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Abstract
One principled approach for provably efficient
exploration is incorporating the upper confidence
bound (UCB) into the value function as a bonus.
However, UCB is specified to deal with linear and
tabular settings and is incompatible with Deep
Reinforcement Learning (DRL). In this paper, we
propose a principled exploration method for DRL
through Optimistic Bootstrapping and Backward
Induction (OB2I). OB2I constructs a general-
purpose UCB-bonus through non-parametric boot-
strap in DRL. The UCB-bonus estimates the epis-
temic uncertainty of state-action pairs for op-
timistic exploration. We build theoretical con-
nections between the proposed UCB-bonus and
the LSVI-UCB in a linear setting. We propa-
gate future uncertainty in a time-consistent man-
ner through episodic backward update, which ex-
ploits the theoretical advantage and empirically
improves the sample-efficiency. Our experiments
in the MNIST maze and Atari suite suggest that
OB2I outperforms several state-of-the-art explo-
ration approaches.

1. Introduction
In Reinforcement learning (RL) (Sutton & Barto, 2018), an
agent aims to maximize the long-term return by interacting
with an unknown environment. To find the optimal policy,
the agent is required to sufficiently explore the unknown en-
vironment and exploit in depth along the optimal trajectory.
Devising efficient exploration algorithms thus becomes an
attractive topic in recent years of RL research. The theo-
retical achievements in RL offer various provably efficient
exploration methods in tabular and linear Markov Decision
Processes (MDPs) based on the fundamental value iteration
algorithm Least-Squares Value Iteration (LSVI). Among
these, optimism in the face of uncertainty (Auer & Ortner,
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2007; Jin et al., 2018) is a principled approach for efficient
exploration with well theoretical guarantees. In tabular
cases, the optimism-based methods incorporate the Upper
Confidence Bound (UCB) into the value function as bonus
and attain the optimal worst-case regret (Azar et al., 2017;
Jaksch et al., 2010; Dann & Brunskill, 2015). Randomized
value function based on posterior sampling chooses actions
according to the randomly sampled statistically plausible
value function and is known to achieve near-optimal worst-
case and Bayesian regrets (Osband & Van Roy, 2017; Russo,
2019). Recently, the theoretical analyses in tabular cases
have been extended to linear MDPs where the transition and
reward function are assumed to be linear. In linear cases,
LSVI-UCB (Jin et al., 2020) has been demonstrated to enjoy
a near-optimal worst-case regret using a provably efficient
bonus. Randomized LSVI (Zanette et al., 2020) also obtains
a near-optimal worst-case regret.

Although the analyses in tabular and linear cases have in-
duced attractive approaches for efficient exploration, it is
still challenging in developing a practical exploration algo-
rithm that is essentially suitable for Deep Reinforcement
Learning (DRL) (Mnih et al., 2015), which is necessary to
achieve human-level performance in large-scale tasks such
as Atari games and robotic tasks. A simple evidence is that,
in linear case, the bonus in LSVI-UCB (Jin et al., 2020) and
nontrivial noise in randomized LSVI (Zanette et al., 2020)
are specifically designed for linear models (Abbasi-Yadkori
et al., 2011), without generalizations to fit powerful function
approximations such as neural networks.

In this paper, we propose a principled exploration method
for DRL through Optimistic Bootstrapping and Back-
ward Induction (OB2I). OB2I is an instantiation of LSVI-
UCB (Jin et al., 2020) in DRL by using a general-purpose
UCB-bonus to provide an optimistic Q-value and a ran-
domized value function to perform temporally-extended ex-
ploration. This general-purpose UCB-bonus represents the
disagreement of bootstrapped Q-functions (Osband et al.,
2016) to measure the epistemic uncertainty of the unknown
optimal value function. Importantly, this proposed UCB-
bonus can also be theoretically demonstrated to be equiv-
alent to the bonus-term in LSVI-UCB (Jin et al., 2020),
when moving back in linear MDPs. In our case, the Q-value
plus the general-purpose UCB-bonus is shown to be an op-
timistic Q+ function that is higher than the Q-value for
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scarcely visited state-action pairs and remains close to the
Q-value for frequently visited pairs. Furthermore, we pro-
pose an extension of the Episodic Backward Update (EBU)
technique (Lee et al., 2019), which we refer to as Backward
Induction, to propagate future uncertainties to the estimated
action-value function consistently within an episode. The
Backward Induction exploits the theoretical advantage of
LSVI-UCB and empirically improves the sample-efficiency
of exploration significantly.

Compared to existing count-based and curiosity-driven ex-
ploration methods (Taiga et al., 2020), OB2I enjoys the
following benefits: (i) we utilize intrinsic rewards to pro-
duce optimistic value function and also take advantage of
bootstrapped Q-learning to perform temporally-consistent
exploration, while existing methods do not combine these
two principles; (ii) the generalized UCB-bonus measures the
disagreement of bootstrapped Q-values, considering long-
term uncertainty in an episode rather than the single-step
uncertainty used in most bonus-based methods (Pathak et al.,
2019; Burda et al., 2019b); (iii) we provide theoretical anal-
ysis showing that OB2I is consistent to LSVI-UCB in linear
case; (iv) extensive evaluations show that OB2I outperforms
several strong exploration approaches in the MNIST maze
game and 49 Atari games.

