
A. Approximating Submodular Set Functions with Graph Cuts
It is shown in (Devanur et al., 2013) that submodular set functions defined on a ground set of n elements can be O

(
n2
)

approximated by directed graph cuts. We state this fact as a lemma, and we include the proof for completeness in Section
A.1 below.

Definition A.1. Given a submodular set function F : 2V → R, such that F (∅) = F (V) = 0, and a weighted directed
graph G = (V,E, c), we say that the cut function of G α-approximates F if

1

α
c+(A) ≤ F (A) ≤ c+(A) , for all A ⊆ V .

Algorithm 2 Approximate non-negative submodular function F = F 0 − w0 by graph cuts, where F 0 : 2V → R≥0 is the
initial submodular function and the shift vector w0 : V → R is given as input

1: function GRAPHAPPROX(w0 : V → R)
2: Call GRAPHAPPROXSHIFTED(F 0 − w0)

3: function GRAPHAPPROXSHIFTED(F : 2V → R≥0)
4: Let E = {(u, v) ∈ V × V : u 6= v}.
5: for u, v ∈ V : u 6= v do
6: Compute wuv = min A⊆V :

u∈A,v 6∈A
F (A).

7: cuv = wuv .
8: end for
9: return G = (V,E, c)

Lemma A.2. Let V = {1, . . . , n}, and let F : V → R be a non-negative submodular set function, satisfying F (∅) =
F (V) = 0. Using O

(
n2
)

calls to a minimization oracle which can compute for all pairs u, v ∈ V

min
A⊆V

u∈A,v 6∈A

F (A)

one can compute a weighted directed graph G (V,E, c) such that its cut function

c+ (A) :=
∑

(u,v)∈E:
u∈A,v 6∈A

cuv

(n2/4)-approximates G. In other words, for any A ⊆ V the size of the graph cut satisfies:

1

n2/4
· c+ (A) ≤ F (A) ≤ c+ (A) .

Furthermore, if F takes only values that are discrete multiples of ∆, i.e. F (A) ∈ ∆ · Z≥0 for all A, then all elements of c
are discrete multiples of ∆.

As a consequence, we obtain a good approximation by graph cuts for decomposable submodular functions where each
component in the decomposition acts on few elements, i.e., when Fi(A) = Fi(A ∩ Vi) for some Vi ⊆ V .

Lemma A.3. Let V = {1, . . . , n}, and let Fi : Vi → R, Vi ⊆ V be non-negative submodular set functions, with
Fi(∅) = Fi(Vi), for i = 1, . . . , r. In the time required to compute for all pairs u 6= v ∈ V and for all 1 ≤ i ≤ r

min
A⊆Vi

u∈A,v 6∈A

Fi (A)

one can compute a weighted directed graph G (V,E, c) such that its cut function (M2/4)-approximates
∑r
i=1 Fi, where

M = maxi=1,r |Vi|.

Proof. For each i compute the corresponding graph as in Lemma A.2. Then take the union of edges over the same vertex
set.

We showed that the function F (A) is well approximated by the cut function c+(A) for the graph we constructed. Note
that c+ is only defined on internal vertices of the graph, excluding s and t. However this does not affect its submodularity.
Therefore the submodular base polytopes for the two function approximate each other well.

Lemma A.4. Let F,G be two submodular functions defined over the same vertex set V such that F (∅) = G(∅) = 0,
F (V) = G(V) = 0, and for any A ⊆ V , 1

αG(A) ≤ F (A) ≤ G(A). Then their submodular base polytopes satisfy:

1

α
B(G) ⊆ B(F) ⊆ B(G) .

Proof. Let any w ∈ B(F). Then w(V) = F (V) = G(V). Furthermore for any set A ⊆ V , we have w(A) ≤ F (A) ≤
G(A). Similarly for any w ∈ G(A), we have w(A) ≤ G(A) ≤ αF (A), so B(G) ⊆ αB(F), which yields the claim.

At this point we can prove that the submodular base polytope of the cut function created in Lemma A.3 approximates the
submodular base polytope of the decomposable function

∑r
i=1 Fi.

Lemma A.5. Let V = {1, . . . , n}, let Fi : Vi → R, Vi ⊆ V be non-negative submodular set functions, with Fi(∅) = Fi(Vi),
for i = 1, . . . , r, and let F =

∑r
i=1 Fi. In the time required to solve minA⊆Vi:u∈A,v 6∈A Fi(A) for all u, v ∈ Vi and all i,

we can compute a weighted directed graph G = (V,E, c) such that the submodular base polytope of the cut function c+(A)
satisfies 1

M2/4B(c+) ⊆ B(F) ⊆ B(c+), where M = maxi=1,r |Vi|.

Proof. The proof follows directly from applying Lemma A.3, followed by Lemma A.4.

A.1. Proof of Lemma A.2

Proof. To simplify notation let us denote by

wuv = min
A⊆V

u∈A,v 6∈A

F (A) ,

and let Tuv be the set achieving this minimum.

Consider the graph defined as follows. For every u, v ∈ V , create an arc (u, v) with weight cuv = wuv . By construction all
capacities are discrete multiples of ∆.

Now we can prove the lower bound on F . We have that

c+ (A) =
∑

u∈A,v 6∈A

cuv ≤
∑

u∈A,v 6∈A

cuv =
∑

u∈A,v 6∈A

F (Tuv) ≤
∑

u∈A,v/∈A

F (A) ≤
(
n2/4

)
F (A) .

We used the fact that F (A) upper bounds cuv for all u ∈ A, v 6∈ A. Now we prove the upper bound. For any nonempty set
A ⊂ V we can write A =

⋃
u∈A

(⋂
v∈V \A Tuv

)
. By twice applying Lemma A.6, we obtain that

F (A) ≤
∑
u∈A

∑
v 6∈A

F (Tuv) = c+ (A) .

Additionally, we have by construction that
c+(∅) = c+(V) = 0 .

Lemma A.6. Let F be a non-negative submodular set function F : 2V → R, an let A1, . . . , At be subsets of V . Then

F

(
t⋃
i=1

Ai

)
≤

t∑
i=1

F (Ai)

and

F

(
t⋂
i=1

Ai

)
≤

t∑
i=1

F (Ai) .

Proof. We prove by induction on t. If t = 1, both inequalities are equalities. Otherwise, suppose they hold for t− 1. Let
S =

⋃t−1
i=1 Ai. By submodularity, F (S ∪At) ≤ F (S) + F (At)− F (S ∩At). Since F is non-negative, so is F (S ∩At),

and therefore F (S ∪At) ≤ F (S) + F (At). Applying the induction hypothesis this concludes the first part of the proof.

Similarly, let S =
⋂t−1
i=1 Ai. By submodularity, F (S ∩ At) ≤ F (S) + F (At)− F (S ∪ At). Since F is non-negative, so

is F (S ∪ At), and therefore F (S ∩ At) ≤ F (S) + F (At). Again, applying the induction hypothesis this concludes the
second part of the proof.

B. Parametric Submodular Minimization via Optimization on the Base Polytope
In this section, for completeness, we provide a proof of Lemma 2.4, which is based on (Bach, 2011) (see Chapter 8). In
addition, we provide error analysis for reductions between approximate solutions to the combinatorial parametric submodular
minimization problem, its continuous version involving the Lovász extension, and the dual formulation on the base polytope.

Proof of Lemma 2.4. Given any point x, let β ≤ min{0,mini xi}. Applying the definition of the Lovász extension, and the
fundamental theorem of calculus, we can write:

f(x) +
∑
i∈V

ψi(xi) =

∫ ∞
0

F ({i : xi ≥ t})dt+

∫ 0

β

(F ({i : xi ≥ t})− F (V)) dt

+
∑
i∈V

ψi(β) +

∫ ∞
β

∑
i:xi≥t

ψ′i(t)dt

=

∫ ∞
β

F ({i : xi ≥ t}) +
∑
i:xi≥t

ψ′i(t)

 dt+
∑
i∈V

ψi(β)− βF (V) .

Note that we crucially used the fact that the parametric term
∑
i ψ
′
i(t) is separable.

Next we show that if the optimal sets Aα were different from those defined in (3), then we could obtain a different iterate
x′ such that f(x′) +

∑
i∈V ψi(x

′) ≤ f(x∗) +
∑
i∈V ψi(x

∗). However, since ψ is strictly convex, the minimizer of
f(x) +

∑
i∈V ψi(x) is unique. This gives a contradiction leading us to the desired conclusion.

Indeed, let x′i = supi∈Aα α. By the strict convexity property of ψi, we have that for any α > β, Aα ⊆ Aβ , which we
reprove for completeness in Lemma B.1.

Using this fact, we know that if Aα are the optimizers of F (A) +
∑
i∈V ψi(α), then we can write:

∫ ∞
β

(
F (At) +

∑
i∈At

ψ′i(t)

)
dt =

∫ ∞
β

F ({i : x′i ≥ t}) +
∑
i:x′i≥t

ψ′i(t)

 dt .

