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Abstract
Reliably predicting the products of chemical re-
actions presents a fundamental challenge in syn-
thetic chemistry. Existing machine learning ap-
proaches typically produce a reaction product by
sequentially forming its subparts or intermediate
molecules. Such autoregressive methods, how-
ever, not only require a pre-defined order for the
incremental construction but preclude the use of
parallel decoding for efficient computation. To ad-
dress these issues, we devise a non-autoregressive
learning paradigm that predicts reaction in one
shot. Leveraging the fact that chemical reactions
can be described as a redistribution of electrons in
molecules, we formulate a reaction as an arbitrary
electron flow and predict it with a novel multi-
pointer decoding network. Experiments on the
USPTO-MIT dataset show that, our approach has
established a new state-of-the-art top-1 accuracy
and achieves at least 27 times inference speedup
over the state-of-the-art methods. Also, our pre-
dictions are easier for chemists to interpret owing
to predicting the electron flows.

1. Introduction
Reaction prediction (Corey & Wipke, 1969), which aims
to predict the resulting chemical outcomes from given re-
actants and reagents, is a fundamental problem in computa-
tional chemistry. Reliably predicting such outcomes enables
chemists to analyze the feasibility of chemical reactions
and design optimal synthesis routes for target molecules,
which is of crucial importance for synthesis planning, drug
discovery, and material invention. Nevertheless, reaction
prediction has remained a foundational challenge owing
to the fact that a typical reaction may involve nearly 100
atoms (Jin et al., 2017), which makes fully exploring all
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possible transformations intractable.
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Figure 1. Illustration2of the electron movements in a reaction,
where lines represent single covalent bonds (each comprising 2
shared electrons) and a pair of dots representing a lone pair. Each
pair of curly arrows show the movement of one electron pair, which
results in the bond broken (red curly arrow) and bond formed (blue
curly arrow) in the reaction. Such electron redistribution yields the
formation and breaking of chemical bonds that change the reactant
(left) into product (right). Our approach here aims to model all the
movements of electron pairs (i.e., curly arrays) in one shot.

Recently, profound successes have been achieved by ap-
plying machine learning to cope with the aforementioned
challenge in reaction prediction (Jin et al., 2017; Struble
et al., 2020; Shi et al., 2020). For example, (Schwaller et al.,
2018; 2019) formulate reaction prediction as a problem of
sequence translation by representing molecules as SMILES
strings, and Transformer based architecture is used for the
translation. More advanced methods (Coley et al., 2019;
Do et al., 2019; Sacha et al., 2020) represent molecules as
graphs and formulate reaction prediction as iterative graph
transformation process. Generally, these methods generate
subparts or intermediate molecules of a reaction product in a
sequential fashion, through leveraging successive decoding
steps.

Despite their dramatic successes, these state-of-the-art end-
to-end methods have a major shortcoming, thus hindering
their wider applications. That is, these strategies embrace
an autoregressive decoding procedure, which produces reac-
tion subparts or intermediate molecule graphs sequentially,
each conditioning on previously generated ones. Although
autoregressive models can model the dependency between
the sequential subparts, there is no unambiguous principle

2This formalism is inspired by, but does not accurately rep-
resent, a true arrow pushing mechanism; Hydrogen is neglected
for the simplicity of our model as that of other graph-based ap-
proaches owing to that the Hydrogen can be inferred with valences
and electrons provided.
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way of linearizing the sequence of steps for constructing
a molecular graph, and one failed step in such successive
procedure could invalidate the entire synthesis outcomes.
Furthermore, such iterative generations hinder parallel de-
coding for efficient computation.

To cope with the aforementioned limitations, we propose
a novel framework for reaction prediction, which predicts
reaction outcomes in one shot. We leverage the fact that
chemical reactions can be described as a redistribution of
electrons in molecules. As illustrated in Figure 1, such
electron movement results in the formation and breaking
of chemical bonds that convert the reactants into product
molecules (Herges, 2015). We here aim to model the si-
multaneous electron flows in reactants, as such predicting
the reaction product is a byproduct of capturing the elec-
tron rearrangement in the reactants. In a nutshell, we first
formulate an edge in a molecular graph as a pair of shared
electrons (i.e., a covalent bond) and bond transformations
as electron flows. We then propose a novel electron flow
principle to describe arbitrary and parallel electron flows in
molecules. We further implement this principle based on the
conditional variational autoencoder framework (Sohn et al.,
2015) with a novel multi-pointer decoding network to model
the incoming and outgoing electron movement probabilities
for each atom. This results in modeling arbitrary, non-linear
electron flows and simultaneous graph transformations for
reaction prediction, hence forming reaction products in one
shot. Also, our method possesses beneficial interpretability
through showing how the reactants react via the reactivities
of electrons. We refer to this model as Non-autoregressive
Electron Redistribution Framework (NERF).