2. Background
In this section, we review bootstrapped DQN (Osband et al.,
2016) and LSVI-UCB (Jin et al., 2020) that are closely
related to the proposed OB2I method.

2.1. Bootstrapped DQN

Considering an MDP represented as (S,A, T,P, r), where
T ∈ Z+ is the episode length, S is the state space, A is
the action space, r is the reward function, and P is the
unknown dynamics. In each timestep, the agent observes
the current state st and takes an action at, and then it re-
ceives a reward rt and the next state st+1. The action-value
function Qπ(st, at) := Eπ

[∑T−1
i=t γ

i−tri] represents the
expected cumulative reward starting from state st by tak-
ing action at and following policy π(at|st) until the end
of the episode. γ ∈ [0, 1) is the discount factor. The opti-
mal value function Q∗ = maxπ Q

π , and the optimal action
a∗ = argmaxa∈AQ

∗(s, a).

Bootstrapped DQN (Osband et al., 2016; 2018) is a non-
parametric posterior sampling method, which maintains K
estimations of Q-values to represent the posterior distribu-
tion of the randomized value function. Bootstrapped DQN
uses a multi-head network with a shared representation and
K heads. Each head defines a Qk-function. Bootstrapped
DQN diversifies different Qk by using different random
initialization and individual target networks. The loss for

Algorithm 1 LSVI-UCB in linear MDP
1: Initialize: Λt ← λ · I and wh ← 0
2: for episode m = 0 to M − 1 do
3: Receive the initial state s0
4: for step t = 0 to T − 1 do
5: Take action at = arg maxaQt(st, a) and observe st+1

6: end for
7: for step t = T − 1 to 0 do
8: Λt ←

∑m
τ=0 φ(xτt , a

τ
t )φ(xτt , a

τ
t )> + λ · I

9: wt ← Λ−1
t

∑m
τ=0 φ(xτt , a

τ
t )[rt(x

τ
t , a

τ
t ) +

maxaQt+1(xτt+1, a)]

10: Qt(·, ·)=min{w>t φ(·, ·)+α[φ(·, ·)>Λ−1
t φ(·, ·)]1/2, T}

11: end for
12: end for

training Qk is

L(θk)=E
[(
rt+γmax

a′
Qk(st+1, a

′; θk−)−Qk(st, at; θ
k)
)2]

.

The k-th head Qk(s, a; θk) is trained with its own target
network Qk(s, a; θk−) with slow-moving parameter θk−.
The agent follows a sampled head Qk to choose actions
in an entire episode, which provides temporally-consistent
exploration for DRL.

2.2. LSVI-UCB

LSVI-UCB (Jin et al., 2020) uses an optimistic Q-value
with LSVI in linear MDP. We denote the feature map of
the state-action pair as φ : S × A → Rd. Furthermore,
the transition kernel and reward function are assumed to
be linear in φ. The LSVI-UCB algorithm is shown in
Algorithm 1. For lines 3-6, the agent executes the pol-
icy to collect data in an episode. For lines 7-11, the pa-
rameter wt of Q-function is updated in closed-form by
following the regularized least-squares problem as wt ←
argminw∈Rd

∑m
τ=0

[
rt(s

τ
t , a

τ
t )+maxa∈AQt+1(sτt+1, a)−

w>φ(sτt , a
τ
t )
]2

+ λ‖w‖2, where m is the total num-
ber of episodes, and τ is the episodic index. The
least-squares problem has the explicit solution wt =
Λ−1
t

∑m
τ=0 φ(xτt , a

τ
t )
[
rt(x

τ
t , a

τ
t ) + maxaQt+1(xτt+1, a)

]
(line 9), where Λt is the Gram matrix. The value func-
tion is estimated by Qt(s, a) ≈ w>t φ(s, a). LSVI-UCB
uses an UCB-bonus (Abbasi-Yadkori et al., 2011) in line 10

rucb = [φ(s, a)>Λ−1
t φ(s, a)]

1/2 (1)

to measure the uncertainty of state-action pairs. The term
u := (φ>Λ−1

t φ)−1 can be intuitively considered as a
pseudo count of the state-action pair in the representation
space of φ. Thus, the bonus rucb = 1/

√
u represents the un-

certainty along the direction of φ. By adding the bonus to the
Q-value, we obtain an optimistic value function Q+, which
serves as an upper bound ofQ to encourage exploration. The
bonus in each step is propagated from the end of the episode
by the backward update of the Q-value (lines 7-11), which
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follows the principle of dynamic programming. Theoreti-
cal analysis shows that LSVI-UCB achieves a near-optimal
worst-case regret of Õ(

√
d3T 3L3) with proper selection of

α and λ, where L is the total number of steps.