Since by the optimality of At we have that

f(At) +
∑
i∈At

ψi(t) ≤ F ({i : xi ≥ t}) +
∑
i:xi≥t

ψ′i(t) ,

it means that letting β = min{0,mini x
′
i,mini x

∗
i },∫ ∞

β

F ({i : x′i ≥ t}) +
∑
i:x′i≥t

ψ′i(t)

 dt ≤
∫ ∞
β

F ({i : x∗i ≥ t}) +
∑
i:x∗i≥t

ψ′i(t)

 dt

and therefore
f(x′) +

∑
i∈V

ψi(x
′) ≤ f(x∗) +

∑
i∈V

ψi(x
∗) ,

which concludes the proof.

Lemma B.1. Let F : 2V → R be a submodular set function, and let ψi : R→ R be a family of strictly convex functions,
for i ∈ V . Let Fα(A) = F (A) +

∑
i∈A ψ

′
i(α), and Aα = arg minA⊆V Fα(A). If α > β, then Aα ⊆ Aβ .

Proof. By optimality we have that

F (Aα) +
∑
i∈Aα

ψ′i(α) ≤ F (Aα ∩Aβ) +
∑

i∈Aα∩Aβ
ψ′i(α)

and
F (Aβ) +

∑
i∈Aβ

ψ′i(β) ≤ F (Aα ∪Aβ) +
∑

i∈Aα∪Aβ
ψ′i(β) .

Summing up we obtain that ∑
i∈Aα

ψ′i(α)−
∑

i∈Aα∩Aβ
ψ′i(α) +

∑
i∈Aβ

ψ′i(β)−
∑

i∈Aα∪Aβ
ψ′i(β)

≤ F (Aα ∩Aβ) + F (Aα ∪Aβ)− F (Aα)− F (Aβ)

≤ 0 ,

where we used submodularity in the last step. Therefore∑
i∈Aα\Aβ

(ψ′i(α)− ψ′i(β)) ≤ 0 .

Hence we conclude that Aα \Aβ = ∅, since by strict convexity we have that for all i, ψ′i(α) > ψ′i(β), which would make
the term above strictly positive had there been any elements in the set difference.

Next we perform a careful error analysis to bound the total error we incur in the case where the iterate we consider is not an
exact minimizer of (2), but has some small error in norm.

Lemma B.2. Under the conditions from Lemma 2.4, let x̃ ∈ R be a point satisfying ‖x̃−x∗‖ ≤ ε, where x∗ is the minimizer
of (2). Let the sets

Ãα = {i : x̃i ≥ α} .

If ψi is σ-strongly convex, for all i, and maxA⊆V F (A)−minA′⊆V F (A′) ≤M , then:

F (Ãα) +
∑
i∈Ãα

ψ′i(α) ≤ F (Aα) +
∑
i∈Aα

ψ′i(α) +Mn3/2ε+ βε2/2 .

Proof. First, using the smoothness of ψi we prove that

f(x̃) +
∑
i

ψi(x̃i) ≤ f(x∗) +
∑
i

ψi(x
∗
i) +Mn3/2ε+ βε2/2 .

To prove this we first note that f is Lipschitz, since we can use the fact that entries of the gradient of the Lovász extension
consist of differences between F evaluated at different subsets of V . Hence for any x, |∇if(x)| ≤ maxA⊆V F (A) −
minA′⊆V F (A′) ≤M , and thus ‖∇f(x)‖ ≤M

√
n. Therefore

f(x̃)− f(x∗) ≤M
√
n‖x̃− x∗‖ ≤M

√
nε .

Secondly, we use the smoothness of ψi, to obtain that

ψi(x̃i) ≤ ψi(x∗i) + ψ′i(x
∗
i)(x̃i − x∗i) +

β

2
(x̃i − x∗i)2 .

Using Lemma B.5 we see that ψ′i(x
∗
i) = −w∗i , where w∗ is the optimizer of a certain function over the base polytope B(F).

By the definition ofB(F) we have w∗i ≤ F ({i}) ≤M and−w∗i +
∑
j 6=i w

∗
j = F (V), so−w∗i ≥ F (V)−

∑
j 6=i F ({j}) ≥

−M(n− 1). Thus, by applying Cauchy-Schwarz, we have∑
i∈V

ψ′i(x
∗
i)(x̃i − x∗i) ≤ max

i
|ψ′i(x∗i)|

√
n · ‖x̃− x∗‖ ≤M(n− 1)n1/2ε ,

and thus ∑
i∈V

ψ′i(x̃i)− ψ′i(x∗i) ≤M(n− 1)n1/2ε+ βε2/2 .

Combining with the bound on f(x̃), we obtain our claimed error in function value.

Now we can finalize the argument. Following the proof of Lemma 2.4 we write f(x̃) +
∑
i∈V ψ

′
i(x̃i) as an integral, and

similarly for x∗, to conclude that for β = min{0,mini x̃i,mini x
∗
i },∫ ∞

β

F (Ãt) +
∑
i∈Ãt

ψ′i(t)

 dt ≤
∫ ∞
β

(
F (At) +

∑
i∈At

ψ′i(t)

)
dt+Mn3/2ε+ βε2/2 .

Since by definition At minimizes
∑
i∈At ψ

′
i(t), we conclude that for all t,

F (Ãt) +
∑
i∈Ãt

ψ′i(t) ≤ F (At) +
∑
i∈At

ψ′i(t) +Mn3/2ε+ βε2/2 .

We can also show that if we obtain an approximate minimizer of the dual problem (4) over B(F), we can use it to recover
an approximate minimizer of the primal problem (2).

Lemma B.3. Let w∗ be the minimizer of the dual problem (4), and and let x∗ be the minimizer of the primal problem (2). If
w ∈ B(F) such that ∑

i∈V
ψ∗i (−wi) ≤

∑
i∈V

ψ∗i (−w∗i) + ε ,

then the point x ∈ Rn where xi = (ψ∗i)′(−wi) satisfies

‖x− x∗‖ ≤
√

2Lε

σ2
.

Proof. By Lemma B.5 we know that x∗ and w∗ are related via x∗i = (ψ∗i)′(−w∗i). Therefore we can write

|xi − x∗i | = |(ψ∗i)′(−wi)− (ψ∗i)′(−w∗i)| ≤ 1

σ
|wi − w∗i | ,

where in the last inequality we used the fact that ψi is σ-strongly convex, and hence ψ∗i is 1/σ-smooth (Shalev-Shwartz &
Singer, 2006; Kakade et al., 2012). Next we show that |wi − w∗i | is bounded by a function of ε.

Since by assumption ψi is L-smooth, its dual ψ∗i is 1/L-strongly convex. Therefore we have that, for all i:

ψ∗i (−wi) ≥ ψ∗i (−w∗i) + (ψ∗i)′(−w∗i) · (−wi − (−w∗i)) +
σ

2
(w∗i − wi)2 .

Furthermore, since w∗ is an optimizer over B(F), we know by first-order optimality that for any w ∈ B(F):∑
i∈V

(ψ∗i)′(−w∗i) · (−wi − (−w∗i)) ≥ 0 ,

i.e. slightly moving the point from −w∗ towards −w can only increase function value. Thus we obtain that∑
i∈V

ψ∗i (−wi) ≥
∑
i∈V

ψ∗i (−w∗i) +
1

2L

∑
i∈V

(w∗i − wi)2 .

Combining with the hypothesis, this implies that

1

2L

∑
i∈V

(w∗i − wi)2 ≤ ε ,

and therefore
‖x− x∗‖2 ≤ 1

σ2

∑
i∈V

(wi − w∗i)2 ≤ 2Lε

σ2
,

which implies the claimed result.

As a corollary of the previous lemmas, we see that an approximate solution to the dual problem (4) yields an approximate
solution to the original parametric problem (1).

Corollary B.4. Let F : 2V → R be a non-negative submodular set function, and let the the family of parametric problems
defined in (1). Let w ∈ B(F) such that ∑

i∈V
ψ∗i (−wi) ≤

∑
i∈V

ψ∗i (−w∗i) + ε ,

where w∗ is the true minimizer of the dual problem (4). Then for any α, the set

Ãα = {i : ψ∗i (−wi) ≥ α}

satisfies
Fα(Ãα) ≤ Fα(Aα) +

√
ε ·Mn3/2

√
2L/σ2 + ε · (L/σ)2 ,

where Aα = arg minA⊆V Fα(A).

Proof. From Lemma B.3 we know that the hypothesis implies that the point x where xi = (ψ∗i)(−wi) satisfies ‖x− x∗‖ ≤√
2Lε/σ2. Applying Lemma B.2 we thus obtain that the sets constructed satisfy

Fα(Ãα) ≤ Fα(Aα) +Mn3/2
√

2Lε/σ2 + L/2 · (2Lε/σ2) ,

which yields our claim.

The following helper lemma shows that we can efficiently convert between (exact) solutions to the primal and dual problems
(2) and (4). Using standard techniques we can prove that these also enable us to convert between suboptimal solutions, while
satisfying certain error bounds.

Lemma B.5. Let x∗ be the (unique) minimizer of (2), and let w∗ be the minimizer of (4). Then w∗i = −ψ′i(xi) and
(ψ∗i)′(−wi) = xi, for all i ∈ V .

Proof. We the dual characterization of f and Sion’s theorem, to write

min
x∈Rn

f(x) +
∑
i∈V

ψi(xi) = min
x∈Rn

max
w∈B(F)

〈w, x〉+
∑
i∈V

ψi(xi) = max
w∈B(F)

min
x∈Rn
〈w, x〉+

∑
i∈V

ψi(xi) .

