
Bandit Overfitting in Offline Policy Learning

Appendix

A. Action-stability
Lemma 1 (Value-based stability). Value-based objectives are action stable since we can let y∗ = r and this minimizes the
square loss at every action.

Proof. Consider a datapoint z = (x, r) which becomes z(a) = (x, a, r(a)) when we sample action a from the behavior. At
this datapoint, the value-based objective for an estimated Q function Q̂ is

`(z(a), Q̂(x, a)) = (r(a)− Q̂(x, a))2 (8)

This is minimized at all a by Q̂(x, a) = r(a). So setting y∗ = Q̂(x, ·) = r, we can exactly minimize ` at z. Since such a y∗

exists, the objective is by definition action-stable.

Lemma 2 (Policy-based instability). All policy-based objectives which take the form `(z(a), π(a|x)) = f(z(a))π(a|x) are
not action-stable at z unless f(z(a)) > 0 for exactly one action a.

Proof. Consider a datapoint z = (x, r) which becomes z(a) = (x, a, r(a), p(a)) when we sample action a from the
behavior with probability p(a). At this datapoint, a generic policy-based objective evaluated on a policy π̂ takes the form

`(z(a), π̂(a|x)) = f(z(a))π̂(a|x) (9)

As special examples of the function f we have the generic policy-based objective from Equation (4) when f(z(a)) = r(a)
p(a) .

Moreover we can incorporate any baseline function b(x) so that f(z(a)) = r(a)−b(x)
p(a) . This algorithm covers the one

presented by Joachims et al. (2018).

Now to prove the claim, we have three cases: (1) f(z(a)) < 0 for all a, (2) f(z(a)) > 0 for at least two actions a1, a2, and
(3) f(z(a)) > 0 at exactly one action a1. We will show that in cases 1 and 2 the objective is action-unstable, but in case 3 it
is action-stable.

Case 1. Assume that f(z(a)) < 0 for all a. Now for any given a to maximize the objective f(z(a))π̂(a|x) while ensuring
that π̂(a|x) is a valid probability we must set π̂(a|x) = 0. But, if we set π̂(a|x) = 0 for all a, we no longer have a valid
probability distribution, since 0 6∈ ∆K . Thus, we cannot find y∗ ∈ ∆K that optimizes the loss at z across all actions, so the
objective is action-unstable.

Case 2. Assume that f(z(a)) > 0 for at least two actions a1, a2. Now at a1, a2 the objective f(z(a))π̂(a|x) is maximized
by setting π(a|x) = 1. However, there is no valid element y of ∆K such that y(a1) = 1 and y(a2) = 1. Thus, we cannot
find y∗ ∈ ∆K that optimizes the loss at z across all actions, so the objective is action-unstable.

Case 3. Assume f(z(a)) > 0 at exactly one action a1. Then at action a1 we can maximize f(z(a1))π̂(a1|x) by setting
π̂(a1|x) = 1. And since f(z(a)) ≤ 0 for all other actions a 6= a1, we can maximize f(z(a))π̂(a|x) by setting π̂(a|x) = 0.
Now since 1[a = a1] ∈ ∆K , there does exist a vector y∗ ∈ Y which exactly optimizes ` regardless of which action is
sampled. So, the objective is action-stable if and only if we are in this case.

B. Value-based learning
Theorem 1 (Reduction to regression). By Assumption 1 we have β(a|x) ≥ τ for all x, a. Then with Q̂SB

as defined in (5)
we have

V (π∗)− V (πQ̂SB
) ≤ 2√

τ

√
E

x,a∼β
[(Q(x, a)− Q̂SB

(x, a))2].

Bandit Overfitting in Offline Policy Learning

Proof. The proof follows directly from linking the subsequent lemmas with π̂ = πQ̂SB
and Π be the set of all policies in

Lemma 3.