LSVI-UCB (Jin et al., 2020) has been demonstrated to be ef-
fective in principled exploration. Nevertheless, developing
a practical exploration algorithm for DRL is challenging,
since (i) the UCB-bonus utilized by LSVI-UCB is specifi-
cally defined for linear MDPs, and (ii) LSVI-UCB utilizes
backward update of Q-functions (lines 7-11 in Alg. 1) to
aggregate uncertainty. Although the backward update is a
standard approach in theoretical analysis of sample-efficient
exploration (Shani et al., 2020; Cai et al., 2020; Wang et al.,
2019), such an approach is scarcely studied in developing
practical exploration algorithm for DRL.

3. Proposed Method
OB2I solves the efficient exploration problem for DRL in
the following directions:

• we propose a general-purpose UCB-bonus for optimistic
exploration. More specifically, we utilize bootstrapped
DQN to construct a general-purpose UCB-bonus, which
is theoretically consistent with LSVI-UCB for linear
MDPs. We refer to § 3.1 for the details;

• we integrate bootstrapped Q-functions and UCB-bonus
into the backward update, which follows the principle
of dynamic programming. More specifically, we extend
Episodic Backward Update (EBU) (Lee et al., 2019) from
standard Q-learning to bootstrapped Q-learning, and we
refer this extension to as Bootstrapped EBU (BEBU). We
refer to § 3.2 for the details.

3.1. General-Purpose UCB-Bonus

Optimistic exploration uses an optimistic action-value func-
tion Q+ to encourage exploration by adding a bonus term
to the standard Q-value. Thus Q+ serves as an upper bound
of the standard Q. The bonus term represents the epis-
temic uncertainty that results from lacking experiences of
the corresponding states and actions. For DRL with deep Q
network, it is impractical to derive a closed-form optimistic
bonus like (1). Instead, we propose a general-purpose UCB-
bonus B(st, at) by measuring the disagreement of multiple
bootstrapped Q-values {Qk(st, at)}Kk=1 of the state-action
pair (st, at) in a bootstrapped DQN. That is,

B(st, at) :=

√√√√ 1

K

K∑
k=1

(
Qk(st, at)− Q̄(st, at)

)2

, (2)

where Q̄(st, at) is the mean of the bootstrapped Q-values.
A similar uncertainty measurement was used in Chen et al.
(2017). We discuss the difference between Chen et al. (2017)

and our algorithm in §4. We surprisingly find that this
simple form in (2) is also provably efficient for linear MDPs.
Indeed, the following theorem establishes the connection
between the general-purpose UCB-bonus defined in (2) and
the bonus in LSVI-UCB defined in (1).

Theorem 1. In linear MDPs, the UCB-bonus B(st, at) in
OB2I is equivalent to the bonus-term [φ>t Λ−1

t φt]
1/2 in LSVI-

UCB, where Λt ←
∑m
τ=0 φ(xτt , a

τ
t )φ(xτt , a

τ
t )>+λ · I, and

m is the current episode.

In Theorem 1, we cast the variance that defines the UCB-
bonus of OB2I as the posterior variance of value functions
under the Bayesian learning regime. We remark that the
bootstrapped distribution of value functions coincides with
the posterior under a Bayesian setting where the prior is un-
informative (Friedman et al., 2001). We refer to Appendix A
for the details and complete statement. Theorem 1 shows
that the general-purpose UCB-bonus in (2) is provably effi-
cient and equivalent to bonus-term in LSVI-UCB for linear
cases. Importantly, (2) is a general form for arbitrary Q
functions such as deep neural networks.

Overall, for general DRL problem, using the UCB-bonus
B(st, at) in (2) is desirable for the following reasons.

• Bootstrapped DQN is a non-parametric posterior sam-
pling method, that is naturally compatible with deep neu-
ral networks (Osband et al., 2019).

• B(st, at) quantifies the epistemic uncertainty of (st, at).
Due to the non-convexity nature of optimizing neural
network and independency of random initialization, if
(st, at) is scarcely visited, B(st, at) obtained via boot-
strapped Q-values will tend to be large. Moreover,
B(st, at) converges to zero asymptotically as the sam-
ples increases to infinity.

• B(st, at) is computed for batch data sampled from ex-
perience replay. This is more efficient than other opti-
mistic methods that change the action-selection scheme in
each timestep (Chen et al., 2017; Nikolov et al., 2019) to
choose optimistic actions based on uncertainty estimation
or information-directed sampling.

The optimisticQ+ is obtained by summing up B(st, at) and
the estimated Q-function, which takes the form as

Q+(st, at) := Q(st, at) + αB(st, at), (3)

where α is a tuning parameter. We use a simple regression
task with neural networks to illustrate the proposed UCB-
bonus, as shown in Figure 1. We use 20 neural networks
with the same network architecture to solve the same re-
gression problem. According to Osband et al. (2016), the
differences among the outcomes of fitting the 20 neural net-
works is a result of random initializations. For a given input
x, the networks yield different estimations {gi(x)}20

i=1. It
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Figure 1. Illustration of the general-purpose UCB-bonus in a simple regression task. Green markers indicate there are 60 data points. (a)
Regression curves of 20 neural networks. (b) Mean estimation (black curve) and uncertainty measurement (shadow region). (c) The
optimistic value (red) and mean value (black).