Since each ψi acts on a different coordinate we can write the inner minimization problem as

min
x∈Rn

∑
i∈V

(wixi + ψi(xi)) = −
∑
i∈V

ψ∗i (−wi) ,

where we applied the definition of the Fenchel dual. Furthermore by standard convex analysis (Borwein & Lewis, 2010;
Rockafellar, 1970), as ψ′i ranges from −∞ to∞ for each i we have that (ψ∗i)′(−wi) = xi, and similarly ψ′i(xi) = −wi.

Thus we can equivalently write (2) as
max

w∈B(F)
−
∑
i∈V

ψ∗i (−wi) .

By the previous observation, the optima are thus related via (ψ∗i)′(−w∗i) = x∗i , and similarly ψ′i(x
∗
i) = −w∗i .

C. Parametric s-t Cuts
In this section we show how to solve the parametric minimum cut problem by efficiently using a maximum flow oracle.
In Section 4 we show how to convert the solution obtained by this combinatorial routine to a nearly-optimal solution to a
related optimization problem on the submodular base polytope of the corresponding cut function.

In the parametric min s, t-cut problem, we are given a directed network G = (V,E) with two distinguished vertices: a
source s ∈ V , and a sink t ∈ V , s 6= t. The capacities of individual edges of G are nonnegative functions of a real parameter
λ in some possibly infinite domain D ⊆ R (as opposed to constants in the classical setting of min s, t-cut). Following (Gallo
et al., 1989), we assume that the capacities of edges sv ∈ E are nondecreasing in λ and the capacities of edges vt ∈ E are
nonincreasing in λ. The capacities of all other edges of G are constant.

We denote by cλ(uv) : D→ R the capacity function of an edge uv ∈ E. Moreover, we assume that these edge capacity
functions can be evaluated for arbitrary λ in constant time.

Roughly speaking, the goal of the parametric min s, t-cut problems is to compute a representation of min s, t-cut for all the
possible parameters λ. Before we precisely define what this means, let us introduce some more notation and state some
useful properties of (parametric) min-cuts.

Denote by cap(G) the capacity of a min s, t-cut in G. Let Gλ′ be the graph with all the parameterized capacities replaced
with the corresponding values for λ = λ′. For any S, s ∈ S ⊆ V \ {t}, let cλ(S) be the capacity function of S, i.e., the sum
of capacity functions cλ(uv) through all uv with u ∈ S and v ∈ V \ S.

Lemma C.1 ((Ford & Fulkerson, 1962)). For any G, there exists a unique minimal minimum s, t-cut (S, T) with |S|
smallest possible, such that for any min s, t-cut (S′, T ′) of G we have S ⊆ S′. Given any maximum s, t-flow f in G, such a
cut can be computed from f in O(m) time.

Proof. Let Gf be the residual network associated with flow f . We let S be the set of vertices reachable from s in Gf (via
edges with positive capacity). As proven by Ford & Fulkerson (1962, Theorem 5.5), S defined this way does not depend on
the chosen maximum flow f , and S ⊆ S′ holds. Clearly, given f , S can be found using any graph search algorithm.

Ford & Fulkerson (1962, Corollary 5.4) showed that for any two min s, t-cuts (S1, T1), (S2, T2) of G, (S1 ∩ S2, T1 ∪ T2) is
also a min s, t-cut of G. Gallo et al. (1989, Lemma 2.8) gave the following generalization of this property to parametric min
s, t-cuts.

Lemma C.2 ((Gallo et al., 1989)). Let λ1 ≤ λ2. For i = 1, 2, let (Sλi , Tλi) be some min s, t-cut in Gλi . Then
(Sλ1

∩ Sλ2
, Tλ1

∪ Tλ2
) is a min s, t-cut in Gλ1

.

Our algorithm will use the following crucial property of parametric minimal min s, t-cuts.

Lemma C.3. Let λ1 ≤ λ2. For i = 1, 2, let (Sλi , Tλi) be the unique minimal min s, t-cut in Gλi . Then Sλ1
⊆ Sλ2

.

Proof. The uniqueness of Sλ1 and Sλ2 follows by Lemma C.1 applied to Gλ1 and Gλ2 , respectively. By Lemma C.2,
(Sλ1 ∩ Sλ2 , Tλ1 ∪ Tλ2) is a min s, t-cut in Gλ1 . By Lemma C.1, we have Sλ1 ⊆ Sλ1 ∩ Sλ2 . It follows that Sλ1 ⊆ Sλ2 .

Now, given Lemma C.3, we can formally state our goal in this section, which is to compute a parametric min s, t-cut defined
as follows. Let λmin ∈ D be such that the minimal min s, t-cuts of Gλmin

and Gλ′ are equal for all λ′ ∈ D, λ′ < λmin.
Similarly, let λmax ∈ D be such that the minimal min s, t-cuts of Gλmax and Gλ′ are equal for all λ′ ∈ D with λ′ > λmax.
We will consider λmin and λmax additional inputs to our problem.

For simplicity, in the remaining part of this section we denote by Sλ and Tλ the s-side and the t-side (resp.) of the minimal
min-s, t-cut of Gλ.

Definition C.4 (Parametric min s, t-cut). Let Λ = {λ1, . . . , λk} ⊆ D, where k ≤ n − 1 and
λmin < λ1 < . . . < λk ≤ λmax. Let λ0 = λmin. Let τ : V → Λ ∪ {λmin,∞} be such that τ(s) = λmin and τ(t) = ∞.
Let S(z) = {v ∈ V : τ(v) ≤ z}. A pair (Λ, τ) is a parametric min s, t-cut of G if:

1. For i = 0, . . . , k − 1, S(λi) is a minimal min s, t-cut of Gλ′ for all λ′ ∈ [λi, λi+1) ∩ D.

2. S(λk) is a minimal min s, t-cut of Gλmax .

3. For i = 0, . . . , k − 1, S(λi) (S(λi+1).

It will also prove useful to define an approximate version of parametric min s, t-cut.

Definition C.5 (ε-approximate parametric min s, t-cut). Let Λ, τ , and S : D→ 2V be as in Definition C.4. A pair (Λ, τ) is
called an ε-approximate parametric min s, t-cut of G if:

1. For i = 0, . . . , k − 1, S(λi) is a minimal min s, t-cut of Gλ′ for all λ′ ∈ [λi, λi+1 − ε) ∩ D.

2. S(λk) is a minimal min s, t-cut of Gλmax .

3. For i = 0, . . . , k − 1, S(λi) (S(λi+1).

Lemma C.6. Let (Λ, τ) be the parametric min s, t-cut of G. Let (Λε, τε) be an ε-approximate parametric min s, t-cut of G.
Then for all v ∈ V , τ(v) ≤ τε(v) ≤ τ(v) + ε.

Proof. Let S(z) = {v ∈ V : τ(v) ≤ z}, and Sε(z) = {v ∈ V : τε(v) ≤ z}. First of all, τ(v) = ∞ if and only if
τε(v) =∞. This is because each of those is equivalent to v /∈ Sλmax

. In this case the lemma holds trivially.

So in the following let us assume that τ(v) and τε(v) are both finite. We first prove τε(v) ≥ τ(v). If τ(v) = λmin then this
follows by τε(v) ≥ λmin. So suppose τ(v) = λ for some λ ∈ Λ. Then by item (1) of Definition C.4, for any λ′ < λ, S(λ′)
is a minimal min s, t-cut of Gλ′ and v /∈ S(λ′). If we had τε(v) < τ(v), then Sε(τε(v)) would be a minimal min s, t-cut of
Gτε(v) such that v ∈ Sτε(v) and τε(v) < λ, a contradiction.

Now let us prove τε(v) ≤ τ(v) + ε. To this end, suppose τε(v) > τ(v) + ε. If τε(v) = λmin, then we have λmin >
τ(v) + ε ≥ λmin + ε, a clear contradiction. So let us assume that τε(v) ∈ Λε and let λ∗ be the element preceding τε(v) in
Λε, or λ∗ = λmin if no such element exists. We have v /∈ Sλ∗ and Sλ∗ is a minimal min s, t-cut in Gλ′ for λ′ = λ∗ and all
λ′ ∈ [λ∗, τε(v)− ε). As a result, for any λ′′ < τε(v)− ε, the minimal min s, t-cut of Gλ′′ does not contain v in the s-side.
But τ(v) < τε(v)− ε, v ∈ S(τ(v)), and S(τ(v)) is a minimal min s, t-cut of Gτ(v), a contradiction.

Our main result in this section is the following theorem.

Theorem 3.2. Let R = λmax − λmin be an integral multiple of ε > 0. Let Tmaxflow(n′,m′) = Ω(m′ + n′) be a convex
function bounding the time needed to compute maximum flow in a graph with n′ vertices and m′ edges obtained from
Gλ by edge/vertex deletions and/or edge contractions (with merging parallel edges by summing their capacities) for any
λ = λmin + `ε and any integer ` ∈ [0, R/ε]. Then, ε-approximate parametric min s, t-cut in G can be computed in
O(Tmaxflow(n,m log n) · log R

ε · log n) time.