Lemma 3 (Mismatch: from MSE to Regret). Assume strict positivity. Let π̂ be the greedy policy with respect to some Q̂
and let Π be any class of policies to compete against, which contains π̂. Then

sup
π∈Π

V (π)− V (π̂) ≤ 2
√

sup
π∈Π

Ex,a∼D,π[(Q(x, a)− Q̂(x, a))2] (10)

Proof. We can expand the definition of regret and then add and subtract and apply a few inequalities. Let π̄ be the policy in
Π which maximizes V . Then

sup
π∈Π

V (π)− V (π̂) = Ex
[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(11)

= Ex
[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q̂(x, a)] + Ea∼π̂|x[Q̂(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(12)

≤ Ex
[
Ea∼π̄|x[|Q(x, a)− Q̂(x, a)|] + Ea∼π̂|x[|Q(x, a)− Q̂(x, a)|]

]
(13)

≤
√
ExEa∼π̄|x[(Q(x, a)− Q̂(x, a))2] +

√
ExEa∼π̂|x[(Q(x, a)− Q̂(x, a))2] (14)

≤ 2
√

sup
π∈Π

Ex
[
Ea∼π|x[(Q(x, a)− Q̂(x, a))2]

]
(15)

The first inequality holds since π̂ maximizes Q̂ and by using the definition of absolute value, the second by Jensen, and the
third by introducing the supremum.

Lemma 4 (Transfer: from β to π). Assume strict positivity and take any Q-function Q̂ and any policy π, then

Ex,a∼D,π[Q(x, a)− Q̂(x, a))2] <
1

τ

(
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]

)
. (16)

Proof. Let π be any policy. Then

ExEa∼π|x[(Q(x, a)− Q̂(x, a))2] =

∫
x

p(x)
∑
a

π(a|x)(Q(x, a)− Q̂(x, a))2dx (17)

=

∫
x

∑
a

π(a|x)
β(a|x)

β(a|x)
p(x)(Q(x, a)− Q̂(x, a))2dx (18)

<
1

τ

∫
x

∑
a

β(a|x)p(x)(Q(x, a)− Q̂(x, a))2dx (19)

=
1

τ
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] (20)

where we use a multiply and divide trick and apply the definition of strict positivity to ensure that π(a|x)
β(a|x) <

1
τ .

C. Policy-based learning
C.1. In-sample regret

Lemma 5. Let Π be an interpolating class and K = 2. Then there exists a πB as defined in Equation (4) such that

1. the behavior of πB at each datapoint xi ∈ S only depends on ai, ri(ai), and pi

2. πB(·|xi) ∈ {(0, 1), (1, 0)}.

Bandit Overfitting in Offline Policy Learning

Proof. We will begin by proving part 2. Note that the objective that πB optimizes takes the form ri(ai)
pi

π(ai|xi) at each

datapoint. Since probabilities are constrained to [0, 1] this is optimized by π(ai|xi) = 0 if ri(ai)pi
< 0 and π(ai|xi) = 1 if

ri(ai)
pi

> 0. Since we have an overparameterized model class, we know that Π contains a πB that can exactly choose the
optimizer at each datapoint. Since K = 2, once we know π(ai|xi) we immediately have π(āi|xi) = 1− π(ai|xi) (where
âi is the action that is not equal to ai). Thus πB(·|xi) ∈ {(0, 1), (1, 0)}.

Now part 1 follows directly since the above reasoning showed that πB(·|xi) is defined precisely by the sign of ri(ai)pi
and the

identity of ai.

Theorem 2 (In-sample regret lower bound). Let K = 2 and the policy class be overparameterized. Define ∆r(x) =∣∣Er|x[r(1)− r(2)]
∣∣ as the absolute expected gap in rewards at x. Define pu(x) to be the probability that the policy-based

objective is action-unstable at x. Recall that β(a|x) ≥ τ by Assumption 1. Then

ES [V (π∗;S)−V (πB ;S)] ≥ τEx
[
pu(x)∆r(x)

]
.