follows from Figure 1(a) that the estimations {gi(x)}20
i=1 be-

have similar in the region with large amount of observations,
resulting in small disagreement of the estimations. However,
for regions with less observations, the disagreement of the
estimations inflates a lot. In Figure 1(b), we illustrate the
confidence bound of the regression results ḡ(x)± σ̃(gi(x))
and ḡ(x) ± 2σ̃(gi(x)), where ḡ(x) and σ̃(gi(x)) are the
mean and standard deviation of the estimations. The stan-
dard deviation σ̃(gi(x)) captures the epistemic uncertainty
of regression results. Figure 1(c) shows the optimistic esti-
mation g+(x) = ḡ(x) + σ̃(gi(x)) plus the standard devia-
tion. Clearly, the optimistic estimation g+ is close to ḡ in
the region with dense observations, and it is larger than ḡ in
the region with fewer observations.

In DRL, the bootstrapped Q-functions {Qk(st, at)}Kk=1, es-
timated by fitting the target Q-function, perform similarly
as {gi(x)}20

i=1 in the above regression task. A higher UCB-
bonus B(st, at) := σ̃(Qk(st, at)) indicates a higher epis-
temic uncertainty of the action-value function with (st, at).
Therefore, Q+ produces optimistic estimation for novel
state-action pairs and behaves similar to the Q-function in
areas that are well explored by the agent. Hence, the opti-
mistic estimation Q+ encourages the agent to explore the
potentially informative state-action pairs efficiently.

3.2. Backward Induction of Uncertainty

OB2I adopts BEBU for backward induction when updat-
ing the action-value function. BEBU collects a complete
trajectory from the replay buffer for each update. Such an
approach allows OB2I to infer the long-term effect in an
episode for decision making. In contrast, DQN and Boot-
strapped DQN sample one-step transitions, which loses the
information containing long-term effects.

It has to be mentioned that BEBU is required to propagate
future uncertainty to the estimated action-value function
consistently via UCB-bonus. For instance, let t2 > t1 be in-
dices of two steps in an episode. If Qt2 updates after that of
Qt1 , then the uncertainty propagated to Qt1 is inconsistent
with that propagated to Qt2 .

To integrate the general-purpose UCB-bonus into boot-
strappedQ-learning, we propose a novelQ-target by adding
the bonus in both the immediate reward and the next-Q
value. The proposedQ-target needs to be suitable for BEBU
in training. Formally, the Q-target for updating Qk is de-
fined as

ykt :=
[
r(st, at) + α1B(st, at; θ)

]
+ γ[

Qk(st+1, a
′; θk−) + α21a′ 6=at+1

B̃k(st+1, a
′; θ−)

]
,

(4)

where a′ = argmaxaQ
k(st+1, a; θk−). The choice of a′ is

determined by the target Q-value without considering the
bonus. The immediate reward is added by B(st, at; θ) with
a factor α1, where the bonus B is computed by bootstrapped
Q-network with parameter θ. The next-Q value is added by
1a′ 6=at+1

B̃k(st+1, a
′; θ−) with factor α2, where the bonus

B̃k is computed by the target network with parameter θ−.
We assign different bonus B̃k of next-Q value to different
heads, since the choices of a′ are different among the heads.
Meanwhile, we assign the same bonus B of immediate re-
ward for all the heads. We introduce an indicator function
1a′ 6=at+1

to control backward update of Q-values. More
specifically, in the t-th step, the action-value function Qk is
updated optimistically at the state-action pair (st+1, at+1)
due to the backward update. Thus, we ignore the bonus of
next-Q value in the update of Qk when a′ is equal to at+1.

We use an example to illustrate the process of backward
update. We store and sample the episodic experiences in
a replay buffer. Considering an episode containing three
time steps, (s0, a0)→ (s1, a1)→ (s2, a2). We thus update
the Q-value in the head k in the backward manner, namely
Q(s2, a2) → Q(s1, a1) → Q(s0, a0) from the end of the
episode. We describe the process as follows,

• first, we update Q(s2, a2) ← r(s2, a2) + α1B(s2, a2).
Note that in the last time step, we do not need to consider
the next-Q value;

• then, we have Q(s1, a1) ← [r(s1, a1) + α1B(s1, a1)] +
[Q(s2, a

′) +α21a′ 6=a2 B̃(s2, a
′)] by following (4), where

a′ = argmaxaQ(s2, a). Since Q(s2, a2) is updated op-
timistically in the first step, we ignore the bonus-term
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B̃ in next-Q value when a′ = a2. The UCB-bonus is
augmented by adding B and B̃ to the immediate reward
and next-Q value, respectively;

• as for Q(s0, a0), its update follows the same principle.
The optimistic Q-value is Q(s0, a0) ← [r(s0, a0) +
α1B(s0, a0)] + [Q(s1, a

′) + α21a′ 6=a1 B̃(s1, a
′)], where

a′ = argmaxaQ(s1, a).

