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Abstract
Gaussian processes (GPs) are non-parametric,
flexible, models that work well in many tasks.
Combining GPs with deep learning methods via
deep kernel learning (DKL) is especially com-
pelling due to the strong representational power
induced by the network. However, inference in
GPs, whether with or without DKL, can be com-
putationally challenging on large datasets. Here,
we propose GP-Tree, a novel method for multi-
class classification with Gaussian processes and
DKL. We develop a tree-based hierarchical model
in which each internal node of the tree fits a GP
to the data using the Pòlya-Gamma augmenta-
tion scheme. As a result, our method scales
well with both the number of classes and data
size. We demonstrate the effectiveness of our
method against other Gaussian process training
baselines, and we show how our general GP ap-
proach achieves improved accuracy on standard
incremental few-shot learning benchmarks.

1. Introduction
Gaussian processes (GPs) are a popular Bayesian non-
parametric approach that enjoys a closed-form marginal
likelihood, thus avoiding one of the major computational
difficulties of many Bayesian approaches. However, due
to several obstacles, successfully applying GPs to certain
problems may be challenging. First, the performance of GP
models heavily depends on the kernel function being used.
In domains such as images, where common kernels are not
a good measure of semantic similarity, this can hinder the
performance. This problem is commonly addressed by deep
kernel learning (DKL) where GPs are combined with mod-
ern neural networks to learn a useful kernel function from
the data (Calandra et al., 2016; Wilson et al., 2016a).

Second, computing the marginal likelihood involves storing
and inverting an n×n kernel matrix, where n is the number
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of training examples. This can limit exact inference on large
datasets, especially when combined with DKL where the
kernel needs to be re-computed at each iteration. A common
approach to handle large datasets is to learn a small set of
inducing points, which act as a proxy for the training data
(Silverman, 1985; Quinonero-Candela & Rasmussen, 2005;
Snelson & Ghahramani, 2006).

While extensive work has been done on handling these chal-
lenges for Gaussian process regression, comparatively little
has been done on how to scale Gaussian process classifica-
tion (see Liu et al., 2020a, for a recent review). This is partly
because the categorical distribution on the target variable
results in non-Gaussian posteriors and we no longer have a
closed-form marginal likelihood. One appealing approach
to address this obstacle is the Pólya-Gamma augmentation
(Polson et al., 2013). In the Pólya-Gamma augmentation,
the posterior becomes Gaussian when conditioned on the
augmented Pólya-Gamma variable. However, this augmen-
tation was designed for binary classification tasks. Since
then, several extensions to multi-class classification have
been proposed (Linderman et al., 2015; Galy-Fajou et al.,
2020; Snell & Zemel, 2021). However, as we will show
empirically their performance degrades as the number of
target classes increases.

In this study, we present a novel method for Gaussian pro-
cess classification (GPC) that is designed to handle both
small and large datasets. Importantly, it is also designed to
handle a large number of classes. We develop a tree-based
model in which each node solves a binary classification task
using a Gaussian process and the Pólya-Gamma augmenta-
tion scheme. We term our method GP-Tree. GP-Tree has
great flexibility as it allows us to take samples from the pos-
terior with Gibbs sampling, or apply variational inference
and use the inducing points approximation. To train GP-
Tree on large-scale image classification tasks, we further
combine it with DKL and we show how in this setup as well
it is superior to popular GPC methods.

Finally, we apply GP-Tree to incremental few-shot learning
challenges (Tao et al., 2020). In incremental few-shot learn-
ing, we assume that the data come sequentially. Initially,
the learner is presented with many samples from some base
classes. Then, at each new iteration, it has access only to a
new, small, dataset that originated from a set of novel classes
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not seen during previous iterations. Here the challenges
are two-fold, generalizing from a small number of training
points for the novel classes and avoiding catastrophic for-
getting of the previously encountered classes. We claim that
GPs are a natural fit for this problem. The inducing points,
which summarize the training data, can help mitigate the
catastrophic forgetting problem, and GPs generalize well
from small datasets due to their Bayesian nature. Indeed,
we show that once we get GPs to scale and successfully
train on the base classes, our GP approach achieves perfor-
mance gains over baseline methods on incremental few-shot
benchmarks.

Thus, we make the following novel contributions: (1) we
show how current Gaussian process classification methods
struggle when the number of classes to be learned is large;
(2) we present a novel method for Gaussian process classifi-
cation that is designed to handle a large number of classes
and large datasets based on the Pólya-Gamma augmentation;
(3) we present GPs as a promising new research direction
for few-shot incremental learning; (4) we demonstrate com-
petitive classification accuracy on two benchmark datasets
designed for few-shot incremental learning. Our code is pub-
licly available at https://github.com/IdanAchituve/GP-Tree.

2. Background
2.1. Notations

We denote vectors with bold lower-case font, e.g. x, and
matrices with capital bold font, e.g. X . Given a dataset
(x1, y1), ..., (xn, yn), we denote by y = [y1, ..., yn]T the
vector of labels, and byX ∈ Rn×d the design matrix whose
ith row is xi. In the classification case, each yi takes a value
from {1, ..., C} class labels.

