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Abstract
We study fast algorithms for computing funda-
mental properties of a positive semidefinite ker-
nel matrix K ∈ Rn×n corresponding to n points
x1, . . . , xn ∈ Rd. In particular, we consider es-
timating the sum of kernel matrix entries, along
with its top eigenvalue and eigenvector. We show
that the sum of matrix entries can be estimated
to 1 + ε relative error in time sublinear in n and
linear in d for many popular kernels, including the
Gaussian, exponential, and rational quadratic. For
these kernels, we also show that the top eigenvalue
(and an approximate eigenvector) can be approxi-
mated to 1 + ε relative error in time subquadratic
in n and linear in d. Our results represent sig-
nificant advances in the best known runtimes for
these problems. They leverage the positive defi-
niteness of the kernel matrix, along with a recent
line of work on efficient kernel density estimation.

1. Introduction
Kernels are a ubiquitous notion in statistics, machine learn-
ing, and other fields. A kernel is a function k : Rd×Rd → R
that measures the similarity1 between two d-dimensional
vectors. Many statistical and machine learning methods,
such as support vector machines, kernel ridge regression
and kernel density estimation, rely on appropriate choices
of kernels. A prominent example of a kernel function is the
Radial Basis Function, a.k.a. Gaussian kernel, defined as

k(x, y) = exp(−‖x− y‖2).

Other popular choices include the Laplace kernel, exponen-
tial kernel, etc. See Shawe-Taylor et al. (2004); Hofmann
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1This should be contrasted with distance functions that measure
the dissimilarity between two vectors.

et al. (2008) for an overview.

Kernel methods typically operate using a kernel matrix.
Given n vectors x1, . . . , xn ∈ Rd, the kernel matrix K ∈
Rn×n is defined as Ki,j = k(xi, xj). For most popular
kernels, e.g., the Gaussian kernel, k is a positive definite
function, and so K is positive semidefinite (PSD). Further-
more, it is often the case that K’s entries are in the range
[0,1], with 1’s on the diagonal – we assume this throughout.

Although popular, the main drawback of kernel methods is
their efficiency. Most kernel-based algorithms have running
times that are at least quadratic in n; in fact, many start by ex-
plicitly materializing the kernel matrix K in the preprocess-
ing stage. This quadratic runtime is likely necessary as long
as exact (or high-precision) answers are desired. Consider
perhaps the simplest kernel problem, where the goal is to
compute the sum of matrix entries, i.e., s(K) =

∑
i,j Ki,j .

It was shown in Backurs et al. (2017) that, for the Gaussian
kernel, computing s(K) up to 1 + ε relative error requires
n2−o(1) time under the Strong Exponential Time Hypothesis
(SETH), as long as the dimension d is at least polylogarith-
mic in n, and ε = exp(−ω(log2 n)). The same limitations
were shown to apply to kernel support vector machines,
kernel ridge regression, and other kernel problems.

Fortunately, the aforementioned lower bound does not pre-
clude faster algorithms for larger values of ε (say, ε = Θ(1)).
Over the last decade many such algorithms have been pro-
posed. In our context, the most relevant ones are those
solving kernel density evaluation (Charikar & Siminelakis,
2017; Backurs et al., 2018; 2019; Siminelakis et al., 2019;
Charikar et al., 2020). Here, we are given two sets of vec-
tors X = {x1, . . . , xm}, and Y = {y1, . . . , ym}, and the
goal is to compute the values of k(yi) = 1

m

∑
j k(xj , yi)

for i = 1, . . . ,m. For the Gaussian kernel, the best known
algorithm, due to Charikar et al. (2020), estimates these val-
ues to 1 + ε relative error in time O(dm/(µ0.173+o(1)ε2)),
where µ is a lower bound on k(xi).

Applying this algorithm directly to approximating the
Gaussian kernel sum yields a runtime of roughly
O(dn1.173+o(1)/ε2), since we can set µ = 1/n and still
achieve (1 + ε) approximation as k(xi, xi) = 1 for all xi.
It is a natural question whether this bound can be improved
and if progress on fast kernel density estimation can be
extended to other fundamental kernel matrix problems.
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Our results In this paper we give much faster algo-
rithms for approximating two fundamental quantities: the
kernel matrix sum and the kernel matrix top eigenvec-
tor/eigenvalue. Consider a kernel matrix K induced by
n points x1, . . . , xn ∈ Rd and a kernel function with val-
ues in [0, 1] such that the matrix K is PSD and has 1’s on
the diagonal. Furthermore, suppose that the kernel k is sup-
ported by a kernel density evaluation algorithm with running
time of the form O(dm/(µpε2)) for m points, relative error
(1 + ε), and density lower bound µ. Then we give:

1. An algorithm for (1 + ε)-approximating s(K) in time:

O
(
dn

2+5p
4+2p /ε

8+6p
2+p · log2 n

)
.

For many popular kernels the above runtime is sub-
linear in n – see Table 1. Our algorithm is based on
subsampling O(

√
n) points from x1, . . . , xn and then

applying fast kernel density evaluation to these points.
We complement the algorithm with a (very simple)
lower bound showing that sampling Ω(

√
n) points is

necessary to estimate s(K) up to a constant factor.
This shows that our sampling complexity is optimal.