In practice, the episodic update typically leads to instability
in DRL due to strong correlation in consecutive transitions.
Hence, we propose a diffusion factor β ∈ [0, 1] in BEBU
to prevent such instability as that used in Lee et al. (2019).
The Q-value is therefore computed as the weighted sum
of the current value and the back-propagated estimation
scaled with factor β. We consider an episodic experience
that contains T transitions, denoted by E = {S,A,R,S′},
where S = {s0, . . . , sT−1}, A = {a0, . . . , aT−1}, R =
{r0, . . . , rT−1} and S′ = {s1, . . . , sT }. We initialize a
Q-table Q̃ ∈ RK×|A|×T by Q(·; θ−) to store the next-
Q values of all the next states S′ and valid actions for
K heads. We initialize y ∈ RK×T to store the Q-
target for K heads and T steps. We use bootstrapped
Q-network with parameters θ to compute the bonus B =
[B(s0, a0), . . . ,B(sT−1, aT−1)] for immediate reward, and
use the target network with parameters θ− to compute bonus
B̃k = [B̃k(s1, a

′
1), . . . , B̃k(sT , a

′
T )] for next-Q value in

each head, where a′t = argmaxaQ
k(st, a; θk−). The

bonus vector B ∈ RT is the same for all Q-heads, while
B̃ ∈ RK×T contains different values for different heads
because the choices of a′t are different.

In the training of head k, we initialize the Q-target in the
last step by y[k, T − 1] = RT−1 + α1BT−1. We then
perform a recursive backward update to get all Q-target
values. The elements of Q̃[k, at+1, t] for step t in head k
is updated by using its corresponding Q-target y[k, t+ 1]
with the diffusion factor as follows,

Q̃[k, at+1, t]← βy[k, t+ 1] + (1− β)Q̃[k, at+1, t]. (5)

Then, we update y[k, t] in the previous time step based on
the newly updated t-th column of Q̃[k] as follows,

y[k, t]←
(
Rt+α1Bt

)
+γ
(
Q̃[k, a′, t]+α21a′ 6=at+1B̃[k, t]

)
,

(6)
where a′ = argmaxa Q̃[k, a, t]. In practice, we construct
a matrix Ã = argmaxa Q̃[·, a, ·] ∈ RK×T to gather all
the actions a′ that correspond to the next-Q, and then con-
struct a mask matrix M ∈ RK×T to store the information
whether Ã is identical to the executed action in the cor-
responding timestep or not. The bonus of next-Q is the
element-wise product of M and B̃ with factor α2. After
the backward update, we compute the Q-value of (S,A) as
Q = Q(S,A; θ) ∈ RK×T . The loss function takes the form
of L(θ) = E

[
(y − Q)2|(st, at, rt, st+1) ∈ E, E ∼ D

]
,

where the episodic experience E is sampled from replay

buffer to perform gradient descent. The gradients of all
heads can be computed simultaneously via BEBU. We refer
the full algorithm of OB2I to Appendix B.

To summarize, we use BEBU to propagate the future un-
certainty in an episode, which is an extension of EBU (Lee
et al., 2019). Compared to EBU, BEBU requires extra
tensors to store the UCB-bonus for immediate reward and
next-Q value, which are integrated to propagate uncertain-
ties. Meanwhile, integrating uncertainty into BEBU needs
special design by using the mask. The previous works (Chen
et al., 2017; Lee et al., 2020) do not propagate the future
uncertainty and, therefore, does not capture the core ben-
efit of utilizing UCB-bonus for the exploration of MDPs.
We highlight that OB2I propagates future uncertainty in a
time-consistent manner based on BEBU, which exploits the
theoretical analysis established by Jin et al. (2020). Only in
this way, Q+ incorporates the epistemic uncertainty across
multiple steps, so that the greedy action with respect to
Q+ (at the decision stage) performs deep exploration. In
contrast, separating the bonus function from the bootstrap-
ping process (i.e., only using it at the decision stage) fails
to propagate uncertainty. The backward update also em-
pirically improves the sample-efficiency significantly by
allowing bonuses and delayed rewards to propagate through
transitions of a complete episode.

3.3. Comparison with LSVI-UCB

We remark that both LSVI-UCB and OB2I constructs the
confidence interval of value functions based on the frequen-
tist approaches. Specifically, LSVI-UCB constructs the
confidence intervals explicitly based on the linear model,
whereas OB2I constructs the confidence interval based on
the non-parametric bootstrapped approach. In OB2I, we
adopt Bootstrapped Q-values to calculate the standard devi-
ation of Q-functions with neural network parameterization,
which coincides with the bonus in LSVI-UCB on linear
MDPs. When the sample size increases, the distribution
of bootstrapped Q-values converges asymptotically to the
posterior under a Bayesian setting where the prior is unin-
formative (Friedman et al., 2001). Hence, in Theorem 1, we
use the Bayesian setting as a simplification to motivate our
algorithm while this is not necessary. A recent approach
also uses a similar way to motivate the worst-case regret of
randomized value functions (Russo, 2019).