2.2. Gaussian Processes

In Gaussian process learning we assume the mapping from
the input points to the target values is via a latent func-
tion f . The target values are assumed to be independent
when conditioned on the latent function, i.e., p(y|X, f) =∏n
i=1 p(yi|f(xi)). The latent function is assumed to follow

a Gaussian process prior f ∼ GP(m(x), k(x,x′)), where
the evaluation vector of f onX , f = [f(x1), ..., f(xn)]T ,
has a Gaussian distribution f ∼ N (µ, K), where µi =
m(xi) and Kij = k(xi,xj). The mean m(x) is com-
monly taken to be the constant zero function, and the kernel
k(x,x′) is a positive semi-definite function.

Let X,y be the training data, and let f∗ be the evalua-
tion of f on a novel point x∗. In the regression case, we
assume p(y|x, f) = N (f(x), σ2). Therefore, the predic-
tive distributions, p(f∗|x∗,y,X) and p(y∗|x∗,y,X) =∫
p(f∗|x∗,y,X)p(y∗|f∗)df∗, are Gaussians with known

parameters. Specifically,

p(f∗|x∗,y,X) = N (µ∗, σ∗),

µ∗ = kT∗ (K + σ2I)−1y,

σ∗ = k∗∗ − kT∗ (K + σ2I)−1k∗.

(1)

Where, k∗∗ = k(x∗, x∗), and k∗[i] = k(xi,x∗). This
closed-form solution allows us to avoid the costly marginal-
ization step; however, it entails the inversion of an n × n
matrix which can be expensive to compute for large datasets.

DKL (Wilson et al., 2016a) is a popular choice to apply a
kernel on structured data such as images. The kernel over the
input data points is commonly in the form of a fixed kernel
on an embedding learned by a deep neural network gθ, e.g.,
kθ(x,x

′) = exp(−||gθ(x) − gθ(x
′)||2/2`2). Therefore,

the closed-form inference is of even greater importance as
it allows to easily backpropagate through the GP inference.

2.3. The Pólya-Gamma Augmentation

When applying GPs to classification tasks, the likelihood
p(y|f(xi)) is no longer Gaussian. The predictive distribu-
tions are also no longer Gaussian and we do not have a
close-form solution for them. To overcome this limitation,
several methods were offered based on the Pólya-Gamma
augmentation (Polson et al., 2013) to model the discrete
likelihoods in GPs (Linderman et al., 2015; Wenzel et al.,
2019; Galy-Fajou et al., 2020; Snell & Zemel, 2021). The
Pólya-Gamma augmentation hinges on the following iden-
tity

(eψ)a

(1 + eψ)b
= 2−beκψEω[e−ωψ

2/2], (2)

where κ = a−b/2, and ω has the Pólya-Gamma distribution
ω ∼ PG(b, 0).

Suppose we have a binary classification task with y ∈
{0, 1}, and we are given a vector of latent function values
f , the likelihood can be written as,

p(y|f) =

n∏
j=1

σ(fj)
yj (1− σ(fj))

1−yj =

n∏
j=1

eyjfj

1 + efj
,

(3)
where σ(·) is the sigmoid function. We can now use Eq. 2
to introduce auxiliary Pólya-Gamma variables (one per sam-
ple) such that we recover Eq. 3 by marginalizing them out.
If instead we sample the Pólya-Gamma variables ω we get
the following posteriors:

p(f |y,ω) = N (f |Σ(K−1µ+ κ), Σ),

p(ω|y,f) = PG(1, f).
(4)

Where κj = yj − 1/2, Σ = (K−1 + Ω)−1, and Ω =
diag(ω). We can now sample from p(f ,ω|y,X) using
block Gibbs sampling and get Monte-Carlo estimations of
the marginal and predictive distributions.

https://github.com/IdanAchituve/GP-Tree
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2.4. Inducing Points

Exact inference with GPs compels us to store the entire
training set and invert an n× n matrixKnn, which greatly
limits their use. A common solution to this problem is to
use inducing points (Silverman, 1985; Quinonero-Candela
& Rasmussen, 2005; Snelson & Ghahramani, 2006). With
inducing points, we usually define m � n pseudo-inputs
whose locations are often trainable parameters. Then we
only need to invert an m ×m matrix, thus allowing us to
control the computational cost.

Our approach closely follows the inducing points method for
binary classification with the Pólya-Gamma augmentation
presented in (Wenzel et al., 2019). We define X̄ as the
inducing locations/inputs and f̄ as the latent function value
evaluated on X̄ . We have,

p(f̄) = N (0, Kmm), (5)

p(f |f̄) = N (KnmK
−1
mmf̄ , Qnn),

Qnn = Knn −KnmK
−1
mmKmn.