We evaluate our model using the benchmarking USPTO-
MIT dataset. Our empirical studies show that our approach
has established a new state-of-the-art top-1 accuracy. More-
over, our method achieves at least 27 times faster for in-
ference over the state-of-the-art approaches. Our experi-
ments also indicate that the latent variables introduced in
our method enable the generation of diverse multi-modal
outputs, resulting in top-k accuracy comparable to its au-
toregressive counterparts. We also demonstrate that due to
the prediction of electron flows, our reaction predictions are
easier for chemists to interpret.

2. Related Work
Data-driven reaction prediction approaches have histori-
cally relied on reaction templates, which define sub-graph
matching rules for similar organic reactions. Products are
generated by first mapping reactants to a set of templates
and then applying the pre-defined transformations encoded
in the selected templates (Segler & Waller, 2017a;b; Wei
et al., 2016), optionally followed by a re-ranking step (Co-
ley et al., 2017). Despite their successful application to

synthesis planning, these methods suffer from poor general-
ization on unseen molecular structures owing to the use of
rigidly-defined templates to describe how different chemical
substructures may react.

To overcome the limitation of template-based approaches,
various template-free methods (Jin et al., 2017; Kayala &
Baldi, 2011; Bradshaw et al., 2018; Jin et al., 2017; Co-
ley et al., 2019; Schwaller et al., 2018; 2019; Qian et al.,
2020) have recently been introduced. For example, two-
stage learning methods have been introduced to achieve
promising results (Jin et al., 2017; Qian et al., 2020). One
downside of these approaches is that they involve multi-
stage learning and cannot be optimized end-to-end. To
this end, most state-of-the-art strategies typically embrace
an end-to-end, template-free learning paradigm. For ex-
ample, Schwaller et al. (2018; 2019) leverage a sequence-
to-sequence framework to translate SMILES (Weininger,
1988) representations of reactant graphs to those of prod-
uct graphs. (Bradshaw et al., 2018; Do et al., 2019; Sacha
et al., 2020) formulated reaction prediction as a sequence of
graph transformations on molecule graph. Such autoregres-
sive methods, however, not only require a pre-defined order
for the incremental construction but also hinder parallel de-
coding for efficient computation. Our strategy overcomes
these challenges by embracing a non-autoregressive learning
paradigm to generate reaction products in one shot, enabling
end-to-end training with parallel decoding for efficient com-
putation.

To the best of our knowledge, our approach is the first at-
tempt to modeling electron flows for non-autoregressive
chemical reaction prediction. The only work we are aware
of on predicting molecule electron flow is (Bradshaw et al.,
2018). Nevertheless, their approach is limited to a sub-
class of chemical reactions with “linear” electron flows in
an autoregressive format. In contrast, our strategy predicts
electron redistribution in one shot. It embraces an arbitrary
electron flow principle to capture the parallel electron move-
ment, thus the simultaneous bond making and breaking, in
reactant molecules.

3. The Non-Autoregressive Electron
Redistribution Framework

In this paper, we formulate the chemical reaction prediction
task as a simultaneous electron redistribution problem. We
solve this problem by predicting electron flows around each
atom in parallel with a conditional variational autoencoder.
Specifically, we first employ a graph neural network to
encode the reactant graphs, where multiple covalent bonds
between atom pairs are represented by parallel binary edges
–each depicts two electrons that are shared between the atom
pair. In the decoder, the goal is to model the incoming and
outgoing electron movement probabilities for each atom
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Figure 2. Framework of NERF. The left-bottom depicts the parallel edges in our graph representation Gr . Encoder is on the left: the
node embeddings are generated by a conditional variational auto-encoder CVAE (Sohn et al., 2015). Decoder is on the right: the node
embeddings leverage a set of directional PointerNets (Vinyals et al., 2015) to use attention weights to estimate the flow of electron pairs
between all the atom pairs in the reaction simultaneously. These electron flows thus reflect the changes of edges and then can be converted
into the addition and removal of edges in the reactant molecule to form the product molecule Gp (right).