Proof. By part 1 of Lemma 5 and linearity of expectation we can decompose the expected in-sample value as

ES [V (π∗;S)− V (πB ;S)] =
1

N

N∑
i=1

Exi,ri,ai

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

Since the data are iid we further have that

ES [V (π∗;S)− V (πB ;S)] = Exi,ri,ai

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

Define the event Ux,r to be the event that the policy-based objective is action-unstable at x, r. So pu(x) = Er|x[1[Ux,r]].
We can split this expectation up into stable and unstable parts by conditioning on either Uxi,ri or Uxi,ri , and lower bound
the regret on the stable datapoints by 0:

ES [V (π∗;S)− V (πB ;S)] = Exi,ri|Uxi,ri
Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
+ Exi,ri|Uxi,ri

Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
≥ Exi,ri|Uxi,ri

Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

By part 2 of Lemma 5 we know that πB(·|xi) is either (1, 0) or (0, 1). Conditioned on the objective being unstable at xi
and using the fact that there are only two actions, we know that πB(xi) must be different depending on whether ai = 1
or ai = 2. Define a1

i,B to be the action that πB selects at xi when ai = 1 and a2
i,B the action when ai = 2. Let a∗i be the

action chosen by the deterministic optimal policy π∗ at xi. Thus we can split the expectation over ai in the above expression
and then plug in definitions to get:

ES [V (π∗;S)− V (πB ;S)] ≥ Exi,ri|Uxi,ri

[
β(ai = 1|xi)Er|xi

[r(a∗i)− r(a1
i,B)] + β(ai = 2|xi)Er|xi

[r(a∗i)− r(a2
i,B)]

]
.

Since we assumed that β(a|xi) ≥ τ for all a we can lower bound the above by

ES [V (π∗;S)− V (πB ;S)] ≥ τExi,ri

[
1[Uxi,ri]

(
Er|xi

[r(a∗i)− r(a1
i,B)] + Er|xi

[r(a∗i)− r(a2
i,B)]

)]
.

Bandit Overfitting in Offline Policy Learning

Finally, we note that since a1
i,B 6= a2

i,B and there are only 2 actions that the above is precisely

ES [V (π∗;S)− V (πB ;S)] ≥ τExi,ri

[
1[Exi,ri]Er|xi

[r(a∗i)− r(a 6= a∗i)]

]
= τExi,ri [1[Exi,ri]∆r(xi)]

= τExi
[Eri|xi

[1[Uxi,ri]]∆r(xi)]

= τExi
[pu(xi)∆r(xi)]

= τEx[pu(x)∆r(x)].

C.2. Connection to noisy classification

This section states and proves the Theorem referenced in the main text connecting action-unstable policy-based learning
with noisy classification.

Theorem 4 (Noisy classification reduction). Take any noise level η < 1/2 and any binary classification problem C consisting
of a distribution DC over X and a labeling function yC : X → {−1, 1}. There exists an offline contextual bandit problem B
with noiseless rewards such that

1. Maximizing V̂B in B is equivalent to minimizing the 0/1 loss on a training set drawn from C where labels are flipped
with probability η.

2. Maximizing V̂F in B is equivalent to minimizing the 0/1 loss on a training set drawn from C with noiseless training
labels.

Proof. First we will construct the bandit problem B with two actions corresponding to the classification problem C. For any
constant cr > 0 we define B by

x ∼ DC , r|x =

{
cr(1− η, η) yC(x) = 1

cr(η, 1− η) yC(x) = −1
, β(1|x) =

{
1− η yC(x) = 1

η yC(x) = −1
(21)

Now we will show that in this problem, V̂B is equivalent to the 0/1 loss for C with noisy labels. To do this first note that
by construction, for x with yC(x) = 1 we have r(1)|x

β(1|x) = cr(1−η)
1−η = cr and r(2)|x

β(2|x) = crη
η = cr, and similarly for x with

yC(x) = −1 we have r(1)|x
β(1|x) = crη

η = cr and r(2)|x
β(2|x) = cr(1−η)

1−η = cr.

V̂B(π) =
1

N

N∑
i=1

ri(ai)
π(ai|xi)
β(ai|xi)

=
1

N

N∑
i=1

ri(ai)

β(ai|xi)
π(ai|xi) (22)

=
cr
N

N∑
i=1

π(ai|xi) (23)

This is equivalent to 0/1 loss with noisy labels since β generates ai according to yC where the label is flipped with probability
η.