(6)

p(y,ω,f , f̄) = p(y|f ,ω)p(f |f̄)p(f̄)p(ω), (7)

whereKmm is the kernel matrix on the inducing locations,
andKnm is the cross-kernel matrix between the inputs and
the inducing locations. While p(f̄ |y,ω) is Gaussian due
to the Pólya-Gamma augmentation, the distribution after
marginalizing over ω, p(f̄ |y), is not Gaussian. Following
(Hensman et al., 2015), Wenzel et al. (2019) proposed a vari-
ational inference approach based on the following assump-
tion q(ω, f̄) = q(ω)q(f̄), where q(ω) is a Pólya-Gamma
density and q(f̄) is a Gaussian density. Then, the inducing
locations and the variational parameters are learned with the
evidence lower bound.

3. Method
In Sections 3.1-3.3 we describe our method to train GP
classifiers with DKL that scale to large training sets and
a large number of classes. Afterward, in Section 3.4, we
will show how our model, with minor modifications, can be
adjusted to the few-shot class-incremental learning setup.

3.1. Hierarchical Classification

Consider the case presented in (Linderman et al., 2015)
aimed at modeling categorical and multinomial data. To de-
rive a Pólya-Gamma augmentation Linderman et al. (2015)
utilized the stick-breaking representation for the multino-
mial density. They turn the multi-class classification task
into a sequence of C − 1 binary classification tasks where
yj = 1 if the original label is j and yj = 0 if the original
label is larger than j. Then, C − 1 independent Gaussian

processes can be learned, one for each of the binary classifi-
cation tasks. Denoting by fi = (f1

i , ..., f
C−1
i ) the vector of

latent processes values at the ith example, the stick-break
likelihood is:

p(yi = c|fi) = σ(f c)
∏
k<c

(1− σ(fk)), (8)

where the remaining probability mass is assigned to the Cth

class. While the stick-breaking formulation allows to break
the multi-class classification problem into a sequence of
binary classification tasks, as we will show in Section 5.1,
its performance degrades with the number of classes. In-
tuitively, the stick-breaking process can be viewed as a hi-
erarchical classification with an extremely unbalanced tree
(see illustration in Figure 1(a)). This sequential structure
can be severely sub-optimal for two reasons: (1) the num-
ber of binary classification tasks needed to classify a data
point grows linearly with the number of classes instead of
logarithmic for a perfectly balanced tree; (2) not all label
splits result in equally hard binary classification tasks, yet
the stick-breaking process uses the default label ordering.

Therefore, we propose to use a tree-structured hierarchical
classification instead of the sequential alternative. This
construction allows finding a tree structure that results in
easy-to-learn binary tasks. Conceptually, we create a tree
by splitting the data recursively by classes until we get to
single class leaves. More formally, starting at the root node,
we partition the classes {1, ..., C} into two disjoint sets Cl
and Cr, such that Cl ∪ Cr = {1, ..., C}. Let Dl and Dr

denote the data points associated with the classes in Cl and
the classes in Cr respectively. We assign Dl to the left child
of the root node and Dr to the right one. We recursively
apply the same operation at each node until we are left with
single class leaf nodes. Thus, a binary tree is formed (not
necessarily a perfectly balanced one), see Figure 1(b) for an
example. We then fit a binary GP classifier to each internal
node of the tree that makes a binary decision to either go
left or go right at that node.

The model quality depends on how we partition the data,
namely the tree construction processes described above. A
naive approach would be to use a random balanced binary
tree; however, this strategy does not take advantage of the
semantic meaning of the classes. We propose the following
procedure, we first compute a representative prototype for
each class by taking the mean of all samples (or their rep-
resentation obtained by a NN) belonging to the same class
coordinate-wise. We then normalize the vectors to have
unit length and apply divisive hierarchical clustering. We
recursively split each node by using k-means++ clustering
(Arthur & Vassilvitskii, 2007) with k = 2 on the class pro-
totype vectors, until we are left with single class leaves. We
note that partitioning the data in this manner may be sub-
optimal when working on the input space directly; however,
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(a) Multinomial Stick Break Tree (b) GP-Tree

Figure 1. The trees corresponding to the multinomial stick break model (left) and the GP-Tree model (right) for CIFAR-10. The
multinomial stick break generates an unbalanced tree in which the order of the classes is arbitrary. GP-Tree, on the other hand, generates a
more balanced tree that is divided by the semantic meaning of the classes. For example, motorized vehicles are on the right subtree of the
root node while animals are on the left one. This semantic partition is pronounced at all tree levels.

when applied on features extracted by a NN it is very sensi-
ble since NNs tend to generate points that cluster around a
single prototype for each class (Snell et al., 2017). Then, we
fit a GP to each internal node which makes a binary decision
based on the data associated with that node. We denote the
GP associated with node vi by fvi ∼ GP(mvi , kvi), and all
of the GPs in the tree with F . The likelihood of a data point
having the class c is given by the unique path P c from the
root to the leaf node corresponding to that class:

p(y = c|F) =
∏
vi∈P c

σ(fvi)
yvi (1− σ(fvi))

1−yvi , (9)

where yvi = 1 if the path goes left at vi and zero otherwise.