(i.e., graph node) in the reactants. Finally, the electron
reactivities of the reactants are converted into the addition
and removal of edges in the reactant graphs, forming the
reaction products. The proposed framework is depicted in
Figure 2, and will be discussed in detail next.

3.1. Notation and Problem Formulation

Molecule Graph with Parallel Edges We represent a set
of organic molecules as an undirected graph G = (V,E, f),
where V and E denote the set of heavy atoms (excluding
hydrogen) and bonds, respectively. Each node vi ∈ V
is associated with a fixed-length feature vector fi, each
dimension of which corresponds to a certain property of the
atom vi such as atom type or formal electric charge. Unlike
previous work where different bond orders are represented
by one edge with different features or labels, our method
treats different bonds as multiple parallel binary edges, e.g.,
a double bond is represented as two parallel binary edges
(see far left of Figure 2).

Chemical Reaction as Electron Redistribution In this pa-
per, a chemical reaction is described as a pair of molecular
graphs (Gr, Gp), where Gr = (V,Er, fr) is the set of reac-
tants and Gp = (V,Ep, fp) the products we aim to predict.
Note that, these two share the same set of nodes V . From
the chemistry perspective, chemical reactions can be defined
as a redistribution of electrons in molecules (Herges, 1994a).
In other words, the forming of Ep can be described as the
rearrangement of electrons in Er, which reflects the addi-
tion or removal of edges in Er and hence the forming of the
products Ep.

Edge Change as Electron Flow in Molecule From a chem-
istry perspective, each covalent single bond in organic
(carbon-based) molecules represents two electrons that are

shared between the atom pair that the bond connects. See
illustration in Figure 1. In this paper, we denote eij (≥ 0
and ∈ E) as the number of binary edges (i.e., shared elec-
tron pairs) between nodes vi and vj , (vi ∈ V, vj ∈ V ), i.e.
the number of electrons of atom i that are shared with atom
j. To this end, we allow self-loops in G and let eii denote
the number of lone pairs in atom i (illustrated as a dot pair
around an atom in Figure 1), namely valence electrons that
are not shared with other atoms.

From this perspective, an edge change in a molecule is
caused by a valence electron’s reactivity. It can form a
new bond by sharing with another atom (or form a lone
pair through coupling with a sibling atom of its own), or
break an existing bond by withdrawing the sharing. Also,
based on a chemical rule of thumb known as the Octet Rule,
valence electrons that are active in reactions and form bonds
is typically no larger than 8. This motivates our aim of
modeling the incoming and outgoing electron movement
probabilities of each of the 8 valence electrons in each atom
during reaction. Consequently, such electron flows reflect
the change of edge number before and after the reaction for
each atom pair (i, j), (vi, vj ∈ V ), namely

∆eij = epij − e
r
ij . (1)

In other words, through capturing the reactivity probabil-
ities of the 8 valence electrons in each atom, we can ap-
proximating ∆eij directly. By doing this, our method can
simultaneously access all the edge changes in the reactant
molecule, thus produce the reaction products in one shot.
Such non-autoreggressive nature distinguishes our strategy
from previous work in (Bradshaw et al., 2018), which can
only handle a subclass of chemical reactions that have linear
electron flows only.
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3.2. The Conditional Variational AutoEncoder
Framework

Our goal is to model the probability of product graphs Gp

conditioning on the reactant graphs Gr, i.e., P (Gp|Gr). To
model the uncertainty of reaction, we introduce a latent
variable z and base the whole model on the conditional vari-
ational auto-encoder framework (Sohn et al., 2015). For
training, we aim to maximize the log-likelihood of each
training example, i.e., logP (Gp|Gr). In practice, it is usu-
ally computational intractable to maximize the likelihood
logP (Gp|Gr), and a common approach is to maximize
an evidence-lower bound (ELBO) of the log-likelihood as
below:

log p(Gp|Gr) ≥ Eq(z|Gp,Gr)[log p(Gp|Gr, z)]−
KL(q(z|Gp, Gr)||p(z|Gr)),

(2)

where q(z|Gp, Gr) is an encoder which defines the
variational distribution of the true posterior distribution
p(z|Gp, Gr), p(z|Gr) is the prior distribution of the latent
variable z, and p(Gp|Gr, z) is the decoder. To optimize the
lower-bound, we can use the reparametrization trick intro-
duced in the variational auto-encoder (Kingma & Welling,
2013). Next, we will introduce our encoder and decoder
respectively.