The rest of this section is devoted to proving Theorem 3.2. For a connected subset X ⊆ V (G), {s, t} 6⊆ X , let G/X denote
G after merging the vertex set X into a single vertex. If the contracted vertex set X contains s (t), then the resulting vertex
inherits the identity of s (t, resp.).

Lemma C.7. Let λ be arbitrary and let (Sλ, Tλ) be the minimal min s, t-cut in Gλ. Then:

1. For any λ′ ≥ λ, cap(Gλ′) = cap(Gλ′/Sλ).

2. For any λ′ ≤ λ, cap(Gλ′) = cap(Gλ′/Tλ).

Proof. We only prove item 1, as item 2 is analogous. Since merging vertices is equivalent to connecting them with
infinite capacity edges, it cannot decrease the min s, t-cut capacity, i.e., cap(Gλ′) ≤ cap(Gλ′/Sλ). On the other hand, by
Lemma C.3, the minimal s, t min-cut (Sλ′ , Tλ′) in Gλ′ satisfies Sλ ⊆ Sλ′ . Hence, the capacity of the s, t-cut (Sλ′/Sλ, Tλ′)
in Gλ′/Sλ is the same as the capacity cap(Gλ′) of (Sλ′ , Tλ′) in Gλ′ . Consequently, cap(Gλ′) ≥ cap(Gλ′/Sλ).

Remark C.8. If (Sλ, Tλ) is a minimal min s, t-cut in Gλ, then G[Sλ] is connected by construction (Lemma C.1). However,
G[Tλ] might in general consist of several connected components if Gλ contains zero-capacity edges. In that case, we can
still obtain Gλ′/Tλ above using edge/vertex deletions and edge contractions. Namely, we contract only the connected
component A of Tλ that contains t. For any other component Ci (i = 1, . . . , q) of Tλ, its incoming edges start in Sλ and all
have capacity 0 in Gλ, and thus also in Gλ′ for λ′ < λ. Consequently, removing the vertices of

⋃q
i=1 Ci and subsequently

contracting A has the same effect on Gλ′ as merging the entire Tλ, i.e., Gλ′/Tλ = Gλ′ [V \
⋃q
i=1 Ci]/A.

We use a recursive “divide-and-conquer” algorithm. The input to a recursive procedure
APXPARAMETRICMINCUT is a graph G = (V,E) with n vertices, m edges, source s and sink t, the parametric
capacity function cλ : E → D→ R, and two parameters λmin, λmax such that ε evenly divides λmax − λmin. The output
of the procedure is an ε-approximate parametric min s, t-cut ({λ1, . . . , λk}, τ) as in Definition C.5. By Lemma C.3,
k ≤ |V (G)| − 1.

Algorithm 3 Computing an ε-approximate parametric min s, t-cut.
1: Let s, t, ε be globally defined.

2: function APXPARAMETRICMINCUT(G = (V,E), cλ : E → D→ R, λmin ∈ D, λmax ∈ D)
3: if |V | ≤ 2 then
4: return (∅, {s→ λmin, t→∞})
5: end if
6: For any λ′ ∈ D, let cλ[λ = λ′] the capacity function E → R of Gλ′
7: Sλmin

= MINIMALMINCUT(G, cλ[λ = λmin])
8: Sλmax

= MINIMALMINCUT(G, cλ[λ = λmax])
9: if |Sλmin

| > |V |/2 then
10: return APXPARAMETRICMINCUT(CONTRACT(G, cλ, Sλmin

), λmin, λmax)
11: end if
12: if |Sλmax | < |V |/2 then
13: return APXPARAMETRICMINCUT(CONTRACT(G, cλ, V \ Sλmax

), λmin, λmax)
14: end if
15: (λ1, λ2) := (λmin, λmax)
16: while λ2 − λ1 > ε do
17: λ′ := λ1 + b(λ2 − λ1)/2εc · ε
18: Sλ′ = MINIMALMINCUT(G, cλ[λ = λ′])
19: if |Sλ′ | ≥ |V |/2 then
20: λ2 := λ′

21: else
22: λ1 := λ′

23: end if
24: end while
25: For i = 1, 2, Sλi := MINIMALMINCUT(G, cλ[λ = λi])
26: (Λ1, τ1) = APXPARAMETRICMINCUT(CONTRACT(G, cλ, V \ Sλ1

), λmin, λ1)
27: (Λ2, τ2) = APXPARAMETRICMINCUT(CONTRACT(G, cλ, Sλ2), λ2, λmax)
28: Λ := if |Sλ1 | = |Sλ2 | then Λ1 ∪ Λ2 else Λ1 ∪ {λ2} ∪ Λ2

29: τ := {v ∈ Sλ1
→ τ1(v), v ∈ V \ Sλ2

→ τ2(v), v ∈ Sλ2
\ Sλ1

→ λ2}
30: return (Λ, τ)

The main idea of the procedure APXPARAMETRICMINCUT is to find the (approximately) most balanced minimal s, t-cuts
Sλ1

and Sλ2
and use them to reduce the problem size in the recursive calls significantly. Specifically, we want to find such

λ1 ≤ λ2 that |Sλ1
| ≤ n/2, |Sλ2

| ≥ n/2 and λ2 − λ1 = ε.

Suppose n > 2 as otherwise the problem is trivial. First, we compute minimal min-cuts in Gλmin
and Gλmax

. This takes two
max-flow runs, i.e., Tmaxflow(n,m) time, plus O(m) time by Lemma C.1.

It might happen that |Sλmin
| ≤ |Sλmax

| < n/2 or n/2 < |Sλmin
| ≤ |Sλmax

|. In these special cases we can immediately
reduce the vertex set by a factor of at least two by contracting Tλmax

or Sλmin
respectively, and recurse on the reduced graph.

By Lemma C.7 and the definition of λmin, λmax this reduction does not influence the structure of parametric cuts.

So suppose |Sλmin
| ≤ n/2 and |Sλmax

| ≥ n/2. Set λ1 = λmin and λ2 = λmax. So we have |Sλ1
| ≤ n/2 and |Sλ2

| ≥ n/2
initially. We maintain this invariant and gradually shrink the interval [λ1, λ2] until its length gets precisely ε in a binary
search-like way. We repeatedly try the pivot λ′ = λ1 + b(λ2 − λ1)/2εc · ε and compute Sλ′ . If |Sλ′ | ≥ n/2, we set
λ2 = λ′, and otherwise we set λ1 = λ′. Note that λ2 − λ1 remains an integer multiple of ε at all times. The whole process
costs O(log[(λmax − λmin)/ε]) = O(log(R/ε)) max-flow executions.

1: function MINIMALMINCUT(G = (V,E), c : E → R)
2: f = MAXFLOW(G, s, t, c)
3: return {v ∈ V : v reachable from s in the residual network Gf}

4: function CONTRACT(G = (V,E), cλ : E → D→ R, X ⊆ V) // |X ∩ {s, t}| = 1
5: w∗ := if s ∈ X then s else t
6: V ′ := V \X ∪ {w∗}
7: E′ := ∅
8: c′λ := E′ → D→ R
9: for uv ∈ E do

10: u′ := if u ∈ X then w∗ else u
11: v′ := if v ∈ X then w∗ else v
12: if (u′, v′) 6= (s, t) then
13: if u′v′ /∈ E′ then
14: E′ := E′ ∪ {u′v′}
15: c′λ(u′v′) := cλ(uv)
16: else
17: c′λ(u′v′) := c′λ(u′v′) + cλ(uv) // We add functions here.
18: end if
19: end if
20: end for
21: return (G′ = (V ′, E′), c′λ)

Let G1 = G/Tλ1
and G2 = G/Sλ2

. Note that G1, G2 may contain parallel edges or a direct st edge as a result of
contraction. Hence, these graphs are first preprocessed by (1) removing self-loops and direct st edges, (2) merging parallel
edges by summing their cost functions. The contraction and preprocessing is performed using the procedure CONTRACT.
Note that none of these preprocessing steps change the minimal cuts of G1,λ or G2,λ for any λ: the direct st edges cross all
s, t-cuts.

Next, we recursively compute ε-approximate parametric min s, t-cut in graphsG1 = G/Tλ1
andG2 = G/Sλ2

, The recursive
call on G1 is made with (λmin, λmax) set to (λmin, λ1), whereas the recursive call on G2 uses (λmin, λmax) := (λ2, λmax).
Note that indeed we have G1,λ1 = G1,λ′ for λ′ > λ1 as required since the t-side of the minimal min s, t-cut in G1,λ1

contains only t. Similarly, G2,λ2
= G2,λ′ for all λ′ < λ2.

Let (Λ1, τ1) = ({λ1,1, . . . , λ1,a}, τ1) and (Λ2, τ2) = ({λ2,1, . . . , λ2,b}, τ2) be the returned ε-approximate parametric min
s, t-cuts of G1 and G2 respectively. We return (Λ, τ) as the ε-approximate parametric min-s, t-cut of G, where

Λ =

{
Λ1 ∪ Λ2 if |Sλ1 | = |Sλ2 | = n/2,

Λ1 ∪ {λ2} ∪ Λ2 otherwise.
τ(v) =

τ1(v) if v ∈ Sλ1 ,

τ2(v) if v ∈ Tλ2 ,

λ2 otherwise.