3.2. Inference at the Node Level

Since the likelihood in Eq. 9 factorizes over the nodes, we
may look at the individual components separately. In the
following we omit the subscript vi for clarity; however, all
datum and quantities are those that belong to a specific node
vi. In general, we can perform inference on each tree node
with either Gibbs sampling or variational inference (VI).
For training on large datasets with deep kernel learning and
inducing points, we found the variational approach to scale
better, as the inducing points posterior depends on the entire
dataset. However, when modeling the novel classes in incre-
mental few-shot learning, the Gibbs sampling procedure is
more suitable, as no new parameters are required.

For Gibbs sampling, we use the posterior probabilities intro-
duced in section 2.3. At each node, we can use block-Gibbs
sampling to sample ω and f . Then we can obtain the aug-
mented marginal and predictive distributions described next.

The augmented marginal likelihood:

p(y|ω,X) =

∫
p(y|f ,ω,X)p(f)df

∝ N (Ω−1κ|0, K + Ω−1),

(10)

and the augmented predictive likelihood on a new data point
x∗:

p(y∗|x∗,ω,y,X) =

∫
p(y∗|f∗)p(f∗|x∗,ω,y,X)df∗,

(11)
where,

p(f∗|x∗,X,y,ω) = N (f∗|µ∗, Σ∗),

µ∗ = kT∗ (Ω−1 +K)−1Ω−1κ,

Σ∗ = k∗∗ − kT∗ (Ω−1 +K)−1k∗.

(12)

Where we assumed a zero mean prior. The integral in Eq. 11
is intractable but can be computed numerically with 1D
Gaussian-Hermite quadrature.

Alternatively to the Gibbs sampling, we may apply varia-
tional inference at each node. We define X̄ as the learned
pseudo-inputs and ȳ as their associated class labels. X̄
are defined at the tree level and are shared by all relevant
nodes. For each node we define the variational distributions
q(ω) = PG(1, c) and q(f̄) = N (f̄ |µ̃, Σ̃), where c, µ̃, Σ̃
are learnable parameters. The variational lower bound to
the log marginal likelihood is:

C(c, µ̃, Σ̃) = Ep(f |f̄)q(f̄)q(ω)[log p(y|ω,f)]−
KL(q(f̄ ,ω)||p(f̄ ,ω)),

(13)

which has a closed-form expression. We can then learn
the model parameters and the variational parameters by
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maximizing the variational lower bound in Eq. 13. The
explicit form of Eq. 13 and the update rules of the variational
parameters were adapted from (Wenzel et al., 2019) and are
presented in supplementary Section A.

To make predictions we can plug in the approximate poste-
rior in the predictive posterior calculation:

p(f∗|x∗, X̄, ȳ) ≈
∫
p(f∗|f̄ ,x∗)q(f̄)df̄

= N (f∗|µ∗, Σ∗),

µ∗ = kTm∗K
−1
mmµ̃,

Σ∗ = k∗∗ − kTm∗(Σ̃K−1
mm − I)km∗,

(14)

where km∗ denotes the kernel vector between the inducing
points and the test point, and k∗∗ denotes the kernel value
at the test point. Similarly to the Gibbs sampling case,
we can obtain p(y∗|x∗, ȳ, X̄) by taking an integral over
f∗ and compute it numerically with 1D Gaussian-Hermite
quadrature.

3.3. Full Learning of the Tree

We discussed how to learn and perform inference on a single
node, we will now describe how to train the full tree model.
For the full tree we need to learn the joint pseudo-inputs and
the per-node variational parameters. Optimizing the full tree
splits into the separate marginal likelihood of all examples
and all the nodes on the path from the root to the leaf nodes:

L =

n∑
j=1

log p(yj |xj , ȳ, X̄)

=

n∑
j=1

∑
vi∈Pyj

log p(yvi |xj , ȳ, X̄).

(15)

Since we cannot directly optimize this loss, we optimize
the lower bound of it given in Eq. 13. We summarize the
learning algorithm of GP-Tree with VI in supplementary
Section B. To apply predictions in the original multi-class
problem, the prediction for a new data point x∗ is given as
the product of predictive distributions from the root node to
leaf node corresponding to each class.

Our method can be easily integrated with DKL. We simply
superimpose the tree-based GP on an embedding layer of a
neural network and learn the network parameters θ as well.
In this case, we may define the inducing inputs in the input
space or the feature space. We found that setting them in
the feature space yields better performance, and requires
less memory. Their location was initialized at the beginning
of training using k-means++ applied on the embedding of
data samples for each class separately. Also, we empirically
found it beneficial to start the training process with a few
epochs of standard training using the cross-entropy loss

(a) Base (b) Novel (c) Shared

Figure 2. Tree expansion for novel classes: (a) A tree that was
learned on the base classes; (b) On a novel session, we first build a
tree from the novel classes representations; (c) Next we connect
the trees using a shared root node.

before building the GP tree and transitioning to learning
with it.