3.2.1. ENCODER

As each reactant is represented as a graph, a natural choice is
to encode the atoms of the whole reactants with graph neural
networks (Schlichtkrull et al., 2018; Rong et al., 2020),
which have been widely studied to learn representations of
different kinds of graphs. Let k ∈ N be the embedding
dimension and hr(l)i ∈ Rk×1 the node embeddings of the
ith atom at the lth layer computed by the GCN (h

r(0)
i = fi).

At the lth layer, each node i first aggregates the messages
from its neighboring nodes, namely n ∈ Ni:

m
r(l)
i = RELU(W (l) · SUM{hr(l−1)u |u ∈ Ni}), (3)

where W (l) ∈ Rk×k is the trainable weight matrix. The
aggregated messages are further combined with the node
representation itself by simply taking the summation, yield-
ing a new node representation:

h
r(l)
i = m

r(l)
i + h

r(l−1)
i . (4)

As graph convolutional networks only capture the local de-
pendency between atoms, to further model the long-range
dependency between atoms, we further apply a Transformer
Encoder (Vaswani et al., 2017) on top of the atom represen-
tations learned by GCNs, similar to (Rong et al., 2020):

hr = Transformer-Encoder(hr(L)), (5)

where hr(L) are the atom representations in the final layer
of the GCN, and hr are the final atom representations of
reactants. Similarly, we encode the product graphs with the
same neural encoder, obtaining the atom embeddings hp for
each atom in Gp.

Once we have the representations for the reactant and prod-
uct graphs hr and hp, we then use them to define our varia-
tional distribution q(z|Gp, Gr). Specifically, we first pass
the hr and hp through a Transformer-Decoder to compute
the cross attention between hr and hp. This Transformer-
Decoder takes hp as the input sequence of the first decoder
layer and hr as the last output sequence of the encoder. Es-
sentially, the atom representations of product graphs hp are
treated as memory, and the atom representations of reactants
hr are treated as queries, which are updated by attending
to hp. After that, a mean pooling is further applied to all
the atom representations of the reactants, yielding a global
representation hz of the reaction:

hz = MEAN(Transformer-Decoder(hr, hp)). (6)

Next, a fully connected layer with ReLU activation is further
applied to hz to define the mean and variance of the latent
variable:

µ = WµReLU(hz) + bµ,

logσ = WσReLU(hz) + bσ.
(7)

where Wµ,Wσ ∈ Rk×k and bµ, bσ ∈ Rk×1 are trainable
parameters. Therefore, the variational distribution is defined
as q(z|Gp, Gr) = Normal(µ, σ). For the prior distribution
p(z|Gr), we simply assume it is a simple standard Gaussian
distribution, which does not depend on Gr.

3.2.2. DECODER

Next, we introduce how to decode the product graph Gp

based on the latent variable z and the reactant graphsGr, i.e.,
p(Gp|Gr, z). As introduced previously, since the atoms are
exactly the same between Gr and Gp, we need to generate
the edge difference between the two sets of graphs. We first
generate a new set of atom representations for the reactant
graphs (denoted as ĥr) by taking the summation of each
atom representation hri and the latent variable z, followed
by a global transformation through a Transformer encoder
layer:

ĥri = hri + z, (8)

ĥr = Transformer-Encoder(ĥr). (9)

Next, these embeddings are then used to generate the edge
numbers epij for each atom pair (i, j) in the products. Recall
from Section 3.1 that, in order to predict the product graphs,
we simply need to model each atom’s electrons activities.
According to the Octet Rule as discussed in 3.1, the number
of active valence electrons in an atom is typically at most 8,
and the reactivity of each electron includes either forming a
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new bond or breaking an existing bond with another atom
(including the atom itself). We here attain this goal by
modeling the bond formation and breaking probabilities
associating to each electron in each atom using a set of
PointerNets (Vinyals et al., 2015).

PointerNet is proposed for selecting an item from a set
of items using attention mechanism. In our setting, for
each electron of an atom i in reactants Gr, PointerNet can
compute the attentions between atom i and all the atoms in
Gr (including i). The attentions are calculated through a
softmax function, thus each of those attention weights can
be interpreted as a probability. That is, through the attention
weights, a PointerNet provides us the probabilities of atom
i initiating an electron flow with all the atoms in the graph.