From an empirical perspective, LSVI-UCB requires strict
linear assumption in the transition dynamics and value func-
tion. To the opposite, OB2I uses a non-parametric form
and the general UCB-bonus works for arbitrary Q-function
types such as deep neural networks. In OB2I, the neural
networks can be updated by gradient descent using batch
episodic trajectories sampled from the replay buffer in each
training step. However, in LSVI-UCB, all historical samples
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have to be used to update the Q-function and calculate the
confidence bonus in each training step, since the posterior
matrix Λ relies on the update-to-date representation φ which
is varies as the training proceeds. As a consequence, OB2I
is much more sample-efficient empirically. Moreover, in
LSVI-UCB, the target Q-function is updated in each itera-
tion, whereas in OB2I, the target-network is updated less
frequent. Similar empirical tricks are commonly used in
most existing off-policy DRL algorithms (Osband et al.,
2016; Lillicrap et al., 2015; Fujimoto et al., 2018).

4. Related Work
We discuss a number of closely related approaches in this
section and choose the most important ones to compare in
our experiment. One practical principle for exploration in
DRL is maintaining the epistemic uncertainty. Epistemic un-
certainty comes from the unawareness of the environments,
and it decreases as the exploration proceeds. Bootstrapped
DQN (Osband et al., 2016; 2018) samples Q-values from
the randomized value functions to encourage exploration
through Thompson sampling. Chen et al. (2017) proposes
to use the standard-deviation of bootstrapped Q-functions to
measure the uncertainty. Although the uncertainty measure-
ment is similar to that of OB2I, our method is different from
Chen et al. (2017) in the following aspects: (i) our approach
propagates the uncertainty through backward update; (ii)
Chen et al. (2017) does not use the bonus in the update of
Q-functions and their bonus is computed when taking the
actions; (iii) we establish theoretical connections between
the proposed UCB-bonus and LSVI-UCB. SUNRISE (Lee
et al., 2020) extends Chen et al. (2017) to continuous control
through confidence reward and weighted Bellman backup.
Information-Directed Sampling (IDS) (Nikolov et al., 2019)
is based on bootstrapped DQN, and chooses actions by
balancing the instantaneous regret and information gain.
OAC (Ciosek et al., 2019) uses two Q-networks to get lower
and upper bounds of the Q-value to perform exploration in
continuous control tasks. These methods seek to estimate
the epistemic uncertainty and choose the optimistic actions.
In contrast, we use the uncertainty of value function to con-
struct intrinsic rewards and perform backward update, which
propagates future uncertainty to the estimated Q-value.

Uncertainty Bellman Equation (UBE) (O’Donoghue et al.,
2018) proposes an upper bound on the variance of the pos-
terior of Q-values, which is further utilized for optimism in
exploration. Bayesian-DQN (Azizzadenesheli et al., 2018)
replaces the last layer in deep Q-network with Bayesian
Linear Regression (BLR) that estimates a posterior of the
Q-function. These methods use parametric distributions to
describe the posterior while OB2I uses the bootstrapped
method to construct the confidence bonus. UBE and BLR
also require inverting a large matrix in training and hence

is computational expensive. Previous methods also utilize
the epistemic uncertainty of dynamics through Bayesian
posterior (Ratzlaff et al., 2020) and ensembles (Pathak et al.,
2019). Nevertheless, they consider single-step uncertainty,
while we consider the long-term uncertainty in an episode.

To measure the novelty of states for constructing count-
based intrinsic rewards, previous methods have attempted
to use density model (Bellemare et al., 2016; Ostrovski
et al., 2017), static hashing (Tang et al., 2017; Choi et al.,
2019; Rashid et al., 2020), episodic curiosity (Savinov et al.,
2019; Badia et al., 2020), curiosity-bottleneck (Kim et al.,
2019b), information gain (Houthooft et al., 2016) and pre-
diction error from random networks (Burda et al., 2019b)
for novelty evaluation. The curiosity-driven exploration
based on prediction-error of environment models such as
ICM (Pathak et al., 2017; Burda et al., 2019a), EMI (Kim
et al., 2019a), and variational dynamics (Bai et al., 2020)
enable the agents to explore in a self-supervised manner. Ac-
cording to Taiga et al. (2020), although bonus-based meth-
ods show promising results in hard exploration tasks like
Montezuma’s Revenge, they do not perform well on other
Atari games. Meanwhile, NoisyNet (Fortunato et al., 2018)
performs significantly better than bonus-based methods eval-
uated by the entire Atari suite. Overall, Taiga et al. (2020)
suggests that the pace of the exploration progress might have
been obfuscated by some promising results only on a few
selected hard exploration games. We follow this principle
and evaluate OB2I on the Atari suite with 49 games.

Beyond model-free methods, model-based RL also uses
optimism for planning and exploration (Nix & Weigend,
1994). Model-assisted RL (Kalweit & Boedecker, 2017)
uses ensembles to make use of artificial data with high un-
certainty. Buckman et al. (2018) uses ensemble dynamics
and Q-functions to use model rollouts when they do not
cause large errors. Planning to explore (Sekar et al., 2020)
seeks out future uncertainty by integrating uncertainty to
Dreamer (Hafner et al., 2020). Ready Policy One (Ball
et al., 2020) optimizes policies for both reward and model
uncertainty reduction. Noise-Augmented RL (Pacchiano
et al., 2020) uses statistical bootstrap to generalize the op-
timistic posterior sampling (Agrawal & Jia, 2017) to DRL.
Hallucinated UCRL (Curi et al., 2020) reduces optimistic
exploration to exploitation by enlarging the control space.
The model-based RL needs to estimate the posterior of dy-
namics, while OB2I relies on the posterior of Q-functions.

