We explored combining
all the Rainbow components4 with the Munchausen agents
and found that, in the classic control environments, while
M-Rainbow underperforms relative to its non-Munchausen
counterpart, M-IRainbow can provide gains. In Minatar,
the results vary from game to game, but it appears that the

4We were unable to successfully integrate M-DQN with C51
nor double-DQN, so our M-Rainbow agent is compared against
Rainbow without distributional RL and without double-DQN.

Munchausen agents yield an advantage on the same games
(Asterix, Breakout, and SpaceInvaders).

5.4. Reevaluating the Huber loss

The Huber loss is what is usually used to train DQN agents
as it is meant to be less sensitive to outliers. Based on recent
anecdotal evidence, we decided to evaluate training DQN
using the mean-squared error (MSE) loss and found the
surprising result that on all environments considered using
the MSE loss yielded much better results than using the
Huber loss, sometimes even surpassing the performance
of the full Rainbow agent (full classic control and Minatar
results are provided in the appendix). This begs the question
as to whether the Huber loss is truly the best loss to use
for DQN, especially considering that reward clipping is
typically used for most ALE experiments, mitigating the
occurence of outlier observations. Given that we used Adam
(Kingma and Ba, 2015) for all our experiments while the
original DQN algorithm used RMSProp, it is important to
consider the choice of optimizer in answering this question.

To obtain an answer, we compared the performance of the
Huber versus the MSE loss when used with both the Adam
and RMSProp optimizers on all 60 Atari 2600 games. In
Figure 6 we present the improvement obtained when us-
ing the Adam optimizer with the MSE loss over using the
RMSProp optimizer with the Huber loss and find that, over-
whelmingly, Adam+MSE is a superior combination than
RMSProp+Huber. In the appendix we provide complete
comparisons of the various optimizer-loss combinations that
confirm our finding. Our analyses also show that, when
using RMSProp, the Huber loss tends to perform better
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Figure 5. Investigating the combination of the different algorithmic components with M-DQN and M-IQN (shaded areas show 95% (top
2) and 90% (bottom 2) confidence intervals).

.

than MSE, which in retrospect explains why (Mnih et al.,
2015) chose the Huber over the simpler MSE loss when
introducing DQN.

Our findings highlight the importance in properly evaluating
the interaction of the various components used when training
RL agents, as was also argued by Fujimoto et al. (2020) with
regards to loss functions and non-uniform sampling from
the replay buffer; as well as by Hessel et al. (2019) with
regards to inductive biases used in training RL agents.

6. Putting it all together
6.1. Rainbow flavours

We compare the performance of DQN against all of the
Rainbow variants and show the results of two environments
in Figure 7 (full comparisons in the appendix). These two
environments highlight the fact that, although Rainbow does
outperform DQN, there are important differences amongst
the various flavours that invite further investigation.

6.2. Environment properties

Our exhaustive experimentation on the four classic control
and five MinAtar environments grant us some insight into
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Figure 6. Comparison of training DQN using the Adam optimizer with the MSE loss, versus the Huber loss with the RMSProp. All results
report the average of 5 independent runs.

Figure 7. Comparing DQN against the various Rainbow flavours.

their differing properties. We believe these environments
pose a variety of interesting challenges for RL research
and present a summary of our insights here, with a more
thorough analysis in the appendix, in the hope that it may
stimulate future investigations.

Classic control

Although CartPole is a relatively simple task, DQN can
be quite sensitive to learning rates and as such, can prove
an interesting testbed for optimizer stability. We found the
use of Noisy networks and MSE loss to dramatically help
with this sensitivity. It seems that distributional RL is re-
quired for obtaining good performance on LunarLander
(see the poor results with DQN, M-DQN, and M-Rainbow
in comparison with the others), suggesting this would be a
good environment to investigate the differences in expec-
tational and distributional RL as proposed by Lyle et al.
(2019). Both Acrobot and MountainCar are sparse reward
environments, which are typically good environments for
investigating exploration strategies; indeed, we observe that
Noisy networks tend to give a performance gain in both
these environments. MountainCar appears to be the more
difficult of the two, a fact also observed by Tang et al. (2017),
Colas et al. (2018a), and Declan et al. (2020).

MinAtar

The value of MinAtar environments has already been argued
by Young and Tian (2019) and recently exemplified by Ghi-
assian et al. (2020) and Buckman et al. (2021). It is worth
highlighting that both Seaquest and Freeway appear to lend
themselves well for research on exploration methods, due
to their partial observability and reward sparsity. We would
like to stress that these environments enable researchers to
investigate the importance and effect of using convolutional
networks in RL without the prohibitive expense of the ALE
benchmark.

7. Conclusion
On a limited computational budget we were able to repro-
duce, at a high-level, the findings of Hessel et al. (2018)
and uncover new and interesting phenomena. Evidently it
is much easier to revisit something than to discover it in
the first place; however, our intent with this work was to ar-
gue for the relevance and significance of empirical research
on small- and medium-scale environments. We believe
that these less computationally intensive environments lend
themselves well to a more critical and thorough analysis of
the performance, behaviours, and intricacies of new algo-
rithms (a point also argued by Osband et al. (2020)). It is
worth remarking that when we initially ran 10 independent
trials for the classic control environments, the confidence
intervals were very wide and inconclusive; boosting the in-
dependent trials to 100 gave us tighter confidence intervals
with small amounts of extra compute. This would be imprac-
tical for most large-scale environments. Ensuring statistical
significance when comparing algorithms, a point made by
Colas et al. (2018b) and Jordan et al. (2020), is facilitated
with the ability to run a large number of independent trials.

We are by no means calling for less emphasis to be placed on
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large-scale benchmarks. We are simply urging researchers
to consider smaller-scale environments as a valuable tool
in their investigations, and reviewers to avoid dismissing
empirical work that focuses on these smaller problems. By
doing so, we believe, we will get both a clearer picture of the
research landscape and will reduce the barriers for newcom-
ers from diverse, and often underprivileged, communities.
These two points can only help make our community and
our scientific advances stronger.
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