Consequently, for each electron d, we deploy two Point-
Nets: one capturing its probability (denoted w+d) of bond
formation and another the probability (denoted w−d) of
bond breaking. We denote these two types of PointerNet as
BondFormation and BondBeaking PointerNets, respectively.
That is, in total our model has 8 BondFormation PointerNets
and 8 BondBeaking PointerNets, and all the 16 PointerNets
are shared among all the atoms in the reactants. Formally,
give a set of nodes ĥr in the reactants Gr, a PointerNet can
compute an attention weight to reflect the probability of an
electron flow from atom i to any atom j in Gr:

w
(+d)
ij = PointerNet+d (ĥr, i, j), d ∈ 1, 2, · · · , 8 (10)

w
(−d)
ij = PointerNet−d (ĥr, i, j), d ∈ 1, 2, · · · , 8 (11)

where w(+d)
ij , w

(−d)
ij ∈ [0, 1].

With the attentions computed by the 16 PointerNets, the
overall electron reactivity for an atom pair (i, j) then can
be approximated by calculating the difference between the
summation of the 8 BondFormation attentions and that of
the 8 BondBreaking attentions:

∆w̃ij =

8∑
d=1

w
(+d)
ij −

8∑
d=1

w
(−d)
ij . (12)

Here, the first and second summations represent the addi-
tions and the removals of edges, respectively. Doing so,
∆w̃ij thus reflects the change of edge number between the
atom pair (i, j). Next, we then add it to the existing number
of edges, i.e., erij , resulting in the new edge number êij
between the atom pair (i,j):

êij = erij + ∆w̃ij . (13)

Finally, we define our likelihood function as:

log p(Gp|Gr, z) =
∑

(i,j)∈Ep

log p(epij |G
r, z)

∝ −
∑

(i,j)∈Ep

(epij − êij)
2.

(14)

Generation In practice, given a set of reactant graphs Gr,
to generate the product graphs, êij is rounded to the closest
integer to obtain the edge number between the atom pair,
namely epij :

epij = round(min(êij , êji)). (15)

Doing so, we then have the resulting modified graph Gp.
During evaluation, a reaction is correctly predicted if the
ground truth product is a subgraph of our prediction Gp

(more detailed illustration will be presented in Figure 5 in
the Experiment section).

3.3. Atom Feature Construction and Prediction

We assign each graph node (i.e., atom) with a unique iden-
tifier as its positional embedding (You et al., 2019). This
ensures that atoms in different chemical environments have
distinct node representations. The input features of atoms
include atom type, charge, aromaticity, segment embedding
and positional embedding. There is no edge feature in our
model.

Our proposed NERF framework can easily incorporate do-
main knowledge owing to the fact that each atom has its own
embedding hr. In addition to predicting the edge changes
in the reactants, our model can naturally leverage the atom
embedding hr to predict an atom’s other properties such as
its electron charges, aromatic property and chirality.

To this end, we pass the atom embedding hri through a MLP
layer to generate the predicted probabilities of this atom’s
aromatic property. Such prediction thus can help us to
recover the aromatic bonds, which are typically described as
alternating single and double bonds, in the resulting product
graphs.

4. Experimental Studies
4.1. Experiment Setup

Dataset Most of the publicly available reaction datasets
are derived from the patent mining work of Lowe (Lowe,
2012), where the chemical reactions are described using a
text-based representation called SMILES and RDKit library
(Landrum, 2016) is used to transform the SMILES strings
into molecule graphs. We evaluate our model using the
popular benchmarking USPTO-MIT dataset. This dataset
was created by Jin et al. (2017) by removing duplicate and
erroneous reactions from Lowe (2012)’s original data and
filtering to those with contiguous reaction centers. The re-
sulting dataset has about 480K samples and has been widely
used for benchmarking (Schwaller et al., 2018; Jin et al.,
2017; Do et al., 2019; Bradshaw et al., 2018; Schwaller
et al., 2019).

Data Prepossessing For the USPTO-MIT dataset, we em-
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Table 1. Top-k accuracy on USPTO-MIT; Best results in bold. We also show if the comparison model can be parallelly trained in an
end-to-end fashion. † indicates that the results were copied from its published paper. The bracket indicates the method’s learning
taxonomy: “combinatorial” for parallel optimization, “graph” for graph translation, and “sequence” for an auto-regressive generation.