5. Experimental Results
5.1. Environmental Baselines

We evaluate the algorithms in high-dimensional image-
based tasks, including MNIST Maze (Lee et al., 2019) and
49 Atari games. We refer Appendix C for the experiments
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on MNIST Maze, and discuss the experiments on Atari
games in this section. Directly comparing OB2I with base-
lines using Bootstrapped DQN is not fair, since OB2I uses
backward update for training. To achieve fair comparison,
we reimplement all Bootstrapped DQN-based baselines with
BEBU. We compare the following methods in experiments:

• OB2I: the proposed principled exploration method.

• BEBU: a reimplementation of Bootstrapped DQN (Os-
band et al., 2016) with BEBU.

• BEBU-UCB: BEBU with optimistic actions selected by
the upper bound of Q (Chen et al., 2017; Lee et al., 2020).

• BEBU-IDS: integrating homoscedastic IDS (Nikolov
et al., 2019) into BEBU without distributional RL.

We refer to Appendix B for the algorithmic comparison be-
tween all methods. According to EBU (Lee et al., 2019), the
backward update is significantly more sample-efficient than
standard Q-learning by using only 20M training frames to
achieve the mean human-normalized score of standard DQN,
which requires 200M training frames. We follow this set-
ting by training all BEBU-based methods with 20M frames.
In our experiments, 20M frames in OB2I is sufficient to
produce strong empirical results and achieve competitive
results with several baselines using 200M frames.

We additionally compare the performance of DQN (Mnih
et al., 2015), NoisyNet (Fortunato et al., 2018), Boot-
strapped DQN (BootDQN) (Osband et al., 2016), BootDQN-
IDS (Nikolov et al., 2019), UBE (O’Donoghue et al., 2018)
in 200M training frames, and Bayesian DQN (Azizzade-
nesheli et al., 2018) in 20M training frames. We choose
NoisyNet as a baseline since it has been evaluated on
the entire Atari suite (instead of several hard exploration
games) such that it performs substantially better than ex-
isting bonus-based methods (Taiga et al., 2020), includ-
ing CTS-counts (Bellemare et al., 2016), PixelCNN-counts
(Ostrovski et al., 2017), RND (Burda et al., 2019b), and
ICM (Pathak et al., 2017). UBE and Bayesian-DQN are
selected as baselines because they use parametric functions
to approximate the posterior ofQ-values, while OB2I uses a
non-parametric bootstrap. BootDQN-IDS has been demon-
strated to be a strong baseline (Nikolov et al., 2019) based
information-directed sampling and BootDQN.

5.2. Evaluation Metric and Hyperparameters

An ensemble policy by a majority vote of Q-heads is used
for 30 no-op evaluation. The no-op evaluation indicates
a setting that 30 no-op actions are first executed in each
evaluation episode to provide diversity for the agent (Mnih
et al., 2015). The majority-vote combines all the heads into
a single ensemble policy, which follows the same evalua-
tion method as in Osband et al. (2016). We use the popular
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Figure 2. Visualizing UCB-bonus in VideoPinball. See video at
https://rb.gy/xmzw4g.

human-normalized score ScoreAgent−ScoreRandom

|Scorehuman−Scorerandom| as a base-
line score. In Atari games, Osband et al. (2016) observes
that the bootstrapping does not contribute much in perfor-
mance. Empirically, Bootstrapped DQN uses the same sam-
ples to train allQ-heads in each training step. This empirical
simplification is also adopted by Chen et al. (2017); Osband
et al. (2018); Nikolov et al. (2019). We use such a simplifi-
cation for OB2I and all bootstrapped-based methods.

For OB2I, we set both α1 and α2 as 0.5× 10−4 by tuning
over five popular tasks, including Breakout, Freeway, Qbert,
Seaquest, and SpaceInvaders. Generally, small α1 and α2

yield better performance empirically since the bonus accu-
mulates along the episode that usually contains thousands of
steps in Atari. We use diffusion factor β = 0.5 for all meth-
ods by following Lee et al. (2019). We refer to Appendix D
for the detailed specifications. The code is available at
https://github.com/Baichenjia/OB2I.

5.3. Main Results and Visualization

Table 1 reports the overall performance of all the meth-
ods on 49 Atari games. According to Table 1, BootDQN-
IDS performs better than UBE, BootDQN, and NoisyNet.
Thus, BootDQN-IDS outperforms popular bonus-based ex-
ploration methods that perform worse than NoisyNet (Taiga
et al., 2020). We then reimplement BootDQN-IDS with
BEBU, and we refer this version to as BEBU-IDS. We ob-
serve that OB2I outperforms BEBU-IDS in both mean and
medium scores, as well as outperforming all other bonus-
based methods in the backward update setting. We report the
detailed raw scores in Appendix F. Moreover, Appendix G
shows that OB2I outperforms BEBU, BEBU-UCB, and
BEBU-IDS in 36, 34, and 35 games out of all 49 games,
respectively.