3.4. GP-Tree for Few-Shot Class-Incremental Learning

In class-incremental learning, we are given a sequence of
labeled datasets D1, D2, ..., DT , each sampled from a dis-
joint set of classes C1, ..., CT . At each timestamp t, the
model has access to dataset Dt and the previous model, and
it is tasked with classifying all the previously seen classes
∪ti=1Ci. In few-shot incremental learning (Ren et al., 2019;
Tao et al., 2020), the base classes dataset, D1, have a large
number of samples, but all of the following datasets (D2 on-
wards) have a limited amount of labeled data, e.g., 5 samples
per class. Thus, after the model learned the previous classes
it is tasked with learning new classes from few examples
and without impairing the classification of previously seen
classes whose data isn’t available at that time, also known as
catastrophic forgetting (McCloskey & Cohen, 1989). Gaus-
sian processes are naturally well-suited for this challenge.
Bayesian models generalize well from few examples (Snell
& Zemel, 2021) and the inducing points can be used as
a compact representation of the base classes, allowing us
to avoid catastrophic forgetting. As Gaussian processes
are non-parametric learners, we can classify new classes
without fitting any new variables or tuning the NN param-
eters, which may also mitigate the catastrophic forgetting
problem.

At the initial phase of learning the base classes, we employ
GP-Tree (with DKL) to learn this dataset using VI as de-
scribed earlier. We can view the inducing inputs, which
are learned per class, as ’exemplars’ of the base classes, a
commonly used practice in incremental learning studies (He
et al., 2018). We then use them in future learning sessions
as described next. At the end of this stage, we freeze the
NN backbone to avoid any parameter learning.

At each new session, we are given data from novel classes.
We use the (fixed) NN backbone to obtain representations
for the new samples that will be used for modeling the novel
classes with GP-Tree. In this case, unlike the learning of
base classes, the datasets are small. Therefore, we do not
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need to use inducing points. We just need to restructure the
tree to account for the new classes and fit a GP to each new
node. There are several alternatives for restructuring the
tree, here we propose the following. We retain the original
tree that was learned on the base classes intact, and at each
novel session, we build a sub-tree from the embedding of
samples in all (novel) sessions until the current one, namely
D2, ..., Dt. We refer to these examples as novel examples
hereafter. We then connect the sub-tree of novel examples
with the sub-tree of the base classes with a shared root node.
We define a GP classifier for each node in the sub-tree of
novel examples and the root node. The GPs for the nodes in
the sub-tree of the base classes are left untouched. Fitting
the GPs in the sub-tree of novel examples is easily done
with the representation of all examples at hand. For the root
node, since we no longer have the base classes examples,
we may use the inducing inputs of the base classes along
with the embeddings of the novel examples. See illustration
in Figure 2. We use Gibbs sampling on all new nodes to
avoid any parameter tuning after the initial training on the
base classes. Supplementary Section D.2 presents other
alternatives for constructing the tree at novel sessions.

It is important to note that while we do save the inducing
inputs and the network representations of samples from
novel sessions for future sessions, this is in line with other
incremental learning studies that save a few samples per
class (Douillard et al., 2020). Furthermore, we only save
the embeddings and not the original images. Therefore,
the memory costs are low and in practice are negligible
compared to storing the trained network weights. Also,
we emphasize that the method described here is a natural
way to extend our classification model to new classes. It
was not tailored for the class-incremental few-shot scenario
specifically. Despite that, we show strong results compared
to models designed specifically for this task, especially on
later learning sessions (see Section 5.3). Finally, GP-Tree
can be easily extended to standard incremental learning
setups. One immediate option is to build a tree and learn
inducing inputs only for the novel classes seen at each new
session similarly to the learning applied for base classes
with VI. Then this sub-tree can be connected to the previous
tree with a shared root node. This strategy can be further
improved by taking only the inducing inputs from all classes
seen thus far at the end of each novel session to rebuild the
entire tree. Then we can use either the VI approach or,
preferably, our Gibbs sampling procedure. In this study, we
focus on the few-shot case and we leave this extension to
future work.

4. Related Work
Incremental learning. Incremental learning (IL) aims at
learning new data without forgetting old data, what is known

as ’catastrophic forgetting’ (McCloskey & Cohen, 1989).
Recently, a large body of research was done in that direction,
most of which is based on methods that use NNs only. No-
table studies that use a similar procedure to ours are Titsias
et al. (2019) which regularize subsequent tasks with a set
of inducing points stored from previous tasks, and Gidaris
& Komodakis (2018) which also freeze the feature extrac-
tor after learning the base classes and infer a classification
weight vector for novel categories. Methods in this field
can be categorized according to three types: (i) Regulariza-
tion based approaches impose regularization methods on
the network to maintain past knowledge (Goodfellow et al.,
2014; Kirkpatrick et al., 2017; Lee et al., 2017; Chaudhry
et al., 2018; Schwarz et al., 2018; Ren et al., 2019). For
example, Kirkpatrick et al. (2017) limit the update of the
parameters when encountering new data based on the fisher
matrix ; (ii) Architectural based methods suggest network
architectures that are resilient to the catastrophic forgetting
issue and can accommodate new tasks (Mallya et al., 2018;
Mallya & Lazebnik, 2018; Yoon et al., 2018; Serra et al.,
2018; Taitelbaum et al., 2019; jun Liu et al., 2020). For ex-
ample, Rusu et al. (2016) and following it Yoon et al. (2018)
expend the network with each new task. When applying
parameters update the former freezes the previous network
while the latter retrain part of it; (iii) Rehearsal based aims
at preventing catastrophic forgetting by storing and replay-
ing information from previous episodes (Rebuffi et al., 2017;
Castro et al., 2018; Wu et al., 2018; Hou et al., 2019; Zhai
et al., 2019; Liu et al., 2020b; jun Liu et al., 2020). Rebuffi
et al. (2017) introduced the class-incremental learning setup.
They used exemplars to maintain information of past data
and applied the nearest-mean-of-exemplars classification
rule. In this paper, we follow the protocol suggested by (Tao
et al., 2020) for few-shot class-incremental learning.