Accuracies(%)

Model Name(scheme) Top-1 Top-2 Top-3 Top-5 parallel end-to-end

WLDN† (combinatorial) 79.6 - 87.7 89.2 X ×
GTPN †( graph) 83.2 - 86.0 86.5 × X
Transformer-base † ( sequence) 88.8 92.6 93.7 94.4 × X
MEGAN†(graph) 89.3 92.7 94.4 95.6 × X
Transformer-augmented †( sequence) 90.4 93.7 94.6 95.3 × X
Symbolic† (combinatorial) 90.4 93.2 94.1 95.0 X ×
NERF 90.7±0.03 92.3±0.22 93.3±0.15 93.7±0.17 X X

Table 2. Computation speedup (compared with Transformer)

Model Name Wall-time Latency Speedup
Transformer (b=5) 9min 448ms 1 ×
MEGAN (b=10) 31.5min 144ms 0.29 ×
Symbolic >7h 1130ms 0.02 ×
NERF 20s 17ms 27×

pirically observe that the change of binary edges does not
exceed 4. We, therefore, reduce the number of PointerNets
deployed, as described in Equation 12, from 8 to 4. That is,
in this implementation, we only use 4 BondFormation and
4 BondBreaking PointerNets. In addition, we observe that
although the computational cost is insensitive to the number
of PointerNets, increasing the number of PointerNets from 4
to 8 had no accuracy benefit; on the other hand, performance
degraded while decreasing the number of PointerNets below
4. Also, for this dataset, there are 0.3% of reactions do not
satisfy this implementation’s settings. Hence, we exclude
these reactants from both training and testing, and then just
subtract our predictve accuracy on the remaining reactants
by 0.3% as our model’s final accuracy. For the node features,
we follow literature for the construction. Additionally, we
include the formal charge and aromatic bond property as
part of our atom feature. Also, we add an extra atom feature
distinguishing reactant from reagent. We do so by following
the filtering process as in (Schwaller et al., 2019).

Model Configuration We implement NERF using Pytorch
(Paszke et al., 2019). Both the Transformer-encoder and
Transformer-decoder contain 6 self-attention layers with 8
attention heads as in the original Transformer configuration.
The node embedding dimension is 256 and the dimension
of the latent representation is 64. The model is optimized
with AdamW (Kingma & Ba, 2014) optimizer at learning
rate 10−4 with linear warmup and linear learning rate decay.
We train the models for 100 epochs with a batch size of 128
using two Nvidia V100 GPUs (took about 3 days).

Evaluation Metrics Similar to (Jin et al., 2017), we use top-
k exact SMILES string match accuracy as our evaluation
metric, which is the percentage of reactions that have the
ground-truth product in the top-k predicted molecules sets.
Following previous works, our experiments choose k from
{1, 2, 3, 5}.

Generating Multimodal Outputs To draw (approximate)
the top-k samples from our method efficiently, we samplem
latent vectors (m ≥ k) at increasing temperatures and take
the first k different predictions as an approximation to the
top-k predictions. Specifically, at temperature T ∈ N, the
latent vector is drawn fromN(0, T ∗I). Using a temperature
higher than 1 improves sampling efficiency by increasing
diversity and therefore reducing duplicate samples.

We use the k different samples drawn at the lowest tem-
perature for the approximation of the top-k samples since
samples drawn at high temperatures tend to be noisier and
less credible. We find this sampling works well in practice,
and provides a lower bound of the real top-k accuracy.

Comparison Baselines We evaluate the proposed approach
using the following six baselines.

• WLDN (Jin et al., 2017) is a two-stage approach built
upon Weisfeiler-Lehman Network, which first identi-
fies a set of reaction centers, enumerates all possible
bond configurations, and then ranks them.

• GTPN (Do et al., 2019) treats a chemical reaction
as a sequence of graph transformations and employs
reinforcement learning to learn a policy network for
such transformations.

• Transformer-base (Schwaller et al., 2019) leverages
the power of Transformer (Vaswani et al., 2017) to
predict SMILES strings of product graphs.

• Transformer-augmented (Schwaller et al., 2019)
leverages the data augmentation of SMILES strings
to boost the performance of Transformer-base.
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• MEGAN (Sacha et al., 2020) models chemical reac-
tions as a sequence of graph edits, and learns to predict
the sequence autoregressively.

• Symbolic (Qian et al., 2020) integrates symbolic in-
ference with the help of chemical rules into neural
networks.

We here compare with a variety of strategies including meth-
ods deploying parallel optimization, graph translation, and
sequential reaction generation, as indicated by the text in
the brackets in Table 1.