2. An algorithm that returns an approximate top eigenvec-
tor z ∈ Rn with ‖z‖2 = 1 and zTKz ≥ (1−ε)·λ1(K),
where λ1(K) is K’s top eigenvalue, running in time:

O

(
dn1+p log(n/ε)2+p

ε7+4p

)
.

For many popular kernels, this runtime is subquadratic
in n – see Table 1. This is the first subquadratic time al-
gorithm for top eigenvalue approximation and a major
improvement over forming the full kernel matrix. By
a simple argument, Ω(dn) time is necessary even for
constant factor approximation, and thus our algorithm
is within an Õ(np) factor of optimal. Our algorithm is
also simple and practical, significantly outperforming
baseline methods empirically – see Sec. 5.

Application An immediate application of our kernel sum
algorithm is a faster algorithm for estimating the kernel
alignment (Cristianini et al., 2002), a popular measure of
similarity between kernel matrices. Given K and K ′, the
alignment between K and K ′ is defined as

Â(K,K ′) =
〈K,K ′〉√

〈K,K〉〈K ′,K ′〉
,

where 〈K,K ′〉 =
∑
i,j Ki,jK

′
i,j is the inner product

between the matrices K and K ′ interpreted as vectors.
Our algorithm yields an efficient algorithm for estimating
Â(K,K ′) as long as the product kernels K ◦K, K ′ ◦K ′
and K ◦K ′ are supported by fast kernel density evaluation
algorithms as described earlier. This is the case for e.g., the
Gaussian or Laplace kernels.

Related work The problem of evaluating kernel densi-
ties, especially for the Gaussian kernel, has been studied
extensively. In addition to the recent randomized algorithms
discussed in the introduction, there has been a considerable
amount of work on algorithms in low dimensional spaces,
including (Greengard & Strain, 1991; Yang et al., 2003; Lee
et al., 2006; Lee & Gray, 2009; March et al., 2015). We
present a streamlined version of the Fast Gauss Transform
algorithm of Greengard & Strain (1991) in the appendix.
In addition, there has been a considerable effort designing
core-sets for this problem (Phillips & Tai, 2018a;b).

The sum of kernel values can be viewed as a similarity
analog of the sum of pairwise distances in metric spaces.
The latter quantity can be approximated in time linear in
the number n of points in the metric space (Indyk, 1999;
Chechik et al., 2015; Cohen et al., 2018). Note that it is not
possible to achieve an o(n)-time algorithm for this problem,
as a single point can greatly affect the overall value. To the
best of our knowledge, our algorithms for the kernel matrix
sum are the first that achieve sublinear in n running time and
give O(1)-approximation for a nontrivial kernel problem.

Computing the top eigenvectors of a kernel matrix is a
central problem – it is the primary operation behind ker-
nel principal component analysis (Schölkopf et al., 1997).
Projection onto these eigenvectors also yields an optimal
low-rank approximation to the kernel matrix, which can be
used Low-rank approximation is widely used to approxi-
mate kernel matrices, to speed up kernel learning methods
(Williams & Seeger, 2001; Fine & Scheinberg, 2001). Sig-
nificant work has focused on fast low-rank approximation
algorithms for kernel matrices or related distance matrices
(Musco & Musco, 2017; Musco & Woodruff, 2017; Bakshi
& Woodruff, 2018; Indyk et al., 2019; Bakshi et al., 2020).
These algorithms have runtime scaling roughly linearly in
n. However, they do not give any nontrivial approxima-
tion to the top eigenvalues or eigenvectors of the kernel
matrix themselves, unless we assume that the matrix is near
low-rank. To the best of our knowledge, prior to our work,
no subquadratic time approximation algorithms for the top
eigenvalue were known, even for Θ(1) approximation.

Our techniques: kernel sum We start by noting that, via
a Chernoff bound, a simple random sampling of kernel
matrix entries provides the desired estimation in linear time.

Claim 1. For a positive definite kernel k : Rd×Rd → [0, 1]

with k(x, x) = 1 ∀x, uniformly sample t = O
(
n log(1/δ)

ε2

)
off-diagonal entries of K, Ki1,j1 , ...,Kit,jt and let s̃(K) =

n+ n(n−1)
t ·

∑t
`=1Ki`,j` . Then with probability ≥ 1− δ,

s̃(K) ∈ (1± ε) · s(K).

Our goal is to do better, giving 1± ε approximation to s(K)
in sublinear time. We achieve this by (a) performing a more
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Kernel k(x, y) KDE algorithm KDE runtime Kernel Sum Top Eigenvector
Gaussian e−‖x−y‖22 Charikar et al. (2020) dm/(µ0.173+o(1)) Õ(dn0.66) Õ(dn1.173+o(1))

Gaussian Greengard & Strain (1991)
(see appendix) m log(m)O(d) n0.5 log(n)O(d) n log(n)O(d)

Exponential e−‖x−y‖2 Charikar et al. (2020) dm/(µ0.1+o(1)) Õ(dn0.6) Õ(dn1.1+o(1))

Rational quadratic 1
(1+‖x−y‖22)β

Backurs et al. (2018) d Õ(dn0.5) Õ(dn)