Now we will show that V̂F is equivalent to the 0/1 loss for C with clean labels. Note that by construction r(a)|x =
crη + π∗(a|x)cr(1− 2η). So,

V̂F (π) =
1

N

N∑
i=1

〈ri, π(·|xi)〉 =
cr
N

N∑
i=1

〈η1 + (1− 2η)π∗(·|xi), π(·|xi)〉 (24)

=
crη

N
+
cr(1− 2η)

N

N∑
i=1

〈π∗(·|xi), π(·|xi)〉 (25)

This is equivalent to 0/1 loss with noisy labels since π∗ exactly corresponds to yC .

Bandit Overfitting in Offline Policy Learning

C.3. Nearest Neighbor

Theorem 3 (Regret lower bound for one nearest neighbor). Let ∆r = rmax − rmin. Then there exist problem instances
with noiseless rewards where

lim sup
N→∞

ES [V (πF)− V (πB)] =
∆r

2
,

but

lim sup
N→∞

ES [V (π∗)− V (πF)] = 0.

Proof. First we need to formally define the nearest neighbor rules that interpolate the objectives V̂B and V̂F . These are
simple in the case of two actions. Let i(x) be the index of the nearest neighbor to x in the dataset. Then

πB(a|x) =

{
1
(
a = ai(x) AND ri(x)(ai(x)) > 0

)
OR
(
a 6= ai(x) AND ri(x)(ai(x)) ≤ 0

)
0 otherwise.

(26)

This is saying that πB chooses the same action as the observed nearest neighbor if that reward was positive, and the opposite
action if that was negative. And for the full feedback we just choose the best action from the nearest datapoint.

πF (a|x) =

{
1 a = arg maxa′ ri(x)(a

′)

0 otherwise.
(27)

Now we can construct the problem instances needed for the Theorem. To construct the example, take a bandit problem with
two actions (called 1 and 2):

x ∼ U([−1, 1]), r|x = (1, 1 + ∆r), β(1|x) = β(2|x) = 1/2 ∀ x, a

The true optimal policy has π∗(2|x) = 1 for all x and V (π∗) = 1 + ∆r. The policy with full feedback πF is to always
choose action 2, since every observation will show that action 2 is better.

Now, we will show that in the limit of infinite data, πF has no regret. Since the rewards are noiseless, the maximum
observed reward at a context is exactly the optimal action at that context. Thus, we precisely have a classification problem
with noiseless labels so that the Bayes risk is 0. Since we π∗ is continuous, the class conditional densities (determined by
the indicator of the argmax of Q) are piecewise continuous. This allows us to apply the classic result of (Cover & Hart,
1967) that a nearest neighbor rule has asymptotic risk less twice the Bayes risk, which in this case is zero. This means that
asymptotically P (πF (a|x) 6= π∗(a|x)) = 0 which immediately gives the second desired result of zero regret in the limit of
infinite data under full feedback.

Now we note that since rewards are always positive, we can simplify the definition of πB as

πB(a|x) = 1[a = ai(x)]. (28)

Then we have that

V (πF)− V (πB) = Ex[Ea∼πF |x[Q(x, a)]− Ea∼πB |x[Q(x, a)]] (29)
= Ex[∆r + 1− (πB(1|x) + πB(2|x)(∆r + 1))]] (30)
= ∆r + 1− Ex[1[ai(x) = 1] + (∆r + 1)1[ai(x) = 2]] (31)

Taking expectation over S we get

ES [V (πF)− V (πB)] = ES [∆r + 1− Ex[1[ai(x) = 1] + (∆r + 1)1[ai(x) = 2]]] (32)
= ∆r + 1− Ex[PS(ai(x) = 1) + (∆r + 1)PS(ai(x) = 2)]] (33)

= ∆r + 1− Ex[
1

2
+ (∆r + 1)

1

2
]] (34)

=
∆r

2
(35)

This construction did not depend on the size of the dataset, so it is even true as the number of datapoints tends to infinity.