To understand the general-purpose UCB-bonus, we use a
trained OB2I agent to interact with the environment for an

https://rb.gy/xmzw4g
https://github.com/Baichenjia/OB2I
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Table 1. Summary of human-normalized scores in 49 Atari games. BEBU, BEBU-UCB, BEBU-IDS and OB2I are trained for 20M frames
with RTX-2080Ti GPU for 5 random seeds.

Frames 200M 20M
DQN UBE BootDQN NoisyNet BootDQN-IDS Bayesian-DQN BEBU BEBU-UCB BEBU-IDS OB2I

Mean 241% 440% 553% 651% 757% 224% 553% 610% 622% 765%
Median 93% 126% 139% 172% 187% 27% 36% 38% 44% 50%

0 5M 10M 15M 20M
Training Frames

1
2
3
4
5 mean UCB-bonus

Figure 3. The change of mean UCB-bonus in the learning process.

episode in VideoPinball and record the UCB-bonuses at
each step. OB2I improves the performance of VideoPinball
significantly and achieves the best score among all baselines.
In this task, the pinball moves fast in the playfield to hit
bumpers, spinners and rollovers to score points. Our UCB-
bonus estimates the uncertainty of interacting with different
objects to encourage the pinball to hit less frequently visited
objects. The curve in Figure 2 shows the UCB-bonuses
of the subsampled steps in the episode. We choose eight
spikes and visualize the corresponding frames. The events
in spikes correspond to rarely hit objects or crucial events,
which are important for the agent to obtain rewards: hitting
the rollover (1,4,6), using flippers to send the pinball back
into the playfield when it drops to the bottom (2), hitting
the specific lit target (3), hitting the bumpers and spinners
(7,8), and losing the ball (5). Most obviously, the UCB-
bonus increases significantly at spike 3 because the ball hit
a specific lit target that causes the screen to flash and the
agent scores 1000 points, while hitting other objects gets
less than 100 points. In the last stage (including spike 8),
the UCB-bonuses are low since the score has reached the
upper limit and the flippers are locked. We provide more
visualization examples in Appendix E.

We further record the the mean of the UCB-bonus of the
training batch in the learning process. The result is shown
in Figure 3. The UCB-bonus is low at the beginning since
the networks are randomly initialized. When the agent starts
to explore the environment, the mean UCB-bonus increases
rapidly to award exploration. As more experiences of state-
action pairs are gathered, the mean UCB-bonus reduces
gradually, indicating that the bootstrapped value functions
concentrate around the optimal value and the epistemic un-
certainty decreases. Nevertheless, according to Figure 2,
the UCB-bonuses are relatively high at scarcely visited ar-
eas or crucial events, and therefore the bonuses promote

Table 2. Ablation Study
Backward Bonus Qbert SpaceInvaders Freeway

OB2I X UCB 4275.0 904.9 32.1
BootDQN-UCB - UCB 3284.7 731.8 20.5
BEBU X - 3588.4 814.4 21.5
BootDQN - - 2206.8 649.5 18.3
BEBU-RND X RND 3702.5 832.7 22.6

exploration for the corresponding events.

5.4. Ablation Study

We conduct an ablation study to better understand the im-
portance of backward update and bonus term in OB2I. The
results of the ablation studies are provided in Table 2. We
observe that (i) when we use the ordinary update strategy
by sampling transitions instead of episodes, OB2I reduces
to BootDQN-UCB with significant performance loss. This
is consistent with previous conclusions in (Lee et al., 2019)
that backward update is crucial for sample-efficient training;
(ii) when the UCB-bonus is set to 0, OB2I reduces to BEBU;
(iii) when both the backward update and UCB-bonus are
removed, OB2I reduces to standard BootDQN, which per-
forms poorly in 20M training frames; (iv) to illustrate the
effect of the proposed UCB-bonus, we substitute it with the
popular RND-bonus (Burda et al., 2019b). Specifically, we
use an independent RND network to generate RND-bonus
for each state in training. The RND-bonus is added to both
the immediate reward and next-Q. The result shows that
our proposed UCB-bonus outperforms RND-bonus without
introducing additional complexities compared to BootDQN.

6. Conclusion
In this work, we have proposed a principled exploration
method, i.e., OB2I, that shares nice theoretical properties
as LSVI-UCB. By integrating with backward induction, the
sample efficiency is further enhanced. We evaluate OB2I
empirically by solving MNIST maze and 49 Atari games.
Results show that OB2I outperforms several strong base-
lines. The visualizations suggest that high UCB-bonus cor-
responds to informative experiences for exploration. As far
as we see, our work seems to establish the first empirical
attempt of uncertainty propagation in deep RL, which ex-
ploits the core benefit of theoretical analysis. Moreover, we
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observe that the connection between theoretical analysis and
practical algorithm provides strong empirical performance,
which hopefully raises insights on combining theory and
practice to the community. Future directions include adapt-
ing OB2I to continuous control and integrating OB2I with
other expressive bonus schemes.
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