All of the above
(lower bound) - - - Ω(dn0.5) Ω(dn)

Table 1. Instantiations of our main results, giving sublinear time kernel sum approximation and subquadratic time top eigenvector
approximation. All running times are up to polylogarithmic factors assuming constant accuracy parameter ε and kernel parameter β. The
KDE runtime depends on m, the number of query points and µ, a lower bound on the density for each query point.

structured random sampling, i.e., sampling a principal sub-
matrix as opposed to individual entries, and (b) providing
an efficient algorithm for processing this submatrix. Sub-
sampling the matrix requires a more careful analysis of the
variance of the estimator. To accomplish this, we use the
fact that the kernel matrix is PSD, which implies that its
“mass” cannot be too concentrated. For the second task,
we use fast kernel density estimation algorithms, combined
with random row sampling to reduce the running time.

Our techniques: top eigenvector Our algorithm for top
eigenvector approximation is a variant on the classic power
method, with fast approximate matrix vector multiplication
implemented through kernel density evaluation. Kernel den-
sity evaluation on a set of n points with corresponding kernel
matrix K ∈ Rn×n, can be viewed as approximating the vec-
tor Kz ∈ Rn where z(i) = 1/n for all i. Building on this
primitive, it is possible to implement approximate multipli-
cation with general z ∈ Rn (Charikar & Siminelakis, 2017).
We can then hope to leverage work on the ‘noisy power
method’, which approximates the top eigenvectors of a ma-
trix using just approximate matrix vector multiplications
with that matrix (Hardt & Price, 2014). However, existing
analysis assumes random noise on each matrix vector mul-
tiplication, which does not align with the top eigenvector.
This cannot be guaranteed in our setting. Fortunately, we
can leverage additional structure: if the kernel k is non-
negative, then by the Perron-Frobenius theorem, K’s top
eigenvector is entrywise non-negative. This ensures that, if
our noise in approximating Kz at each step of the power
method is entrywise non-negative, then this noise will have
non-negative dot product with the top eigenvector. We are
able to guarantee this property, and show convergence of
the method to an approximate top eigenvector, even when
the error might align significantly with the top eigenvector.

2. Preliminaries
Throughout, we focus on nice kernels satisfying:

Definition 2 (Nice Kernel Function). A kernel function k :
Rd×Rd → [0, 1] is nice if it is positive definite and satisfies

k(x, x) = 1 for all x ∈ Rd.

Many popular kernels, such as the Gaussian kernel, the ex-
ponential kernel and the rational quadratic kernel described
in the introduction, are indeed nice. We also assume that k
admits a fast KDE algorithm. Specifically:

Definition 3 (Fast KDE). A kernel function k admits a
O(dm/(µpε2)) time KDE algorithm, if given a set of
m points x1, . . . , xn ∈ Rd, we can process them in
O(dm/(µpε2)) time for some p ≥ 0 such that we can an-
swer queries of the form 1

n

∑
i k(y, xi) up to (1+ε) relative

error in O(d/(µpε2)) time for any query point y ∈ Rd with
probability ≥ 2/3 assuming that 1

n

∑
i k(y, xi) ≥ µ.

Note that for a kernel function satisfying Def. 3, evaluating
k(yj) for m points Y = {y1, . . . , ym} against m points
X = {x1, . . . , xm} requires O(dm/(µpε2)) total time.

3. Sublinear time algorithm for kernel sum
Our proposed kernel sum approximation algorithm will sam-
ple a set A of s = Θ(

√
n) input points and look at the prin-

cipal submatrixKA ofK corresponding to those points. We
prove that the sum of off-diagonal entries in KA (appropri-
ately scaled) is a good estimator of the sum of off-diagonal
entries of K. Since for a nice kernel, the sum of diagonal
entries is always n, this is enough to give a good estimate
of the full kernel sum s(K). Furthermore, we show how to
estimate the sum of off-diagonal entries of KA quickly via
kernel density evaluation, in ds2−δ/εO(1) = dn1−δ/2/εO(1)

time for a constant δ > 0. Overall this yields:

Theorem 4. Let K ∈ Rn×n be a kernel matrix defined
by a set of n points and a nice kernel function k (Def. 2)
that admits O(dm/(µpε2)) time approximate kernel density
evaluation (Def. 3). After sampling a total of O(

√
n/ε2)

points, we can in O
(
dn

2+5p
4+2p log2(n)/ε

8+6p
2+p

)
time approxi-

mate the sum of entries of K within a factor of 1 + ε with
high probability 1− 1/nΘ(1).

For any square matrix K, let so(K) be the sum of off diag-
onal entries. Crucial to our analysis will be the lemma:
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Lemma 5 (PSD Mass is Spread Out). Let K ∈ Rn×n be a
PSD matrix with diagonal entries all equal to 1. Let so,i(K)
be the sum of off diagonal entries in the ith row of K. If
so(K) ≥ εn for some ε ≤ 1, then ∀ i:

so,i(K) ≤ 2
√
s0(K)/ε.

Lemma 5 implies that if the off-diagonal elements con-
tribute significantly to s(K) (i.e., s0(K) ≥ εn), then the
off diagonal weight is spread relatively evenly across at
least Ω(

√
ε · so(K)) = Ω(

√
n) rows/columns, allowing

our strategy of sampling a principal submatrix with just
Θ(
√
n) rows to work.