Bandit Overfitting in Offline Policy Learning

D. Discussion of doubly robust algorithms
Before going into the comparison, we will define the doubly robust algorithm (Dudík et al., 2011) in our notation. Specifically,

V̂DR(π) :=

N∑
i=1

[∑
a

π(a|xi)Q̂(xi, a) +
π(ai|xi)
β(ai|xi)

(ri(ai)− Q̂(xi, ai))

]
, π̂DR = arg max

π∈Π
V̂DR(π) (36)

As stated in the main text, when we use overparameterized models and train Q̂ on the same data that we use to optimize
the policy, then doubly robust methods are equivalent to the vanilla value-based algorithm. This is formalized in Lemma 6
below.

This equivalence can be avoided by using crossfitting so that Q̂ is not trained on the same data as π. However, then it is
possible that the doubly robust policy objective becomes action-unstable. This is true even with access to the true Q function,
but requires stochastic rewards. To construct such an example we leverage the stochastic rewards so that instability only
occurs at datapoints where certain reward vectors are sampled. This is shown in Lemma 7 below.

One final point is to consider the motivation for doubly robust methods. Usually it is motivated by concerns about consistency
of the value function estimation or estimation of behavior policy (Dudík et al., 2011). However, in our setting we have (1) an
overparamterized model class which is large enough to contain the true value function, and (2) exact access to the behavior
probabilities. So it is not clear why doubly robust methods would be motivated in our setting.

Lemma 6 (Equivalence of DR and vanilla VB). When we use overparameterized models and do not use crossfitting, doubly
robust learning from Equation (36) is equivalent to vanilla value-based learning from Equation (5).

Proof. When the model for Q̂ is overparameterized and trained on the full dataset, we know that Q̂(xi, ai) = ri(ai). Thus
we get that

V̂DR(π) =

N∑
i=1

[∑
a

π(a|xi)Q̂(xi, a) +
π(ai|xi)
β(ai|xi)

(ri(ai)− Q̂(xi, ai))

]
(37)

=

N∑
i=1

[∑
a

π(a|xi)Q̂(xi, a) +
π(ai|xi)
β(ai|xi)

(0)

]
(38)

=

N∑
i=1

∑
a

π(a|xi)Q̂(xi, a) (39)

With an overparameterized policy class, we can exactly recover the greedy policy relative to Q̂ to optimize this objective.

Lemma 7 (Instability of DR). There exist problems with stochastic rewards where even with access to the exact Q function,
the doubly robust policy objective is action-unstable with probability 1/2.

Proof. We need only consider one datapoint since the action-stability property is defined on a per datapoint basis. To make
this construction we will consider only two actions.

r|x =

{
(0, 1) w.p. 1/2

(0,−2) otherwise
, β(·|x) = (1/2, 1/2) (40)

So, we know that

Q(·|x) = (0,−0.5) (41)

Now we claim that when the sampled datapoint has r = (0, 1) the doubly robust objective is action-unstable (and this
happens with probability 1/2 by construction). We can explicitly expand the DR objective for the policy π at x when action
a is sampled

`DR(π, x, a, r) = π(1|x) · 0 + π(2|x) · (−0.5) +
π(a|x)

1/2
(r(a)−Q(x, a)) (42)

Bandit Overfitting in Offline Policy Learning

So when a = 1 we have r(a) = 0 and Q(x, a) = 0 so that

`DR(π, x, a, r) = π(2|x) · (−0.5) + 2 · π(1|x)(0− 0) = π(2|x) · (−0.5) (43)

And when a = 2 we have r(a) = 1 (because that was the sampled reward) and Q(x, a) = 0 so that

`DR(π, x, a, r) = π(2|x) · (−0.5) + 2 · π(2|x)(1− (−0.5)) = π(2|x) · (2.5) (44)

Now, this is clearly action-unstable since the optimizer when a = 1 is sampled is π(·|x) = (1, 0) while when a = 2 is
sampled we get π(·|x) = (0, 1).

E. Experiments
E.1. Synthetic data

Data. As described in the main text we sample some hidden reward matrix θ and then sample contexts and rewards from
isotropic Gaussians:

θ ∼ U([0, 1]K×d), x ∼ N (0, Id), r ∼ N (θx, εId).