4.2. Predictive Accuracy

Table 1 presents the predictive accuracy obtained by the
testing models on the USPTO-MIT task.

Results in Table 1 indicate that, our method outperformed
all the comparison baselines in terms of top-1 accuracy, es-
tablishing a new state-of-the-art top-1 accuracy of 90.7%
for the USPTO-MIT task. As can be seen in Table 1, NERF
outperformed Transformer-base and MEGAN by 1.9% and
1.4%, respectively. Promisingly, our approach also out-
performed the two-stage optimization method with logic
inference, i.e., Symbolic, and the Transformer-augmented
strategy, which leverages data augmentation to boost its ac-
curacy from 88.8% obtained by its non-augmented version,
i.e., Transformer-base.

When considering the top-2, top-3 and top-5 accuracy. The
NERF performed on par with the state-of-the-art methods,
with the worse accuracy on the Top-5 case.

We also conducted a statistical significance testing for Ta-
ble 1. We ran our models with 5 random seeds. Since the
variance of baseline models was not available, we conducted
One Sample T-test instead of Paired T-test against the Trans-
former model (SOTA, 90.4%). Our T-test indicates that our
model’s superior top-1 accuracy was statistically significant
(the p-value was smaller than 10−5).

4.3. Computation Speed-up

We evaluate the computational cost of the comparison base-
lines with two evaluation metrics: Latency and Wall-time.
Latency measures time needed to generate the prediction
for a single test sample. The Wall-time pictures a more prac-
tical evaluation for modern batch-based neural models. It
measures the time needed for all the testing samples, taking
into the fact that batch-based testing is further affected by
data parallelism, e.g., GPU acceleration and CPU multi-core
process.

We compare the Wall-time and Latency for inference with
the state-of-the-art machine translation based model Molec-
ular Transformer, graph translation model MEGAN, and

rule based model Symbolic.

All models are evaluated on a single Nvidia V100 GPU
and a Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz with
28 cores. As the Transformer and MEGAN relies on a
beam search to find the most probable prediction, the beam
size b is a hyper-parameter that determines the trade off
between the accuracy and computational efficiency. We
show results of Transformer for b = 5, the default setting
for top-5 inference, as further increasing b leads to only
marginal improvement in accuracy. Likewise, for MEGAN
we set b = 10. All experiments uses the maximal possible
batch size that fits in the GPU memory (32GB). We do not
include the time spent on loading/saving, preprocessing and
postprocessing the data. More specifically, for MEGAN and
Transformer, we only count the time spent on beam search.
For our model, we count the time spent on computing the
forward pass. For Symbolic, we count the time spent on
Gurobi sampling. Results are presented in Table 2.

Table 2 indicates that our method achieved at least 27 times
inference speed-up when compared to the comparison mod-
els. For example, the Transformer took 9 minutes for the
Wall-time and MEGAN and Symbolic took over 31 minutes
and 7 hours respectively, while our strategy finished the re-
action generations in just 20 seconds. Also, for the Latency,
all the three comparison baselines require over 100ms, yet
our strategy needs only 17ms. As shown in the last column
of Table 2, our method achieves at least 27 times speedup
over the Transformer models in terms of Wall-time.

Table 3. Accuracy (%) on individual reaction topology. Best re-
sults are in bold.

Linear Branch Cyclic
Sample dist. 73.7% 16.9% 0.5%
ELECTRO 87.0 N/A N/A
Symbolic 92.5 83.2 68.0
Transformer-base 89.8 80.0 66.5
Transformer-augmented 91.4 82.5 74.9
NERF 92.2 85.1 71.4

4.4. Accuracy on Individual Topology

In addition to the overall accuracy, we also examined our
model’s performance on different types of reaction topology.

Herges (1994b) considers three types of reaction topology,
namely Linear, Cyclic, Complex for the full USTPO dataset
as an organizing principle for the known reactions. Nev-
ertheless, for the USTPO-MIT dataset, this will result in
extremely imbalanced categories with over 99% of samples
falling into the Linear topology. Inspired by the topology
used in (Bradshaw et al., 2018), we select three types of
representative topology, namely Single-Linear (73% of total
samples), Branch (tree-structured, with 17% of total sam-
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Figure 3. Different reaction topology (left) and reaction products
generated by our method (middle), where the green numbers dis-
tinguish different oxide atoms. On the right, the blue lines denote
new bonds formed, and the red lines denote bonds broken.

ples) and Cyclic (cyclic and complex reactions with 0.5%
yet important samples) (illustrated in the left of Figure 3).