Proof. Assume for the sake of contradiction that there is a
row with so,i(K) > 2

√
s0(K)/ε. Let x be the vector that

has value −
√

s0(K)
ε at index i and 1 elsewhere. Then:

xTKx ≤ so(K)

ε
− 4 · so(K)

ε
+ so(K) + n ≤ −so(K)

ε
,

where the last inequality follows from the assumptions that
s0(K) ≥ εn and ε ≤ 1. The above contradicts K being
PSD, completing the lemma.

3.1. Our estimator

For a subset A ⊆ [n], let KA be the corresponding ker-
nel matrix (which is a principal submatrix of K). Suppose
that A is chosen by adding every element i ∈ [n] to A
independently at random with probability p (we will later
set p = 1/

√
n). Then Z , n + so(KA)/p2 is an un-

biased estimator of s(K). That is, E[Z] = s(K). We
would like to show that the variance Var[Z] is small. In
fact, we will show that Var[Z] ≤ O(s(K)2). Thus, taking
Var[Z]/(ε2 E[Z]2) = O(1/ε2) samples of Z and returning
the average yields a 1 + ε approximation of s(K) with a
constant probability. To amplify the probability of success
to 1− δ for any δ > 0, we take the median of O(log(1/δ))
estimates and apply Chernoff bound in a standard way.

In the appendix, we leverage Lemma 5 to prove the follow-
ing upper bound on the variance.

Lemma 6. Var[Z] = O(s(K)2).

3.2. Approximating the value of the estimator

To turn the argument from the previous section into an
algorithm, we need to approximate the value of Z =
n + so(KA)/p2 for p = 1/

√
n efficiently. It is suffi-

cient to efficiently approximate Z = n+ n · so(KA) when
so(KA) = Ω(ε), as otherwise the induced loss in approxi-
mating s(K) is negligible since we always have s(K) ≥ n.

LetK ′ be a kernel matrix of sizem×m for which so(K ′) ≥
Ω(ε). We show that for such a kernel matrix it is possible

to approximate so(K ′) in time m2−δ for a constant δ >
0. This is enough to yield a sublinear time algorithm for
estimating Z since KA is m×m with m ≈ pn =

√
n.

A simple algorithm. We note that it is sufficient to ap-
proximate the contribution to so(K ′) from the rows i for
which the sum of entries so,i is Ω(ε/m), as the contribu-
tion from the rest of the rows in negligible under the as-
sumption that so(K ′) = Ω(ε). So fix an i and assume that
so,i ≥ Ω(ε/m). To estimate so,i, we use a kernel density
evaluation algorithm. Our goal is to approximate

so,i =
∑
j:j 6=i

K ′i,j =
∑
j:j 6=i

k(xi, xj).

The approach is to first process the points x1, . . . , xm using
the algorithm for the KDE. The KDE query algorithm then
allows us to answer queries of the form 1

m

∑
j k(q, xj) for

an arbitrary query point q in time O(d/(µpε2)), where µ is
a lower bound on 1

m

∑
j k(q, xj). So we set µ = Ω(ε/m2)

and query the KDE data structure on all q = x1, . . . , xm.

The above does not quite work however – to estimate the
off-diagonal sum we need to answer queries of the form
1
m

∑
j:j 6=i k(xi, xj) instead of 1

m

∑
j k(xi, xj). This could

be solved if the KDE data structure were dynamic, so that we
could remove any point xi from it. Some of the data struc-
tures indeed have this property. To provide a general reduc-
tion, however, we avoid this requirement by building several
“static” data structures and then answering a single query of
the form 1

m

∑
j:j 6=i k(xi, xj) by querying O(logm) static

data structures. Assume w.l.o.g. that m is an integer power
of 2. Then we build a data structure for points x1, . . . , xm/2
and another for xm/2+1, . . . , xm. We also build 4 data
structures for sets x1, . . . , xm/4 and xm/4+1, . . . , xm/2,
and xm/2+1, . . . , x3m/4, and x3m/4+1, . . . , xm. And so
forth for logm levels. Suppose that we want to estimate
1
m

∑
j:j 6=1 k(x1, xj). For that we query the data struc-

tures on sets xm/2+1, . . . , xm and xm/4+1, . . . , xm/2, and
xm/8+1, . . . , xm/4 and so forth for a total of logm data
structures – one from each level. Similarly we can answer
queries for an arbitrary i. The threshold µ for all the data
structures is the same as before: µ = Ω(ε/m2).

Since we need to query O(logm) data structures for every
xi and we also need to amplify the probability of success to,
say, 1− 1/m2. Thus, the final runtime of the algorithm is

O(m · d/(µpε2) log2m) = O(dm1+2p/ε2+p log2m).

A faster algorithm. We note that in the previous case, if
so,i = Θ(ε/m) for every i, then we can approximate so(K ′)
efficiently by sampling a few i, evaluating the corresponding
so,i exactly (in O(dm) time) and returning the empirical
mean of the evaluated so,i. This works since the variance
is small. There can be, however, values of i for which so,i
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is large. For these values of i, we can run a kernel density
evaluation algorithm. More formally, we define a threshold
t > 0 and run a kernel density evaluation algorithm on every
i with µ = t/m2 (similarly as in the previous algorithm).
This reports all i for which so,i ≥ t/m2. This takes time

O(dm log2m · 1/(µpε2)) = O(dm1+2p log2m/(ε2tp)).