Let us now prove the correctness of this algorithm. We proceed by induction on n. For n ≤ 2 this is trivial, so suppose
n > 3 and that recursive calls are made. Clearly, λ1,a ≤ λ1 < λ2 < λ2,1.

Item (3) of Definition C.5 follows easily by induction and the definition of λ1, λ2. Let Λ = {λ′1, . . . , λ′k}. That S(λ′i) =
{v ∈ V : τ(v) ≤ λ′i} is a minimal min s, t-cut of Gλ′i for all λ′i ∈ Λ (i.e., item (2) of Definition C.5) follows directly by
Lemma C.7 the definitions of λ1, λ2.

Now consider item (1) of Definition C.5. For some j < k we have λ′j = λ1,a. For all i = 0, . . . , k − 1, i 6= j, item (1), i.e.,
that Sλ′i is a minimal min s, t-cut for all λ′ ∈ [λ′i, λ

′
i+1), follows directly inductively.

If |Sλ1 | = |Sλ2 | = n/2, then Sλ1,a = Sλ2 . By induction it follows that Sλ1,a is a minimal min s, t-cut of Gλ′ for all
λ′ ∈ [λ2, λ2,1 − ε), and thus also for all λ′ ∈ [λ1,a, λ2,1 − ε) = [λ′j , λ

′
j+1 − ε).

If, on the other hand, Sλ1 (Sλ2 , then λ′j+1 = λ2. Since Sλ1,a = Sλ1 , Sλ1,a is indeed a minimal min s, t-cut for all
λ′ ∈ [λ1,a, λ2 − ε) = [λ′j , λ

′
j+1 − ε) as λ2 − ε = λ1.

Note that the input graph of each of the recursive calls has at most n/2 + 1 vertices. Moreover, by merging the parallel
edges (and summing their costs) after the contraction we can guarantee that |E(G1)|+ |E(G2)| ≤ |E(G)|+ n/2. Indeed,
observe that the only edges of G2 that can also appear in G1 are those incident to s in G2, and there are at most |Tλ2 | ≤ n/2
of them.

There is one important technical detail here: even though the individual functions cλ(uv) (for the edges uv of the original
input graph G) can be evaluated in constant time, after summing k of such functions in the process this cost can be as much
as Θ(k). We now argue that this cannot happen in our case due to preprocessing G1 and G2, and the evaluation cost is
O(1) for all edges in all recursive calls. More concretely, one can show that each edge capacity function in a recursive
call can be expressed as the sum of at most one original capacity function cλ(xy) and a real number. Indeed, suppose this
is the case for some call with input G. Then, each edge uv of G1 either (1) is contained in G and has not resulted from
merging some parallel edges after contraction, (2) has u /∈ {s, t} and v = t and resulted from merging edges uz1, . . . , uzl
such that z1, . . . , zl ∈ Tλ1 . The former case is trivial. In the latter case, for at least l − 1 of these zi we have zi 6= t, so
cλ(uzi) is a constant function. Fot at most one zj is of the form cλ(xy) + ∆ for some original capacity function cλ(xy)
and ∆ ∈ R. We conclude that the capacity function of uv in G1 is of the same form and equals cλ(xy) + ∆′, where
∆′ = ∆ +

∑
i 6=j cλ(uzi) ∈ R. The proof for G2 is analogous.

Now let us analyze the running time of the algorithm. One can easily inductively prove that:

• Each graph at the i-th level of the recursion tree has less than n/2i+2 vertices; hence, there are no more than log2 n+1
levels in the tree.

• The sum ni of numbers of vertices through all the graphs at the i-th level is less than
2i(n/2i + 2) ≤ n+ 2i+1 ≤ 3n.

• Since, the sum mi of numbers of edges in graphs at level i > 0 satisfies mi ≤ mi−1 + ni−1/2 ≤ mi−1 + 3n/2, we
have mi ≤ m+ 3in/2 = O(m+ n log n).

By the above, and since the function Tmaxflow is convex, we conclude the total time cost at the i-th level
is O (Tmaxflow(n,m+ n log n) log(R/ε)). Recall that there are O(log n) levels and therefore the total time is
O (Tmaxflow(n,m+ n log n) log(R/ε) log n).

C.1. Exact Parametric Min s, t-Cut

In this section we show how Theorem 3.2 implies new bounds on computing exact parametric min s, t-cuts in a few
interesting settings.

Integer Polynomial Costs. Suppose all the parametric costs cλ(uv) are of the form cλ(uv) = Quv(λ), where each Quv
is a (possibly different) constant-degree polynomial with integer coefficients bounded in the absolute value by an integer
U > 0 and take nonnegative values on D. Recall Quv can have a positive degree only if u = s or v = t. Moreover, if u = s,
then Quv is increasing, whereas when v = t, then Quv is decreasing.

Observe that the parametric capacity cλ(S) of any S, s ∈ S ⊆ V \ {t} is a constant-degree polynomial with integer
coefficients bounded by nU in absolute value. The same applies to a difference polynomial cλ(S)− cλ(S′) for any two
such sets S, S′.

It is known that for a constant-degree polynomials Q with integer coefficients bounded by W :

• The roots of Q are of absolute value O(poly(W)) (e.g., (Yap et al., 2000)).

• Any two distinct roots of Q are at least Ω(1/ poly(W)) apart. (Mahler, 1964)

This means that by setting λmin = −R/2 and λmax = R/2 (or slightly less aggressively, if e.g., R/2 /∈ D) for a sufficiently
large even integerR = O(poly nU) such thatR/2 exceeds the maximum possible absolute value of a root of any polynomial
of the form cλ(S)− cλ(S′), we will indeed have Gλmin = Gλ′ for all λ′ < λmin and Gλmax = Gλ′ for all λ′ > λmax.

Moreover, assume we compute an ε-approximate parametric min s, t-cut (Λ, τ), where
Λ = {λ1, . . . , λk}. Suppose for some i there exists λ′, max(λi, λi+1 − 2ε) ≤ λ′ < λi+1, such that the minimal

s, t-cut Sλ′ in Gλ′ satisfies Sλi (Sλ′ (Sλi+1
. Let λ∗i = max(λi, λi+1 − 2ε). Note that Sλi = Sλ∗i by Definition C.5.

Since Sλ′ is minimal, cλ(Sλi)(λ
∗
i) − cλ(Sλ′)(λ

∗
i) ≤ 0 and cλ(Sλi)(λ

′)− cλ(Sλ′)(λ
′) > 0. So the polynomial

cλ(Sλi) − cλ(Sλ′) is non-zero and has a root in the interval [λ∗i , λ
′). Similarly one can prove that the polynomial

cλ(Sλ′) − cλ(Sλi+1
) is non-zero and has a root in the interval [λ′, λi+1). We conclude that the product polynomial

[cλ(Sλi)− cλ(Sλ′)] · [cλ(Sλ′)− cλ(Sλi+1
)] is non-zero, has constant degree, has integer coefficients of order O(poly nU),

and has two distinct roots in the interval [λ∗i , λi+1), i.e., less than 2ε apart. Therefore, if we set ε so that 1/ε is a sufficiently
large integer but still polynomial in nU , the assumption Sλi (Sλ′ (Sλi+1

leads to a contradiction. As a result, for all
such λ′, Sλ′ equals either Sλ′ or Sλ′′ .

In other words, computing an ε-approximate min s, t-cut (Λ, τ), where Λ = {λ1, . . . , λk}, gives as the structure of all
possible minimal min s, t-cuts Sλ in the following sense. Suppose Λ∗ = {λ∗1, . . . , λ∗l } is an exact parametric min s, t-cut.
Then k = l and S(λi) = {v ∈ V : τ(v) ≤ λi) = Sλ∗i for all i = 1, . . . , k. To compute λ∗i , it is hence enough to find the
unique λ∗i ∈ (λi−1, λi] such that cλ(S(λi−1))(λ∗i) = cλ(S(λi))(λ

∗
i) which boils down to solving a polynomial equation of

constant degree. It is well known that such equations can be solved exactly in constant time for degrees at most 4.

Observe that if we run our ε-approximate parametric min s, t-cut algorithm with λmin, λmax, ε set as described above,
maximum flow is always invoked on some minor H of Gλ for λ that is an integer multiple of ε. Since, 1/ε is an integer, by
multiplying edge costs in H by 1/ε, we only need a maximum flow algorithm that can handle integer edge capacities of
order O(poly(nU)). By plugging in the best-known algorithms for computing max flow with integral capacities, we obtain
the following.

Theorem C.9. Let G be a graph whose parameterized capacities are constant-degree polynomials with integer coefficients
in [−U,U]. The structure of parametric min s, t-cut on G can be computed in:

• O(m ·min(m1/2, n2/3) · polylog{n,U}) time using a combinatorial algorithm (Goldberg & Rao, 1998),

• O((m+ n1.5) · polylog{n,U}) time using the algorithm of (van den Brand et al., 2021),

• O(m1.497 polylog{n,U}) time using the algorithm of (Gao et al., 2021).

The cut function can be found exacly in additional O(n) time if the degrees of capacity polynomials are at most 4.