We compare our method with the Transformer (both base
and augmented versions), Symbolic, and ELECTRO (Brad-
shaw et al., 2018). Results in Table 3 show that our model
achieved superior or performed on par with the four com-
parison baselines on all the three types of topology. For ex-
ample, our method achieved the best accuracy on the Linear,
Branch, and Cyclic, except obtaining slightly lower accuracy
than that of Symbolic on Linear and that of Transformer-
augmented on Cyclic. On the other hand, the ELECTRO
performed the worst on the Linear topology, while Symbolic
achieved the best on Linear type but lower accuracy on the
Branch and Cyclic. Also, although Transformer-augmented
obtained the highest accuracy on the Cyclic, but it obtained
lower accuracy than our method on the other two categories,
namely Linear and Branch. These results suggest that our
method performs well over all the individual topology types.

4.5. Topology and Prediction Visualization

Figure 3 visualizes some generated reaction products that
follow the three types of topology as described above. The
left column of Figure 3 depicts the three types of topol-
ogy, namely Linear, Cyclic, and Branch. The middle two
columns show the reaction of transforming reactant on the
left to the product on the right, which is correctly predicted
by our method. The right column of the figure presents the
corresponding electron flows captured by our model during
the reactions, where the blue lines denote new bonds formed
and the red lines denote bond broken.

Figure 3 indicates that our model can not only predict reac-
tions from various types of topology, but also clearly show
the electron flows that result in the final reaction products.
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Figure 4. Extra examples of our reaction topology. (a)(b)(c)(d)(e)
are samples with reaction centers (Jin et al., 2017) of linear, branch,
cyclic, parallel and multi topology respectively. The red edges are
bonds broken while blue edges denote bonds formed.

In Figure 4, we also depict additional cases of our model
predictions. In addition to the aforementioned three topol-
ogy, we here also list parallel and multi topology, covering
all of our taxonomy. Parallel topology refers to the reac-
tions where there are parallel edges breaking or forming,
and Multi are those with multiple reaction centers, each
representing a series of bond forming and breaking.

4.6. Interpretability

Bradshaw et al. (2018) show intuitive interpretability of
their model due to the prediction of mechanism. Since our
model embraces predicting the pseudo-mechanism, namely
the electron flows during the reactions, our predictions are
also easy for chemists to interpret.

Figure 5 shows a reaction with non-linear topology predicted
by our model, where the green box is the ground truth, which
is predicted by our model correctly. Note that, our method
also predicted the byproducts (shown in purple box) at the
same time when generating the whole predicted graph Ĝp.

Figure 5 shows that our model correctly predicted the bond
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Figure 5. A reaction correctly predicted by our model. Our model
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during the reaction, thus it is much easier for chemists to interpret.
The product in the green box is the ground truth, which is predicted
correctly, and we also predicted the byproducts (in the purple box)
at the same time when generating the whole predicted graph Ĝp.

formation (in blue) and bond breaking (in red). This is
explained by the predicted number next to the pushing array,
indicating the predicted edge change êij as discussed in
Equation 13. Recall from Section 3.2.2 that by rounding
êij to discrete values êpij , as described in Equation 15, we
obtain the bond changes.

It is worth noting that our model predicts the electron re-
distribution around all atoms in the reactants. Hence, it
infers side products. Note that the byproduct drawn as
dimethylsulfoxide (DMSO) does not appear in the ground
truth record for this reaction, as the dataset only contains
“major” reaction products. Byproducts are all speculative
and predicted without any labeled training examples. To
this end, following literature, we do not evaluate the side
products.

5. Conclusion and Future Work
We formulated chemical reaction as a simultaneous electron
redistribution problem and solved it with a novel multi-
pointer decoding network. This results in the first non-
autoregressive electron flow model for reaction prediction,
which captures the simultaneous bond making and breaking
in molecules in one shot. We empirically verified that our
method achieved superior top-1 accuracy and at least 27
times inference speedup over the state-of-the-art methods.

Possessing superior predictive performance, parallel com-
putation, and intuitive interpretability makes our strategy
NERF an appealing solution to practical learning problems
involving chemical reactions.

In the future, we will investigate the potential of applying
our framework to more complicated settings such as stereo-
chemistry.
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