Let I be the set of remaining i. To estimate the contribution
from so,i with i ∈ I , we repeatedly sample i ∈ I and
evaluate so,i exactly using the linear scan, and output the
average of the evaluated so,i scaled by |I| as an estimate of
the contribution of so,i from i ∈ I . Since we can ignore the
contribution from i ∈ I with so,i ≤ o(ε/m), we can assume
that t/m ≥ so,i ≥ Ω(ε/m) for every i ∈ I and then

Vari[so,i]/(ε
2(E
i
[so,i])

2) ≤ O(t2/ε4)

samples are sufficient to get a 1 + ε approximation. This
step takes time O(t2dm/ε4). The final runtime is

O(dm1+2p log2m/(ε2tp) + dt2m/ε4) =

O(dm
2+5p
2+p log2(m)/ε

4+4p
2+p )

by setting t = m
2p

2+p ε
2

2+p . Since m = Θ(
√
n) with

high probability, we achieve O(dm
2+5p
4+2p log2(m)/ε

4+4p
2+p )

runtime for approximating the random variable Z = n +
n · so(KA). Since we evaluate the random variable Z
O(1/ε2) times, the final runtime to approximate the sum of
entries of the kernel matrix K within a factor of 1 + ε is
O(dn

2+5p
4+2p log2(n)/ε

8+6p
2+p ).

3.3. Sample complexity lower bound

We next prove a lower bound, which shows that sampling
just O(

√
n) data points, as is done in our algorithm, is

optimal up to constant factors.

Theorem 7. Consider any nice kernel k such that
k(x, y) → 0 as ‖x − y‖ → ∞. In order to estimate∑n
i,j k(xi, xj) within any constant factor, we need to sam-

ple at least Ω(
√
n) points from the input x1, . . . , xn.

Proof. Suppose that we want to approximate s(K) =∑n
i,j k(xi, xj) within a factor of C > 0.

Consider two distributions of x1, . . . , xn. For the first distri-
bution x1, . . . , xn are sampled independently from a large
enough domain such that k(xi, xj) ≈ 0 for all i 6= j with
high probability. In this case s(K) ≈ n. For the other
distribution we sample again x1, . . . , xn independently at
random as before and then sample s1, . . . , s√2Cn from
1, . . . , n without repetition. Then we set xst = xs1 for t =
2, . . . ,

√
2Cn. For this distribution s(K) ≈ 2Cn. To distin-

guish between these two distributions we need to sample at
least Ω(

√
n/C) = Ω(

√
n) points from x1, . . . , xn.

3.4. Application to kernel alignment

Our algorithm can be immediately used to estimate the
value of the kernel alignment Â(K,K ′) as defined in the
introduction. The only requirement is that the submatrices
of product kernelsK ◦K,K ′◦K ′ andK ◦K ′ are supported
by fast kernel density evaluation algorithms. We formalize
this as follows. Let C be a set of nice kernels defined
over pairs of points in Rd. For any two kernel functions
k, k′ ∈ C, the product kernel k ◦ k′ : R2d × R2d → [0, 1]
is such that for any p, q, p′, q′ ∈ Rd we have

(k ◦ k′)((p, p′), (q, q′)) = k(p, q) · k′(p′, q′).

Definition 8. Let C = C1, C2, . . . be a sequence of sets of
nice kernels, such that Cd is defined over pairs of points in
Rd. We say that C is closed under product if for any two
k, k′ ∈ Cd, the product kernel k ◦ k′ belongs to C2d.

It is immediate that the Gaussian kernel, interpreted as a
sequence of kernels for different values of the dimension d,
is closed under product. Thus we obtain the following:

Corollary 9. Given two Gaussian kernel matrices K,K ′ ∈
Rn×n, each defined by a set of n points in Rd, and ε ∈ (0, 1),
Â(K,K ′) can be estimated to 1 ± ε relative error in time
O(dn0.66/εO(1) log2 n) with high probability 1− 1/nΘ(1).

4. Subquadratic time top eigenvector
We now present our top eigenvector approximation algo-
rithm, which is a variant on the ‘noisy power method’
with approximate matrix vector multiplication implemented
through kernel density evaluation. Existing analysis of the
noisy power method assumes random noise on each matrix
vector multiplication, which has little correlation with the
top eigenvector (Hardt & Price, 2014; Balcan et al., 2016).
This prevents this top direction from being ‘washed out’ by
the noise. In our setting this cannot be guaranteed – the
noise distribution arising from implementing matrix multi-
plication with K using kernel density evaluation is complex.

To avoid this issue, we use that since the kernel k is nice,
K is entrywise non-negative, and by the Perron-Frobenius
theorem, so is its top eigenvector. Thus, if our noise in
approximating Kz is entrywise non-negative (i.e., if we
overestimate each weighted kernel density), then the noise
will have non-negative dot product with the top eigenvector,
and will not wash it out, even if it is highly correlated it.