Discrete Domains. Let us now consider the case when D is discrete and has ` elements. Suppose all parametric costs are
arbitrary functions meeting the requirements of the parametric min s, t-cut problem. Then, we can make the ε-approximate
algorithm exact by employing the following simple modifications. We start with λmin = minD and λmax = maxD. In the
binary-search like step, we always choose the middle element of D ∩ [λ1, λ2] as the next pivot. This way, all the max-flow
computations are performed on minors of Gλ for λ ∈ D.

Theorem C.10. Let G be a graph with arbitrary parameterized capacities D→ R for a discrete domain D ⊆ R, where
` = |D|. Let Tmaxflow(n′,m′) be defined as in Theorem 3.2. Then exact parametric min s, t-cut on G can be computed in
O(Tmaxflow(n,m log n) · log ` · log n) time.

Planar Graphs. By Remark C.8, all the max-flow computations in the algorithm of Theorem 3.2 are performed on minors
of G. As a result, if the input graph G is planar, we can use state-of-the-art planar max s, t-flow algorithms to obtain better
bounds on the parametric min-s, t-cut algorithms on planar graphs. Since maximum s, t-flow for planar graphs can be
computed in O(n log n) time even for real capacities (Borradaile & Klein, 2009; Erickson, 2010), planar parametric min
s, t-cut can be solved exactly:

• in O(n polylog{n,U}) time when parameterized capacities are constant degree polynomials with integer coefficients
in [−U,U],

• in O(n log3 n log `) time for discrete domains D ⊆ R of size `.

What may be surprising, our reduction is powerful enough to obtain an interesting subquadratic strongly polynomial exact
algorithm computing parametric min s, t-cut in a planar graph with capacity functions that are arbitrary polynomials of
degree no more than 4 and real coefficients.

We now sketch this algorithm. It is based on the parametric search technique (Megiddo, 1983) (see also (Agarwal et al.,
1994)). Suppose we want to solve some decision problem P(α), where α ∈ R, such that if P(α0) is a yes instance, then
P(α′) for all α′′ < α0 is also a yes instance. We wish to find the maximum α∗ for which P(α∗) is a yes instance. An
example problem P(α) could be “does an s, t-flow of value α exist in G?”. Then, α∗ clearly equals the maximum flow in
G.

Suppose we have an efficient strongly polynomial algorithm solving the decision problem. Then, in practice one could find
α∗ via binary search given some initial interval containing α∗; however, in general this would not lead to an exact algorithm
for real values of α∗. Parametric search is a technique for converting a strongly polynomial parallel decision algorithm into a
sequential or parallel strongly polynomial optimization algorithm as explained above. The only requirement to keep in mind
is that the decision algorithm is governed by comparisons, each of which amounts to testing the sign of some low-degree
(say, no more than 4) polynomial in α. Specifically, suppose we have a parallel decision algorithm A that uses WA work
and DA depth, and also a (possibly the same) another parallel decision algorithm B with WB work and DB depth. Suppose
for simplicity all these quantities are polynomial in n. Then, parametric search yields a strongly-polynomial optimization
algorithm computing α∗ in Õ(DA ·WB +WA) work and Õ(DA ·DB) depth.

Now back to planar graphs. We will use parametric search in a nested way. First of all, we will need a decent parallel
max flow algorithm for planar graphs. It is well-known (e.g., (Erickson, 2010)) that the decision variant of the max
s, t-flow problem on planar graphs is reducible to negative cycle detection in the dual graph (which is also planar). There
exists a parallel negative cycle detection algorithm on planar graphs with Õ(n+ n3/2/d3) work and Õ(d) depth for any
d ≥ 1 (Karczmarz & Sankowski). Hence, by using that algorithm as both A (for d = D3/7) and B (for d = D4/7), where
D is a parameter, we have WA = Õ(n+ n3/2/D9/7), DA = Õ(D3/7), WB = Õ(n+ n3/2/D12/7), DB = Õ(D4/7). So
parametric search yields a strongly-polynomial parallel max-flow algorithm for planar graphs with work Õ(n+ n3/2/D9/7)
and depth Õ(D) for any D ≥ 1.

Given a parallel algorithm for max flow in planar graphs, we can use parametric search (instead of binary search) once again
when computing the pair λ1, λ2 in our recursive algorithm. More specifically, we would like λ1 to be the largest such that
|Sλ1
| ≤ n/2, whereas λ2 to be the smallest such that |Sλ2

| ≥ n/2. It is easy to see that λ1 and λ2 are precisely neighboring
(or the same) breakpoints of the cut function, i.e., belong to Λ from Definition C.4. To actually compute λ1, λ2, we use
parametric search with A set to the obtained parallel max-flow algorithm5, and B to the best known algorithm that computes
a minimum min s, t-cut in a planar graph, i.e., a combination of the max-flow algorithm of (Borradaile & Klein, 2009;
Erickson, 2010), and linear time graph search. So, in the outer parametric search instance we haveWA = Õ(n+n3/2/D9/7),
DA = Õ(D), and WB = Õ(n). Therefore, the obtained algorithm runs in Õ(n3/2/D9/7 +Dn) sequential time. By setting
D = n7/32, we obtain Õ(n1+7/32) = Õ(n1.21875) time.

We stress that all the algorithms (Borradaile & Klein, 2009; Erickson, 2010; Karczmarz & Sankowski) used above proceed
by only adding and comparing edge weights. Adding polynomials cannot increase their degrees, so indeed when these
algorithms are run “generically” for some λ, the control flow depends only on signs of some small degree polynomials.

Theorem C.11. Let G be a planar graph whose parameterized capacities are all polynomials of degree at most 4 with real
coefficients. There exists a strongly polynomial algorithm computing parametric min s, t-cut in G exactly in Õ(n1+7/32)
time.

D. Removing Assumptions on Fi

In this section we argue why the assumptions on the functions Fi introduced in Section 2 are valid without loss of generality.
More precisely, we assumed that for all i, Fi(∅) = Fi(Vi) = 0 and Fi(S) ≥ 0 for all S. Here we show that a simple
preprocessing step can enforce all of these conditions.

Without changing the original problem we can shift each Fi such that it evaluates to 0 on ∅, by defining F i(S) =
Fi(S)− Fi(∅). This only changes F by a constant term without affecting the sets that minimize the parametric problem (1).

For each i, we use Lemma D.1 to find a point wi ∈ B(F i). Using this point, we define F i(S) = F i(S)− wi(S). Since by
definition wi(Vi) = F i(Vi), we have that F i(Vi) = 0. Also, we have F i(∅) = F i(∅) = 0. Finally, since wi(S) ≤ F i(S)

for all S, we also have F i(S) ≥ 0.

5Actually, it is computing max-flow followed by a graph search to determine the minimal min s, t-cut. However, this latter step does
not involve any comparisons on capacities, so its depth can be ignored.

Now we can equivalently rewrite the parametric problem

Fα(A) = F (A) +
∑
j∈A

ψ′j(α)

= F (A) +
∑
j∈A

ψ′j(α) +

(
m∑
i=1

Fi(∅)

)

= F (A) +
∑
j∈A

(
ψ′j(α) +

r∑
i=1

wi(j)

)
+

(
m∑
i=1

Fi(∅)

)
.

Now we can solve the problem on F =
∑r
i=1 F i with the parametric penalties ψ

′
j(α) = ψ′j(α) +

∑r
i=1 wi(j), which

maintain the validity of Assumption 2.6.

To compute a point in the base polytope of a submodular function we use the following folklore lemma, which shows that
the running time of our initialization procedure is O(

∑r
i=1 |Vi| · EOi):

Lemma D.1 ((Fujishige, 1980)). Let F : 2V → Z be a submodular set function, with F (∅) = 0, and let B(F) be its base
polytope. Given any x ∈ R|V |, one can compute

arg max
w∈B(F)

〈x,w〉

using O(|V |) calls to an evaluation oracle for F . Furthermore w is integral.

E. Deferred Proofs
E.1. Proof of Lemma 4.3

We define the primal and dual optima of this problem, which will be useful for the proof.

Definition E.1 (Graph subproblem minimizers). Let x̃∗ be the minimizer of

min
x
g(x) + φ(x) , (8)

and w̃∗ be the minimizer of

min
w∈B(G)

φ∗(−w) . (9)

The main tool that we will use for this proof will be the following two structural statements, which can be extracted from
Propositions 4.2 and 8.3 in (Bach, 2011).

Lemma E.2 ((Bach, 2011)). Consider any submodular function F : 2V → R.

1. Fix some x ∈ Rn. For any w ∈ Rn, w is an optimizer of max
w∈B(F)

〈w, x〉 if and only if there exists a permutation π of

[n] such that xπ1
≥ xπ2

≥ · · · ≥ xπn and for all u ∈ V we have

wu =

{
F ({π1}) if u = 1 ,

F ({π1, π2, . . . , πu})− F ({π1, π2, . . . , πu−1}) if u ≥ 2 .

2. Given a function φ that satisfies the conditions in Definition 2.6, the optimal solution x̃∗ to the problem

min
x
f(x) + φ(x) ,

where f is the Lovász extension of F , is given by

x̃∗u = − inf({λ ∈ R : u ∈ S(λ)})

for all u ∈ V , where

S(λ) = argmin
S⊆V

F (S) +
∑
u∈S

φ′u(−λ) .