Gaussian process classification. In GPs for classification
tasks the likelihood is no longer Gaussian and therefore
approximation-based approaches or Monte-Carlo-based ap-
proaches are needed. Some classic non-augmentation based
methods include the Laplace approximation (Williams &
Barber, 1998), expectation-propagation (Minka, 2001), and
the least square approach (Rifkin & Klautau, 2004). We
refer the readers to (Rasmussen & Williams, 2006) for a
more thorough review. Recently some approaches emerged
that are based on the Pólya-Gamma augmentation (Polson
et al., 2013). Linderman et al. (2015) proposed to use the
Pólya-Gamma in a stick-breaking process to reparameterize
a multinomial distribution as a product of binomial distribu-
tions. Wenzel et al. (2019) proposed to use Pólya-Gamma
augmentation with variational inference for binary classifi-
cation tasks. Galy-Fajou et al. (2020) proposed to use the
logistic softmax likelihood and derived a conditionally con-
jugate model based on three augmentation steps. We believe
that the quality of the prediction and learning may degrade
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Table 1. Test accuracy on CUB-200-2011. Average over 10 runs (± SEM). In bold: statistically significant best results (p=0.05).

Method Number of Classes

4 6 8 10 20 30 40 50 60

SBM-GP 96.98±0.5 95.55±0.9 92.11±0.8 91.04±0.7 83.59±0.5 77.63±0.9 67.03±0.8 64.20±1.0 60.69±1.0
OVE 97.33±0.5 96.60±0.9 94.70±0.8 93.05±0.8 – – – – –
LSM 97.30±0.9 96.95±0.8 95.16±0.8 93.09±0.9 89.23±1.3 84.44±0.6 72.90±1.2 69.82±0.9 65.53±0.9

GP-Tree Rnd. (ours) 97.80±0.8 95.96±0.7 93.49±0.9 92.07±1.1 85.32±1.6 77.45±1.0 68.97±0.8 62.77±1.2 58.49±0.8
GP-Tree (ours) 97.93±0.7 97.15±0.6 94.67±0.9 93.57±0.9 88.77±1.4 83.87±0.8 75.66±0.8 72.87±0.8 69.92±0.6

as a result of the cascade of approximations. Snell & Zemel
(2021) proposed to use the one-vs-each likelihood in a few
shot setting. Their method does not scale well with the data
and classes due to the inversion of a CN ×CN matrix. We
use a Gibbs sampling approach for learning novel classes
at each node. Several studies suggested alternative, more
efficient, posterior sampling techniques when the classes are
imbalanced or when using sub-samples of the data (Nemeth
& Fearnhead, 2020; Sachs et al., 2020; Sen et al., 2020). Us-
ing such techniques to improve the standard Gibbs sampler
is out of the current study scope.

Scalable GPs. In recent years some attempts were made
to make GP classification more scalable. Inducing points
(Silverman, 1985; Quinonero-Candela & Rasmussen, 2005;
Snelson & Ghahramani, 2006) are a popular method to
handle large datasets. Hoffman et al. (2013) developed
a stochastic optimization process for VI. Hensman et al.
(2015) introduced a method for GPC within a variational in-
ducing point framework. Izmailov et al. (2018) used tensor
train decomposition for variational parameters that allowed
increasing dramatically the number of inducing points. Wil-
son et al. (2016b) proposed to learn multiple GPs on an em-
bedding space and combine them linearly before a Softmax
function. Extending this method to the incremental learning
setting is not immediate as there are learnable parameters
for combining the classes. Bradshaw et al. (2017) used a
GP with the Robust-Max likelihood for robustness against
adversarial examples. This method doesn’t scale well with
the number of classes as we will show in Section 5.2.

Hierarchical models. Hierarchical classifiers are a popu-
lar design choice. Morin & Bengio (2005), and following
it Mnih & Hinton (2008) proposed a tree-based classifier
for language modeling. Their method applies to situations
where all words are known in advance, while we need the
ability to dynamically adapt the tree with new classes. Dami-
anou & Lawrence (2013) stacked multiple GPs to create a
hierarchy of GPs. Nguyen et al. (2019) proposed a hierar-
chical model using a mixture of GPs to learn global and
local information. However, it is not clear how to extend
this method to incremental learning challenges.

Hierarchical stick break process was used in several con-

texts as well. Adams et al. (2010) proposed a tree-based
stick break for clustering as an alternative to the standard
sequential stick break. Nassar et al. (2019) proposed to use
a tree-structure stick break for linear dynamical systems.
Both methods did not include any GP components and do
not have the flexibility of our model to apply inference with
either VI or Gibbs sampling.