We formalize this analysis in Theorem 11, first giving the
required approximate matrix vector multiplication primitive
that we use in Definition 10. We give a full description of
our noisy power method variant in Algorithm 1. In Section
4.1 we discuss how to implement the matrix vector multipli-
cation primitive efficiently using existing KDE algorithms.

Definition 10 (Non-negative Approximate Matrix Vector
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Multiplication). An ε-non-negative approximate MVM algo-
rithm for a matrix K ∈ Rn×n takes as input a non-negative
vector x ∈ Rn and returns y = Kx+ e where e is an entry-
wise non-negative error vector satisfying: ‖e‖2 ≤ ε‖Kx‖2.

Algorithm 1 Kernel Noisy Power Method
input: Error parameter ε ∈ (0, 1). Iteration count I . ε2/12-
non-negative approximate MVM algorithm (Def. 10) K(·)
for nice kernel matrix K ∈ Rn×n.
output: z ∈ Rn with ‖z‖2 = 1

1: Initialize z0 ∈ Rn with z0(i) = 1√
n

for all i.
2: Initialize λ := 0.
3: for i = 0 to I do
4: zi+1 := K(zi).
5: if zTi zi+1 > λ then
6: z := zi.
7: λ := zTi zi+1.
8: end if
9: zi+1 := zi+1/‖zi+1‖2.

10: end for
11: return z.

Theorem 11. The kernel noisy power method (Algorithm
1) run for I = O

(
log(n/ε)

ε

)
iterations outputs a unit vector

z with zTKz ≥ (1− ε) · λ1(K).

Proof. Let V ΛV T = K be K’s eigendecomposition. Λ
is diagonal containing the eigenvalues in decreasing order
λ1 ≥ . . . ≥ λn ≥ 0. V is orthonormal, with columns equal
to the corresponding eigenvectors of K: v1, . . . , vn. Let m
be the largest index such that λm ≥ (1− ε/4) · λ1.

Let ci = V T zi be the ith iterate, written in the eigenvector
basis. Let ci,m be its first m components and ci,n−m be
the last n − m components. We will argue that for I =

O
(

log(n/ε)
ε

)
iterations, there is at least one iteration i ≤ I

where ‖ci,m‖22 ≥ (1 − ε/4), and so zi aligns mostly with
large eigenvectors. Formally this gives

zTi Kzi = cTi Λci ≥ ‖ci,m‖22 · (1− ε/4) · λ1

≥ (1− ε/4)2 · λ1

≥ (1− ε/2) · λ1.

Further, when we check to set z := zi at line (4) we have

zTi zi+1 = zTi Kzi = zTi Kzi + zTi e.

Since z0, K, and e are all entrywise non-negative, zi is en-
trywise non-negative for all i. Thus, zTi e ≥ 0. By our bound
on ‖e‖2 we also have zTi e ≤ ‖e‖2 ≤ ε2/12 · ‖Kzi−1‖2 ≤
ε2/12 · λ1. Overall this gives

zTi Kzi ≤ zTi zi+1 ≤ zTi Kzi + ε2/12 · λ1.

So, if there is an i with ‖ci,m‖22 ≥ (1 − ε/4) and thus
zTi Kzi ≥ (1 − ε/2) · λ1, we will not output z = zj with
zTj Kzj ≤ (1− ε/2− ε2/12) · λ1 > (1− ε) · λ1, ensuring
our final error bound.

To prove that there is some iterate with ‖ci,m‖22 ≥ (1 −
ε/4), since ‖zi‖22 = ‖ci‖22 = 1, it suffices to argue that
‖ci,n−m‖22 ≤ ε/4. Assume for the sake of contradiction
that for all i ≤ I we have ‖ci,n−m‖22 > ε/4. Under this
assumption we can argue that ci(1)2 grows significantly
with respect to ‖ci,n−m‖22 in each step. Specifically, we can
show by induction that ci(1)

‖ci,n−m‖2 ≥
(1+ε/6)i√

n
. This gives a

contradiction since for I = O(log(n/ε)/ε) it would imply
that 1 ≥ cI(1)2 ≥ 4

ε ‖cI,n−m‖
2
2 and thus we must have

‖cI,n−m‖22 < ε/4. This contradiction proves the theorem.

Base case. Initially, z0 has all entries equal to 1/
√
n. Thus

c0(1)

‖c0,n−m‖2
≥ c0(1) = vT1 z0 =

1√
n

n∑
j=1

v1(j)

=
1√
n
‖v1‖1 ≥

1√
n
,

where we use that v1 is a non-negative unit vector by the
Perron-Frobenius theorem so

∑n
j=1 v1(j) ≥ ‖v1‖2 = 1.

Inductive step. Assume inductively that ci(1)
‖ci,n−m‖2 ≥

(1+ε/6)i√
n

. Before normalization at step (7) we have zi+1 =

Kzi + e. Normalization doesn’t affect the ratio between
ci+1(1) and ‖ci+1,n−m‖2 – thus we can ignore this step.