Additionally, we present two simple lemmas which will be useful in the proof. The first one upper bounds the `1 diameter of
a base polytope, and the second one upper bounds the `1 norm of the gradient of a function in the base polytope.

Lemma E.3. For any submodular function F : 2V → R≥0 and F (S) ≤ Fmax for all S ⊆ V , we have that

max
w∈B(F)

‖w‖1 ≤ 2nFmax .

Proof. By definition of B(F), for all u ∈ V we have wu ≤ F ({u}) ≤ Fmax, so
∑

u∈V :wu≥0

wu ≤ nFmax. Also,∑
u∈V

wu = F (V), so we conclude that

‖w‖1 =
∑

u∈V :wu≥0

wu −
∑

u∈V :wu<0

wu

= 2
∑

u∈V :wu≥0

wu − F (V)

≤ 2nFmax − F (V)

≤ 2nFmax .

Lemma E.4. For any submodular function F : 2V → R≥0, F (S) ≤ Fmax for all S ⊆ V , and function ψ : Rn → R
satisfying the conditions of Definition 2.6 we have that

max
w∈B(F)

‖∇ψ∗(−w)‖1 ≤
2nFmax

σ
+ ‖∇ψ∗(0)‖1 .

Proof.

‖∇ψ∗(−w)‖1 ≤ ‖∇ψ∗(−w)−∇ψ∗(0)‖1 + ‖∇ψ∗(0)‖1

≤ 1

σ
‖w‖1 + ‖∇ψ∗(0)‖1

≤ 2nFmax

σ
+ ‖∇ψ∗(0)‖1 ,

where we used the triangle inequality, the 1
σ -smoothness of the ψ∗u’s, and Lemma E.3.

We are now ready to proceed with the proof.

Proof of Lemma 4.3. We let Λ = {λ1, . . . , λk}, where λ1 < · · · < λk, and define S(λ) to be a minimal set in

argmin
S⊆V

G(S) +
∑
u∈S

φ′u(−λ)

for all λ ∈ R. Note that this can be equivalently written as

argmin
S⊆V

G(S) +
∑
u∈S

max{0, φ′u(−λ)} −
∑
u∈S

max{0,−φ′u(−λ)}

= argmin
S⊆V

G(S) +
∑
u∈S

max{0, φ′u(−λ)}+
∑

u∈V \S

max{0,−φ′u(−λ)} −
∑
u∈V

max{0,−φ′u(−λ)}

= argmin
S⊆V

G(S) +
∑
u∈S

max{0, φ′u(−λ)}+
∑

u∈V \S

max{0,−φ′u(−λ)}

= argmin
S⊆V

c+λ (S ∪ {s}) ,

by the definition of the parametric capacities cλ, where c+λ (S ∪ {s}) =
∑

u∈S∪{s}
v∈V \(S∪{s})

cλ(u, v). Additionally, we denote

ε = 1
3L for convenience. By the second item of Lemma E.2, we know that the minimizer of min

x
g(x) + φ(x), where g is

the Lovász extension of G, is defined as

x̃∗u = − inf{λ ∈ R : u ∈ S(λ)} .

For all u ∈ V , let iu = argmin
i∈[k]

{λi | u ∈ S(λi)} and x̃u = −λiu . We will first prove that ‖x̃ − x̃∗‖∞ ≤ ε. Now, by

definition we have that x̃∗u ≥ x̃u. Additionally, setting λ0 = −∞ for convenience, we have u /∈ S(λiu−1), and u ∈ S(−x̃∗u),
so S(λiu−1) ⊂ S(−x̃∗u). By the first item of Definition C.5, this implies that

−x̃∗u ≥ λiu − ε = −x̃u − ε⇔ x̃∗u ≤ x̃u + ε .

Therefore, we have concluded that |x̃u − x̃∗u| ≤ ε for all u ∈ V , i.e. ‖x̃− x̃∗‖∞ ≤ ε.

We compute a dual solution ŵ = −∇φ(x̃). We will show that w̃∗ can be retrieved by rounding ŵ. Using the fact that φu’s
are L-smooth and the optimality condition w̃∗ = −∇φ(x̃∗) from Lemma B.5, we get that

‖ŵ − w̃∗‖∞ = ‖∇φ(x̃)−∇φ(x̃∗)‖∞ ≤ L‖x̃− x̃∗‖∞ ≤ Lε = 1/3 .

On the other hand, by optimality of w̃∗, it is a maximizer of max
w∈B(G)

〈w, x̃∗〉. By the first item of Lemma E.2, there exists

a permutation π1, . . . , πn of V such that w̃∗u = G({π1, . . . , πu}) − G({π1, . . . , πu−1}) for u ∈ V . As G takes integral
values, we have w̃∗u ∈ Z for all u ∈ V , and since |ŵu − w̃∗u| ≤ 1/3 < 1/2, we can exactly recover w̃∗ by rounding each
entry of ŵ to the closest integer.

Our next goal is to compute a G-decomposition of w̃∗, which we will do by computing an exact primal solution and then
again applying the first item of Lemma E.2. Given w̃∗, we can easily recover the primal optimum x̃∗ = ∇φ(−w̃∗). In order

to recover a decomposition w̃∗ =
r∑
i=1

w̃∗i, we use the well-known fact (Edmonds, 1970) that

max
w∈B(G)

〈w, x〉 = max
wi∈B(Gi)

r∑
i=1

〈wi, x〉 ,

so for any i ∈ [r], w̃∗i necessarily maximizes
max

wi∈B(Gi)
〈wi, x̃∗〉 .

Therefore, by the first item of Lemma E.2, w̃∗i can be recovered by sorting the entries of x̃∗ in decreasing order, such that
x̃∗π1
≥ x̃∗π2

≥ · · · ≥ x̃∗πn for some permutation π of V , and then setting

w̃∗iu = Gi({π1, . . . , πu})−Gi({π1, . . . , πu−1}) (10)

for all u ∈ V . Note that w̃∗i’s are in Zn.

The runtime is dominated by the computation of the decomposition in (10), which involves computing prefix cuts for each

Gi and by Lemma E.5 takes time O
(

r∑
i=1

|Vi|2
)

. Therefore, the total runtime is O
(
n+

r∑
i=1

|Vi|2
)

.

Lemma E.5 (Computing all prefix cut values). Given a graph G(V,E, c) with V = {1, 2, . . . , n}, we can compute the
values c+([u]) for all u ∈ [n] in time O(n2).

Proof. We note that c+(∅) = 0 and for any u ≥ 1 we have

c+([u]) = c+([u− 1]) +

n∑
v=u+1

cuv −
u−1∑
v=1

cvu . (11)

Therefore c+([u]) can be computed in O(n) given c+([u− 1]). As we apply (11) n times, the total runtime is O(n2).

E.2. Proof of Lemma 4.4

We first prove the following lemma, which helps us bound the range of parameters for parametric min s, t-cut.
Lemma E.6. Consider a graph G(V ∪ {s, t}, E, c ≥ 0) and a function φ(x) =

∑
u∈V

φu(xu) that satisfies Assumption 2.6.

Additionally, let G(S) = c+(S ∪ {s}) for all S ⊆ V be the cut function associated with the graph. For any λ ∈ R, we set
S(λ) to be the smallest set that minimizes

min
S⊆V

G(S) +
∑
u∈S

φ′u(−λ) .

Let ρ = max
u∈V
|φ′u(0)| and Gmax = max

S⊆V
G(S). Then, S(λmin) = ∅ and S(λmax) = V , where λmin = −2ρ+Gmax

σ and

λmax = 2ρ+Gmax

σ .

Proof. We first note that by the σ-strong convexity of the φu’s, and since −λmin > 0 > −λmax, we have that

φ′u(−λmin) ≥ φ′u(0) + σ|λmin| .

and
φ′u(−λmax) ≤ φ′u(0)− σ|λmax| .

Therefore for any ∅ 6= S ⊆ V we have

G(S) +
∑
u∈S

φ′u(−λmin) ≥ G(S) +
∑
u∈S

(φ′u(0) + σ|λmin|)

≥ G(S)− |S|ρ+ |S|σ|λmin|

= G(S)− |S|ρ+ 2|S|σρ+Gmax

σ
> G(S) +Gmax

≥ G(∅) ,

where we used the fact that G(S) ≥ 0 and G(∅) ≤ Gmax, so S(λmin) = ∅. Similarly, for any S ⊂ V we have

G(S) +
∑
u∈S

φ′u(−λmax) = G(S) +
∑
u∈V

φ′u(−λmax)−
∑

u∈V \S

φ′u(−λmax)

≥ G(S) +
∑
u∈V

φ′u(−λmax)−
∑

u∈V \S

(φ′u(0)− σ|λmax|)

≥ G(S) +
∑
u∈V

φ′u(−λmax) + |V \S| (σ|λmax| − ρ)

= G(S) +
∑
u∈V

φ′u(−λmax) + |V \S|
(

2σ
ρ+Gmax

σ
− ρ
)

> G(S) +
∑
u∈V

φ′u(−λmax) +Gmax

≥ G(V) +
∑
u∈V

φ′u(−λmax) ,

where we used the fact that G(S) ≥ 0 and G(V) ≤ Gmax, so S(λmax) = V .