Actions are sampled according to a uniform behavior:

a ∼ β(·|x) = U({1, . . . ,K}).

We set K = 2, d = 10, ε = 0.1. For each random seed we take N = 100 training points and sample an independent test set
of 500 points. For experiment 1 we sample θ and one dataset of x, r tuples, then we sample 20 independent sets of actions.
For experiment 2 we sample all parameters separately to construct each of the 50 datasets.

Model. For policies and Q functions we use a multilayer perceptron with one hidden layer of width 512 and ReLU
activations. The only difference between policy and Q architecture is that the policy has a softmax layer on the output so
that the output is a probability distribution.

Learning. We train using SGD with momentum. Learning rate is 0.01, momentum is 0.9, batch size is 10, and weight
decay is 0.0001. We train every model for 1000 epochs decreasing the learning rate by a factor of 10 after 200 epochs. This
trains well past the point of convergence in our experience.

0 200 400 600 800 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e

Policy-based

0 200 400 600 800 1000

Epoch

Value-based

Train obj

Test value

Train value

Test optimal

Figure 4. We show learning curves across each of the twenty different action resampled datasets.

Extended results. Figure 4 shows learning curves for each of the twenty different action datasets from experiment 1. We
use “train obj” to refer to the training objective which is squared error for value-based learning and V̂B for policy-based
learning. We use “train value” and “test value” to refer to V (π;S) for S being the train and test sets respectively. We can
evaluate the true value at each datapoint since we know the full reward vector at each datapoint.

We see that the policy-based objective is dramatically higher than the highest achievable value due to overfitting of the
noise in the actions. The gap between train and test value is mot likely explained by noise in the contexts sampled in those
respective datasets (by chance the test set has higher value contexts).

Bandit Overfitting in Offline Policy Learning

E.2. CIFAR-10

Data. We use a bandit version of the CIFAR-10 dataset (Krizhevsky, 2009). We split the train set into a train set of the
first 45000 examples and validation set of the last 5000. We normalize the images and use data augmentation of random
flips and crops of size 32. Each of the 10 labels becomes an action. We define rewards to be 1 for a correct prediction and 0
for an incorrect prediction. We use two different behavior policies. One is a uniform behavior that selects each action with
probability 0.1 and the other is the hand-crafted behavior policy from (Joachims et al., 2018).

Model. We use a ResNet-18 (He et al., 2016) from PyTorch (Paszke et al., 2019) for both the policy and the Q function.
The only modification we make to accommodate for the smaller images in CIFAR is to remove the first max-pooling layer.

Learning. We train using SGD with momentum 0.9,a batch size 128, and weight decay of 0.0001 for 1000 epochs.
Training takes about 20 hours for each run on an NVIDIA RTX 2080 Ti GPU. We use a learning rate of 0.1 for the first
200 epochs, 0.01 for the next 200, and 0.001 for the last 600. To improve stability we use gradient clipping and reduce the
learning rate in the very first epoch to 0.01.

Extended results. Figures 5 and 6 show learning curves for each of the three algorithms we consider across each dataset.
The labels refer to the same quantities as they did on the synthetic problem.

One interesting phenomena is that the unstable policy-based algorithm displays a clear overfitting phenomena as we would
predict due to the noise in the actions being transferred into noise in the objective. Since we have strictly positive rewards
here, this is also an instance of “propensity overfitting” (Swaminathan & Joachims, 2015b). As a result, limiting the capacity
of the model class by early stopping could improve performance somewhat. But by limiting capacity in this way we are
exiting the overparameterized/interpolating regime described by Zhang et al. (2016).

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
al

u
e

Unstable policy-based

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Stable policy-based

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Value-based

Train obj

Test value

Train value

Optimal

Figure 5. Learning curves on the hand-crafted action dataset.

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
al

u
e

Unstable policy-based

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Stable policy-based

0 250 500 750 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Value-based

Train obj

Test value

Train value

Optimal

Figure 6. Learning curves on the uniform action dataset.