For all j ∈ 1, . . . , n we have ci+1(j) = λj · ci(j) +
vTj e. Since both e and v1 are all non-negative, this gives
ci+1(1) ≥ λ1 · ci(1). Further, by triangle inequality and the
fact that for j > m, λj < (1− ε/4),

‖ci+1,n−m‖2 ≤ (1− ε/4)λ1 · ‖ci,n−m‖2 + ‖e‖2
≤ (1− ε/4)λ1 · ‖ci,n−m‖2 + ε2/12 · ‖Kzi‖2
≤ (1− ε/2)λ1 · ‖ci,n−m‖2 + ε2/12 · λ1.

By our assumption (for contradiction) that ‖ci,n−m‖2 ≥ ε/4
we then have

‖ci+1,n−m‖2 ≤
(

1− ε/2 +
ε2/12

ε/4

)
‖ci,n−m‖2 · λ1

≤ (1− ε/6) · ‖ci,n−m‖2 · λ1.

Overall, this gives that

ci+1(1)

‖ci+1,n−m‖2
≥ λ1 · ci(1)

(1− ε/6) · ‖ci,n−m‖2 · λ1

≥ (1 + ε/6) · ci(1)

‖ci,n−m‖2
≥ (1 + ε/6)i+1

√
n

,

by our inductive assumption. This gives our contradiction,
completing the proof.
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4.1. Approximate kernel matrix vector multiplication

In the appendix, we show how to use fast a KDE algorithm
to instantiate the non-negative approximate MVM primitive
(Def. 10) required by Algo. 1. A similar approach was taken
by Charikar et al. (2020). We provide our own analysis,
which applies black box to any KDE algorithm.

Theorem 12. Let k be a nice kernel (Def. 2) admitting
O(dm/µpε2) time approximate kernel density evaluation
(Def. 3). Let K ∈ Rn×n be the associated kernel ma-
trix for n points in d dimensions. There is an ε-non-
negative approximate MVM algorithm for K running in
time O

(
dn1+p log(n/ε)p

ε3+2p

)
.

Combined with Theorem 11, Theorem 12 immediately gives
our final subquadratic time eigenvalue approximation result:

Corollary 13. Let k be a nice kernel (Def. 2) admitting
O(dm/µpε2) time approximate kernel density evaluation
(Def. 3). Let K ∈ Rn×n be the associated kernel matrix for
n points in d dimensions. There is an algorithm running in
time O

(
dn1+p log(n/ε)2+p

ε7+4p

)
, which outputs a unit vector z

with zTKz ≥ (1− ε) · λ1(K)

Proof. Algo. 1 requires I = O
(

log(n/ε)
ε

)
approximate

MVMs, each with error parameter ε2/12. By Thm. 12, each
matrix vector multiply requires time O

(
dn1+p log(n/ε)1+p

ε6+4p

)
.

Multiplying by I gives the final bound.

4.2. Lower bound

It is easy to see that Ω(dn) time is necessary to estimate
λ1(K) to even a constant factor. Thus, for ε = Θ(1), the
runtime of Cor. 13 is tight, up to an np log(n)2+p factor.

Theorem 14. Consider any nice kernel k such that
k(x, y) → 0 as ‖x − y‖ → ∞. Let K ∈ Rn×n be the
associated kernel matrix of n points x1, . . . , xn ∈ Rd. Esti-
mating λ1(K) to any constant factor requires Ω(nd) time.

Proof. Let c be any constant. Consider two input cases. In
the first, no two points in x1, . . . , xn are identical. In the
second, a random set of c points are exact duplicates of each
other. Scaling up these point sets by an arbitrarily large
constant value, we can see that their kernel matrices are
arbitrarily close to K = I in the first case and K = I + E
in the second, where E has a 1 at positions (i, j) and (j, i)
if i, j are in the duplicate set, and zeros everywhere else.
We can check that λ1(I) = 1 while λ1(I + E) = c. Thus,
to approximate the top eigenvalue up to a c factor we must
distinguish the two cases. If we read o(n/c) points, then
with good probability we will see no duplicates. Thus, we
must read Ω(n/c) points, requiring Ω(nd/c) time.

5. Empirical evaluation
In this section we empirically evaluate the kernel noisy
power method (Algorithm 1) for approximating the top
eigenvalue of the kernel matrix K ∈ Rn×n associated with
an input dataset of n points.

The reason we focus our evaluation on approximating the
top eigenvector (Section 4), and not on approximating the
kernel matrix sum (Section 3) is that the latter problem
admits a fast algorithm by vanilla random sampling (in
time O(n), see Claim 1), which is very fast in practice. We
observed this baseline method obtains comparable empirical
running times to our method, the latter not yielding speed-
up. We thus focus our experiments on the kernel power
method. All previous algorithms for approximating the top
eigenvector have running time Ω(n2), which is very slow
in practice even for moderate n, raising a stronger need for
empirical improvement.

For evaluating the kernel noisy power method, we use the
Laplacian kernel, k(x, y) = exp(−‖x − y‖1/σ). It is a
nice kernel (by Def. 2), and furthermore, a Fast KDE imple-
mentation for it (as per Def. 3) with p = 0.5 was recently
given in (Backurs et al., 2019), based on the Hashing-Based
Estimators (HBE) technique of (Charikar & Siminelakis,
2017). This can be plugged into Corollary 13 to obtain a
provably fast and accurate instantiation of the kernel noisy
power method. The resulting algorithm is referred to in this
section as KNPM.