We are now ready for the proof.

Proof of Lemma 4.4. We first shift the polytope B(F) so that w is translated to 0. Specifically, for all S ⊆ V , we let
F̂ (S) = F (S)− w(S) and F̂i(S) = Fi(S)− wi(S) for all i ∈ [r]. As we are just subtracting a linear function, F̂ and the
F̂i’s are still submodular functions, and B(F̂) = B(F)− w, B(F̂i) = B(Fi)− wi for all i ∈ [r]. Note that wi ∈ B(Fi)

implies that the F̂i’s (and thus also F̂) are non-negative, since

F̂i(S) = Fi(S)− w(S) ≥ 0 ,

and additionally F̂i(∅) = Fi(∅) = 0 and F̂i(Vi) = Fi(Vi)− wi(Vi) = 0 for all i ∈ [r] (also implying F̂ (∅) = F̂ (V) = 0).

We run the algorithm from Lemma A.5 on the F̂i’s to obtain directed graphs Gi(V,E, ci ≥ 0) whose (Vi-restricted) cut
functions Gi(S) = ci+(S) α-approximate F̂i(S), where α = max

i∈[r]
{|Vi|2/4}. More specifically,

1

α
F̂i(S) ≤ Gi(S) ≤ F̂i(S) for all S ⊆ Vi, Gi(Vi) = F̂i(Vi) (12)

and
1

α

(
B(Fi)− wi

)
=

1

α
B(F̂i) ⊆ B(Gi) ⊆ B(F̂i) = B(Fi)− wi , (13)

We also define the graph G(V,E, c ≥ 0), where c =
r∑
i=1

ci and has cut function G(S) =
r∑
i=1

Gi(S) for all S ⊆ V . Then,

1

α
F̂ (S) ≤ G(S) ≤ F̂ (S) for all S ⊆ V , G(V) = F̂ (V) (14)

and
1

α
(B(F)− w) ⊆ B(G) ⊆ B(F)− w . (15)

We absorb the linear term that we subtracted from F into the parametric function. Concretely, we define φ as φ(x) =
ψ(x) + 〈w, x〉 for all x ∈ Rn. It is easy to see that φ(x) is coordinate-wise separable, as φ(x) =

∑
u∈V

φu(xu) where

φu(xu) = ψu(xu) + wuxu for all u ∈ V and that it satisfies Assumption 2.6, since φ′′u(xu) = ψ′′u(xu) and

|φ′u(0)| = |ψ′u(0) + wu| ≤ |ψ′u(0)|+ F ({u}) ≤ |ψ′u(0)|+ Fmax = (n+ r)O(1) .

Additionally, the Fenchel dual of φu is a shifted version of ψu, i.e.

φ∗u(z) = max
y∈R

zy − φ(y) = max
w∈R

zy − ψ(y)− wuy = max
w∈R

(z − wu)y − ψ(y) = ψ∗u(z − wu) .

We will now run the algorithm from Lemma 4.3 on graphs Gi and parametric function φ to obtain a dual solution vector
w̃. We note that, as Fi’s and wi’s take integer values, Gi’s take integer values too. This algorithm takes a 1

3L -approximate
parametric min s, t-cut as input, which we first compute using Theorem 3.2, with range of parameters [λmin, λmax] given by
Lemma E.6. We have

λmax − λmin = 4

max
u∈V
|φ′u(0)|+ max

S⊆V
G(S)

σ

≤ 4
max
u∈V
|φ′u(0)|+ F̂max

σ

≤ 4
max
u∈V
|φ′u(0)|+ Fmax + ‖w‖1

σ

≤ 4
max
u∈V
|φ′u(0)|+ (2n+ 1)Fmax

σ

= (n+ r)O(1) ,

where we used Lemma E.3 and the fact that the quantities |φ′u(0)|, Fmax,
1
σ are bounded by (n+ r)O(1) (Assumption 2.6).

Based on Theorem 3.2, the time to obtain the 1
3L -approximate parametric min s, t-cut will be

O

(
Tmaxflow(n, |E′| log n) log

λmax − λmin

1/3L
log n

)
= Õ

(
Tmaxflow

(
n, n+

r∑
i=1

|Vi|2
))

.

So, by applying Lemma 4.3, we obtained a dual solution w̃ =
r∑
i=1

w̃i for which w̃i ∈ B(Gi) and

w̃ = argmin
w̃∈B(G)

φ∗(−w̃) = argmin
w̃∈B(G)

ψ∗(−w − w̃) . (16)

For all u ∈ V and i ∈ [r], we set w′iu = wiu + w̃iu and w′u =
r∑
i=1

w′iu . Note that these quantities are still integral. We now

prove the two parts of the lemma statement (feasibility and optimality) separately.

Feasibility. For any i ∈ [r] and S ⊆ Vi, we have that

w′i(S) = wi(S) + w̃i(S) ≤ wi(S) +Gi(S) ≤ wi(S) + F̂i(S) = wi(S) + Fi(S)− wi(S) = Fi(S) ,

where the first inequality follows from the fact that w̃i ∈ B(Gi). Similarly, we have

w′i(Vi) = wi(Vi) + w̃i(Vi) = wi(Vi) +Gi(Vi) = wi(Vi) + F̂i(Vi) = Fi(Vi) .

So we conclude that w′i ∈ B(Fi) for all i ∈ [r].

Optimality. Let’s set h(z) := ψ∗(−z) for all z ∈ Rn for notational convenience, so that our goal is to prove that

h(w′)− h(w∗) ≤
(

1− 1

α

)
(h(w)− h(w∗)) .

We will prove a slightly different statement where w′ is replaced by a solution on the path from w to w∗, which is enough
because w′ is optimal in w +B(G). Concretely, we set w̄ = 1

α (w∗ − w) and instead will prove

h(w + w̄)− h(w∗) ≤
(

1− 1

α

)
(h(w)− h(w∗)) .

Now, h is a convex function, so applying convexity twice we have

h(w) ≥ h(w + w̄) + 〈∇h(w + w̄),−w̄〉

= h(w + w̄)− 1

α
〈∇h(w + w̄), w∗ − w〉

(17)

and
h(w∗) ≥ h(w + w̄) + 〈∇h(w + w̄), w∗ − w − w̄〉

= h(w + w̄) +
α− 1

α
〈∇h(w + w̄), w∗ − w〉 .

(18)

We divide (18) by α− 1 and then sum it with (17), getting

h(w) +
1

α− 1
h(w∗) ≥ h(w + w̄) +

1

α− 1
h(w + w̄) .

Equivalently,

α

α− 1
(h(w + w̄)− h(w∗)) ≤ h(w)− h(w∗) .

So by rearranging,

h(w + w̄)− h(w∗) ≤
(

1− 1

α

)
(h(w)− h(w∗)) . (19)

Thus we can equivalently write that

ψ∗(−w − w̄)− ψ∗(−w∗) ≤
(

1− 1

α

)
(ψ∗(−w)− ψ∗(−w∗)) . (20)

Now, since by (15) we have 1
α (B(F)− w) ⊆ B(G) and w∗ ∈ B(F), we have w̄ = 1

α (w∗ − w) ∈ B(G). Combining the
fact that w̃ is a minimizer of min

w̃∗∈B(G)
ψ∗(−w − w̃∗) (16) with the fact that w̄ ∈ B(G), we have

ψ∗(−w′) = ψ∗(−w − w̃) ≤ ψ∗(−w − w̄) .

Combining this with (20), we obtain the desired claim:

ψ∗(−w′)− ψ∗(−w∗) ≤
(

1− 1

α

)
(ψ∗(−w)− ψ∗(−w∗)) . (21)

The running time to compute the graphs Gi is O
(

r∑
i=1

|Vi|2Oi
)

and the time to run the algorithm from Lemma 4.3 is

Õ

(
n+

r∑
i=1

|Vi|2
)

, so the total running time is

Õ

(
r∑
i=1

|Vi|2Oi + Tmaxflow

(
n, n+

r∑
i=1

|Vi|2
))

.

Algorithm 4 Finding all minimum cuts

1: function FINDMINCUTS(G(V,E, c), φ, ε)
2: V ′ = V ∪ {s, t}, E′ = E ∪

⋃
u∈V
{(u, t)} ∪

⋃
u∈V
{(s, u)}

3: Define parametric capacities

cλ(u, v) =

max{0, φ′u(−λ)} if u ∈ V, v = t

max{0,−φ′u(−λ)} if u = s, v ∈ V
cuv otherwise

4: Set (Λ, τ) =APXPARAMETRICMINCUT(G′(V ′, E′), cλ, λmin = −(n+ r)O(1), λmax = (n+ r)O(1))
5: Set w̃u = −φ′∗u (−τ(u)) for all u ∈ V
6: return w̃

	Approximating Submodular Set Functions with Graph Cuts
	Proof of Lemma A.2

	Parametric Submodular Minimization via Optimization on the Base Polytope
	Parametric s-t Cuts
	Exact Parametric Min s,t-Cut

	Removing Assumptions on Fi
	Deferred Proofs
	Proof of Lemma 4.3
	Proof of Lemma 4.4