Bandit Overfitting in Offline Policy Learning

F. Small model classes
In this section we state and prove theorems that bound each term of our regret decomposition for each algorithm we consider
when we use finite model classes. Similar results can be shown for other classical notions of model class complexity. We
include these results for completeness, but the main focus of our paper is the overparameterized regime where such bounds
are vacuous.

Theorem 5 (Policy-based learning with a small model class). Assume strict positivity and a finite policy class Π. Let
εΠ = V (π∗)− supπ∈Π V (π). Denote ∆r = rmax − rmin. Then we have that for any δ > 0 with probability 1− δ each of
the following holds:

Approximation Error = V (π∗)− sup
π∈Π

V (π) ≤ εΠ

Estimation Error = sup
π∈Π

V (π)− V (πF) ≤ 2∆r

√
log(2|Π|/δ)

2N

Bandit Error = V (πF)− V (πB) ≤ 2∆r

τ

√
log(2|Π|/δ)

2N

Proof. The bound on approximation error follows directly from the definition of εΠ. The bound on the estimation error
follows from a standard application of a Hoeffding bound on the random variables Xi = 〈ri, π(·|xi)〉 which are bounded by
∆r and a union bound over the policy class.

The bound on bandit error essentially follows Theorem 3.2 of (Strehl et al., 2010), we include a proof for completeness:

V (πF)− V (πB) = V (πF)− V̂B(πB) + V̂B(πB)− V (πB)

≤ V (πF)− V̂B(πF) + V̂B(πB)− V (πB)

≤ 2 sup
π∈Π
|V (π)− V̂B(π)|

≤ 2∆r

τ

√
log(2|Π|/δ)

2N

The first inequality comes from the definition of πB . The second comes since both πF , πB ∈ Π. And the last inequality
follows from an application of a Hoeffding bound on the random variables Xi = ri(ai)

π(ai|xi)
pi

which are bounded by ∆r

τ
and a union bound over the policy class.

Theorem 6 (Value-based learning with a small model class). Assume strict positivity and a finite function class Q which
induces a finite class of greedy policies ΠQ. Let εQ = infQ̂∈Q Ex,a∼D,β [(Q(x, a)−Q̂(x, a))2]. Denote ∆r = rmax−rmin.
Then we have that for any δ > 0 with probability 1− δ each of the following holds:

Approximation Error = V (π∗)− sup
π∈ΠQ

V (π) ≤ 2
√
εQ/τ (45)

Estimation Error = sup
π∈ΠQ

V (π)− V (πF) ≤ 2∆r

√
log(|Q|/δ)

2N
(46)

Bandit Error = V (πF)− V (πQ̂) ≤ 10∆r√
τ

√
log(|Q|/δ)

N
+ 6
√

∆r

(
log(|Q|/δ)

τN
εQ

)1/4

+ 2
√
εQ/τ (47)

Proof. To bound the approximation error, we can let π̂ be the greedy policy associated with a Q-function Q̂ and apply
Lemmas 3 and 4. This gives us

V (π∗)− sup
π̂∈ΠQ

V (π̂) = inf
Q̂∈Q

[V (π∗)− V (π̂)] ≤ inf
Q̂∈Q

2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = 2

√
εQ/τ . (48)

The bound on the estimation error follows the same as before from standard uniform convergence arguments.

Bandit Overfitting in Offline Policy Learning

The bound on the bandit error follows by again applying Lemmas 3 and 4 and then making the concentration argument from
Lemma 16 of (Chen & Jiang, 2019). Explicitly, our Lemmas give us

V (πF)− V (πQ̂) ≤ V (π∗)− V (πQ̂) ≤ 2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]. (49)

Then, to bound the squared error term, we can add and subtract:

Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (50)

+ inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (51)

≤ Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (52)

+ εQ. (53)

Now we want to show that the difference in squared error terms concentrates for large N . This is precisely what Lemma 16
from (Chen & Jiang, 2019) does using a one-sided Bernstein inequality. This gives us for any δ > 0 an upper bound with
probability 1− δ of

56∆2
r log(|Q|/δ)

3N
+

√
εQ

32∆2
r log(|Q|/δ)
N

(54)

Plugging this in and simplifying the constants gives the result.