5. Experiments
In our experiments, we first examine several aspects of our
method compared to previous common GPC methods (Sec-
tions 5.1 & 5.2). Then we evaluate GP-Tree on the setting of
class incremental few-shot learning (Section 5.3). In the sup-
plementary material we provide full implementation details
(Section C), ablation study, and further analysis (Section D).

5.1. Inference With Gibbs Sampling

As described in Section 3, GP-Tree allows to do inference
with Gibbs sampling. This method is preferable when mod-
eling novel classes in incremental learning, as we do not
want to optimize any parameters and the size of the datasets
are small. We evaluated GP-Tree in this setup on the fine-
grained classification dataset, Caltech-UCSD Birds (CUB)
200-2011 (Welinder et al., 2010). The CUB dataset contains
11,788 images of bird species from 200 classes with ap-
proximately 30 examples per class in the training set. Here,
we did not apply DKL, but rather we used the pre-trained
features published by (Xian et al., 2018). This allowed us to
only compare the inference part of our model.

We compared GP-Tree against the following baselines that
also used the Pólya-Gamma augmentation to get a condi-
tionally conjugate likelihood: (1) Stick Break Multino-
mial GP (SBM-GP) (Linderman et al., 2015): that used the
stick-breaking process to convert a multinomial likelihood
to a product of binomial likelihoods; (2) Logistic-Softmax
(LSM) (Galy-Fajou et al., 2020) a recent method for GPC
based on the logistic-softmax likelihood; and (3) One-vs-
Each (OVE) (Snell & Zemel, 2021) a method for GPC pro-
posed recently for few-shot learning. Because this method
requires the inversion of a CN ×CN matrix, we were able
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to run it with only a few classes.

Table 1 compares GP-Tree against the baseline methods
at increasing number of classes starting from 4 to 60 (out
of 200). The results are the average test-set classification
accuracy along with the standard error of the mean (SEM)
over ten seeds which included randomization in the class
selection. When the number of classes is small (≤ 30)
GP-Tree, LSM, and OVE are comparable. However, as
the number of classes increases GP-Tree performs better.
Table 1 also shows a variant of GP-Tree in which a balanced
tree is built based on a random split of the classes (GP-
Tree Rnd). This variant performs similarly to the SBM-
GP baseline, indicating the importance of the class split
algorithm in GP-Tree. To gain a better understanding of
that we depict in Figure 1(b) the tree generated by GP-Tree
on the CIFAR-10 dataset compared to a (possible) tree that
corresponds to the SBM-GP model. The figure shows that:
(i) GP-Tree generates a more balanced tree; and (ii) GP-Tree
generates a tree that is ordered by the semantic meaning.
For example, motorized vehicles are on the right subtree of
the root node while animals are on the left subtree.

Finally, empirically we noticed that the number of steps
in the Gibbs sampling procedure has a minor effect on the
model performance. Therefore, we believe that it indicates
that the chains converge quickly. Supplementary Section D.1
further shows improved results for GP-Tree with more par-
allel Gibbs chains. It also compares the VI approach with
the Gibbs sampling procedure, showing a large performance
gap in favor of the latter. This result strengthens our choice
for using the Gibbs procedure during novel sessions when
using GP-Tree for incremental learning.

5.2. GPC With DKL

For evaluating GP-Tree with DKL we used the CIFAR-10
and CIFAR-100 datasets. We compared GP-Tree with the
following popular baselines that applied GPC with DKL: (1)
Stochastic Variational Deep Kernel Learning (SV-DKL)
(Wilson et al., 2016b) which learned multiple GPs, each on
a different subset of the embedding space, and combined
them with the Softmax function; and (2) GPDNN (Brad-
shaw et al., 2017) which used the Robust-Max likelihood
(Hernández-Lobato et al., 2011). We used ResNet-18 (He
et al., 2016) as the backbone NN with an embedding layer
of size 1024 and trained the models for 200 epochs.

Table 2 shows the average accuracy across 3 seeds for both
datasets. From the table, both GP-Tree and SV-DKL achieve
high accuracy; however, GP-Tree prevails on both datasets.
We found that GPDNN was extremely sensitive to the learn-
ing rate choice and the hyper-parameter controlling the prob-
ability of labeling error and we could not get reasonable
results for it on the CIFAR-100 dataset.

Table 2. Test accuracy (± SEM) of GPs with DKL

Method CIFAR-10 CIFAR-100

GPDNN 81.16 ± 0.1 –
SV-DKL 92.73 ± .05 70.61 ± 0.2

GP-Tree (ours) 93.32 ± 0.1 72.07 ± 0.1

We note that the SV-DKL method is less suited for incre-
mental learning, as the model includes a linear mapping
followed by a softmax to produce a distribution over the
classes. Therefore, it needs to learn new parameters with
each new session and risks catastrophic forgetting, unlike
our approach where no new parameters are tuned.