Evaluated methods. We compare KNPM to two base-
lines: The usual (Full) power method, and a Uniform noisy
power method. The latter is similar to KNPM, except that
the KDE subroutine in Corollary 13 is evaluated by vanilla
uniform sampling instead of a Fast KDE.

In more detail, denote by UniKDE(y,X) a randomized
algorithm for KDE(y,X) on a point y and a pointset X ,
that draws a uniformly random sample X ′ of X and returns
the mean of k(y, x) over all x ∈ X ′. By Bernstein’s in-
equality, if the sample size is Ω(1/(µε2)) then this returns a
(1± ε)-approximation of KDE(y,X) in time O(d/(µε2)).
Therefore, it is a Fast KDE algorithm as defined in Defi-
nition 3, with p = 1. This algorithm is indeed used and
analyzed in many prior works on KDE approximation. Since
Algorithm 1 reduces the kernel power method to a sequence
of approximate KDE computations (cf. Corollary 13), we
may use UniKDE for each of them, thus obtaining the
natural baseline we call Uniform. While it asypmtotically
does not lead to sub-quadratic running time, it empirically
performs significantly better than the full power method, as
our experiments will show.

Evaluation metrics. The computational cost of each al-
gorithm is measured by the number of kernel evaluations it
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performs (i.e., how many entries of K it computes). Com-
puted kernel values are not carried over across iterations.
The full power methods computes the entire matrix row-
by-row in each iteration, since it is too large to be stored
in memory. The other two methods use a small sample of
entries.

Our reasons for using the number of kernel evaluations as a
proxy for the running time are the following:

• The three algorithms we evaluate compute power
method by a sequence of kernel computations, differing
in the choice of points for evaluation (Full computes
k(x, y) for all x, y, while Uniform and KNPM choose
pairs at random according to their different sampling
schemes). Thus this measure of efficiency allows for a
direct comparison between them.

• This measure is software- and architecture-free, unaf-
fected by access to specialized libraries (BLAS, MAT-
LAB, etc) or hardware (SIMD, GPU, etc). This is
particularly important with linear algebraic operations,
which behave very differently in different environments
(many are specifically designed to handle them in a
particular way), and can result in many artifacts when
measuring runtimes.

• Compatibility with prior literature (e.g., Backurs et al.
2019).

Nonetheless, we believe that methodologically sound wall-
clock time experiments would be valuable, and we leave
this for future work.

The accuracy of each method is evaluated in each iteration
by the relative error, 1 − zTKz/λ1(K), where z is the
unit vector computed by the algorithm in that iteration, and
λ1(K) is the true top eigenvalue. λ1(K) is computed by
letting the full power method run until convergence. This
error measure corresponds directly to ε from Corollary 13.

Datasets. We use classes of the Forest Covertype
dataset (Blackard & Dean, 1999), which is a 54-dimensional
dataset often used to evaluate kernel methods in high dimen-
sions (Siminelakis et al., 2019; Backurs et al., 2019). We
use 5 of the 7 classes (namely classes 3–7), whose sizes
range from 2.7K to 35.7K points. We have omitted the
two larger classes since we could not compute an accurate
groundtruth λ1(K) for them, and hence could not measure
accuracy. We also use the full training set of the MNIST
dataset (60K points in 784 dimensions).

Parameter setting. We use bandwidth σ = 0.05 (other
choices produce similar results). The full power method has
no parameters. The Uniform and KNPM methods each have
a single parameter that governs the sampling rate. For both,

we start with a small sampling rate, and gradually increase
it by multiplying by 1.1 in each iteration. In this way, the
approximate matrix multiplication becomes more accurate
as the method converges closer to the true top eigenvalue.

Results. All results are reported in Figure 1 on the fol-
lowing page. Both the Uniform and KNPM variants of the
noisy power method give a much better tradeoff in terms
of accuracy vs. computation than the full power method.
Additionally, KNPM consistently outperforms Uniform.

6. Conclusion
We have shown that fast kernel density evaluation methods
can be used to give much faster algorithms for approximat-
ing the kernel matrix sum and its top eigenvector. Our work
leaves open a number of directions. For top eigenvector
computation – it is open if the gaps between the linear in
n lower bound of Theorem 14 and our slightly superlinear
runtimes for the Gaussian and exponential kernels can be
closed. Extending our techniques to approximate the top
k eigenvectors/values in subquadratic time would also be
very interesting, as this is a key primitive in kernel PCA and
related methods. Finally, it would be interesting to iden-
tify other natural kernel matrix problems that can be solved
in sublinear or subquadratic time using fast KDE methods.
Conversely, one might hope to prove lower bounds ruling
this out. Lower bounds that hold for error ε = Θ(1) would
be especially interesting – known lower bounds against e.g.,
subquadratic time algorithms for the kernel sum, only hold
when high accuracy ε = exp(−ω(log2 n)) is demanded.
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Figure 1. Results for the Full, Uniform and Kernel Noisy variants of the power method, on classes 3–7 of the Forest Covertype dataset,
and on the MNIST dataset. We can see that the noisy power method implemented with KDE (KNPM) achieves a significantly better
tradeoff between accuracy and number of kernel evaluations, as compared to the baselines.
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