5.3. Few-Shot Class-Incremental Learning

In this section, we evaluate GP-Tree on the challenging task
of few-shot class-incremental learning (FSCIL). We com-
pare with methods that were designed for this learning setup
and show comparable, if not superior, results by simply
applying GP-tree. This indicates that Gaussian processes
in general and GT-Tree, in particular, are well suited and a
natural approach to incremental few-shot learning.

We follow the benchmarks proposed in (Tao et al., 2020),
using the CUB 200-2011 dataset and mini-Imagenet, a 100-
class subset of the Imagenet (Deng et al., 2009) dataset used
in few-shot studies (Vinyals et al., 2016; Finn et al., 2017).
We adopt the 10-way 5-shot setting for CUB, choosing 100
base classes, and splitting the remaining 100 classes into
ten incremental sessions. For mini-ImageNet, we follow
the 5-way 5-shot, with 60 base classes, for a total of nine
sessions.

Since the data splits made public by (Tao et al., 2020) did
not include a validation set, we pre-allocate a small portion
of the base classes dataset for hyper-parameter tuning of
GP-Tree, SDC (Yu et al., 2020), and PODNet (Douillard
et al., 2020) on both datasets.

We compare GP-Tree with recent and leading FSCIL meth-
ods. The results of the following methods were taken from
(Tao et al., 2020): (1) iCaRL (Rebuffi et al., 2017) that
used exemplars of past data and applied the nearest-mean-
of-exemplars classification; (2) EEIL (Castro et al., 2018)
that used a distillation loss for old classes combined with a
classification loss on all classes; (3) NCM (Hou et al., 2019)
which combined a classification loss, a distillation loss over
normalized embedding layer, and a margin ranking loss;
(4) TOPIC (Tao et al., 2020) that optimized a neural gas
network with a classification loss, an anchor loss for less
forgetting stabilization and a min-max loss to reduce over-
fitting. We also compare with two additional baselines: (5)
SDC (Yu et al., 2020) that combined several losses to learn
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Table 3. Class-incremental few-shot learning results on CUB-200-2011. Test accuracy averaged over 10 runs.

Method Sessions

1 2 3 4 5 6 7 8 9 10 11

iCaRL 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
EEIL 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11
NCM 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87
TOPIC 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28

SDC 64.10 60.58 57.00 53.57 52.09 49.87 48.20 46.38 44.04 43.81 42.39
PODNet 75.93 70.29 64.50 49.00 45.90 43.00 41.33 40.56 40.09 40.59 39.30

GP-Tree (ours) 72.84 67.00 62.98 58.19 54.84 51.77 49.40 47.57 45.47 44.05 42.72

Figure 3. Class-incremental few-shot learning results on mini-
ImageNet. Test set accuracy averaged over 10 runs.

embedding representation and introduced a drift compen-
sation to update previously computed prototypes; and (6)
PODNet (Douillard et al., 2020) that used a spatial-based
distillation-loss and a representation consisted of multiple
proxy vectors per class.

The results for CUB are presented in Table 3 and for mini-
ImageNet in Figure 3. On both datasets, we found the
PyTorch implementation of ResNet-18 to be consistent with
the results seen in (Tao et al., 2020). We note that the results
on mini-ImageNet could be improved by adapting the NN
architecture for smaller images, but we kept the standard
ResNet-18 for comparability with (Tao et al., 2020).

The comparison shows that while PODNet outperforms
all other methods during the first sessions, our GP-Tree
achieves the best accuracy in the remaining sessions (4-11
in CUB and 5-9 in mini-ImageNet), where the challenges
of avoiding catastrophic forgetting and learning from few-
examples become more difficult. We note that for CUB ex-
periments the average SEM was 0.4 and for mini-ImageNet
it was 0.2. These results indicate that using GPs can indeed
handle incremental learning challenges better than current
procedures, but there is still room for improvement in how it
handles the base classes. We also note that when examining

the accuracy per session across all sessions at each time step,
we noticed that GP-Tree showed a higher accuracy on the
base classes compared to novel classes. This is an expected
outcome since the number of novel examples is small and
the feature extractor is kept fixed during novel sessions. Im-
proving the way GP-Tree handles novel sessions can further
boost its performance. In supplementary Section D.2 we
perform sensitivity analysis on the kernel function choice
and the number of representative samples stored per class.
We show that non-linear kernel functions are preferred over
a linear kernel function. In supplementary Section D.3 we
evaluate GP-Tree against baseline methods according to the
average forgetting (Chaudhry et al., 2018). We show that
GP-Tree surpasses baseline methods on this aspect as well.

6. Conclusion
In this work, we showed how common Gaussian process
classification methods struggle when facing classification
tasks with a large number of classes. We presented our
method, GP-tree, that scales with the number of classes and
to large datasets. GP-tree uses the Pólya-Gamma augmenta-
tion and allows great flexibility in posterior inference that
can be done either with a variational inference approach or
a Gibbs sampling procedure. We further showed how GP-
Tree can be naturally and successfully combined with DKL.
Finally, we demonstrated how GP-tree can be adjusted to
few-shot class-incremental learning challenges and showed
how it achieves improved accuracy over current leading
baseline methods. This indicates that Gaussian processes
are a new and promising approach for this task.
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