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Abstract
We study robust testing and estimation of discrete
distributions in the strong contamination model.
We consider both the “centralized setting” and the
“distributed setting with information constraints”
including communication and local privacy (LDP)
constraints. Our technique relates the strength of
manipulation attacks to the earth-mover distance
using Hamming distance as the metric between
messages (samples) from the users. In the cen-
tralized setting, we provide optimal error bounds
for both learning and testing. Our lower bounds
under local information constraints build on the
recent lower bound methods in distributed infer-
ence. In the communication constrained setting,
we develop novel algorithms based on random
hashing and an `1/`1 isometry.

1. Introduction
Data from users form the backbone of modern distributed
learning systems such as federated learning (Kairouz et al.,
2019). Two of the key aspects of such large-scale dis-
tributed systems that make inference tasks challenging are

(i) information constraints at the users (e.g., preserving
privacy, bandwidth limitations), and

(ii) γ-manipulation attacks where an adversary has com-
plete control over a γ fraction of the users.

An extreme example is when malicious users are deliber-
ately injected to disrupt the system. Note that when there are
only manipulation attacks but no information constraints,
the setting is equivalent to the robust inference where a
fraction of the samples can be adversarially corrupted.

(Cheu et al., 2021) initiated the study of manipulation at-
tacks under local differential privacy (LDP), thereby con-
sidering the practically important setting where both of the
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challenges above exist simultaneously. Motivated by their
work, we further study manipulation attacks for inference
on discrete distributions both with and without information
constraints.
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Figure 1. The information-constrained distributed model with ma-
nipulation attack. The shaded messages are manipulated.

Problem setup. Let4k be the simplex of all distributions
over a discrete domain X of size k (wlog let X = [k] :=
{1, . . . , k}), and Xn := (X1, . . . , Xn) be n independent
samples from an unknown p ∈ 4k which are distributed
across n users. Each user i then sends a message Yi ∈ Y
based on Xi according to a pre-specified communication
protocol Π to the server.

An adversary has access to Π and observes the intended
messages Y n := (Y1, . . . , Yn). It then chooses a set
C ⊂ [n] with |C| ≤ m:=γn and performs an attack
MC : Yn → Yn as follows: for each i ∈ C, it can
change Yi to an arbitrary Y ′i . The output of this attack is
Zn:=(Z1, . . . , Zn) = MC(Y n), which satisfies Zi = Yi if
i /∈ C, and Zi = Y ′i if i ∈ C. We call this a γ-manipulation
attack. A central server observes Zn (and has no knowledge
about C or MC) and has to solve an inference task on p.
See Figure 1 for an overview of the model.
Remark 1. A natural question to ask is what happens if
the adversary, in addition to Y n, can also observe original
samples Xn. The algorithms proposed in this paper all
work with the same guarantee under this setting as well.
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Moreover, the proposed attacks only use Y n, and therefore
any optimality result naturally holds under this stronger
threat model as well.
Remark 2. The threat model is closer to the strong con-
tamination model (Diakonikolas & Kane, 2019) considered
in recent literature on robust statistics. This adversary is
stronger than the setting of (Cheu et al., 2021) where it
is only allowed to select C and choose Y ′i s based on the
protocol Π instead of the messages Y n.

Communication protocol. We consider public-coin non-
interactive protocols in this work. The users have access to
public randomness U , which is independent of Xn. Based
on U , user i chooses a channel Wi, which is a (possibly
randomized) mapping described by

Wi(y | x) = Pr (Yi = y | Xi = x) .

When the input distribution is p and the channel is Wi, the
distribution of Yi is

Pr (Yi = y) =
∑
x

p(x)Wi(y | x) = EX∼p [Wi(y | X)] .

For a given set of channels Wn and input distribution p,
let pY

n

denote the output distribution of messages, and by
independence of Xi’s,

pY
n

(yn) =

n∏
i=1

EX∼p [Wi(yi | X)]

All users then send their messages Yi = Wi(Xi), i ∈ [n]
to the server simultaneously. The adversary also observes
U and can use this information in its attack (e.g., choose C
dependent on U as well).

Information constraints. We model information con-
straints at the users by a set of channelsW with input do-
main [k]. We illustrate this with two canonical examples,
local differential privacy and communication constraints.

Local differential privacy (LDP). A channel W : [k] →
Y = {0, 1}∗ is ε-LDP if ∀y ∈ Y,∀x, x′ ∈ X ,

W (y | x) ≤ eεW (y | x′),

which requires that the output distributions are close no
matter what the input is, hence protecting the identity of the
input. We useWε to denote the set of all ε-LDP channels.

Communication constraints. Let ` < log k, and W` :=
{W : [k]→ Y = {0, 1}`} be the set of channels that output
`-bit messages.

Inference tasks. We consider the fundamental tasks of dis-
tribution estimation (learning) and goodness-of-fit (identity
testing), described below.

Distribution learning (DL). The goal is to design messag-
ing schemes and an estimator p̂ : Yn → 4k for the un-
derlying distribution p. The loss is measured in the ex-
pected total variation (TV) distance between p̂ and p, i.e.,
Ep [dTV(p̂(Zn), p)] , where the expectation is over the ran-
domness of samples Xn ∼ p and the scheme. We wish to
characterize the following minimax loss (risk) under ma-
nipulation attacks, where we design the best messaging
schemes Wn := (W1, . . .Wn) ∈ Wn and estimator p̂ for
the worst distribution1:

RDL(k, n,W, γ) := inf
p̂,Wn

sup
p

sup
MC :|C|≤γn

E [dTV(p̂(Zn), p)] .

Without any information constraints and without any ma-
nipulation (i.e., γ = 0), when the server observes Xn, the
risk is known to be Θ(

√
k/n) achieved by the empirical

histogram.

Identity testing (IT). Let q ∈ 4k be a known reference
distribution and α > 0 be a distance parameter. The goal is
to designWn and a tester T : Yn → {yes,no} such that
under any γ-manipulation attack MC ,

Pr
p

[T (Zn) = yes ] > 0.9, if p = q,

Pr
p

[T (Zn) = no ] > 0.9, if dTV(p, q) ≥ α.
(1)

In other words, with probability at least 0.9, we can test if
p = q or p is α-far in total variation distance from q. The
minimax risk of IT under manipulation attacks is

RIT(k, n,W, γ) :=

inf{α : ∀q ∈ 4k,∃Wn, T , s.t. (1) holds},

the smallest α for which we can test if a distribution is α-far
from q. Uniformity testing (UT) refers to the testing problem
where we restrict q to be u[k], the uniform distribution over
[k], we denote the corresponding risk as RUT(k, n,W, γ).
We also denote the smallest α such that (1) holds with prob-
ability β (instead of 0.9) by RβIT(UT)(k, n,W, γ).

Without constraints and attacks, the risk is known to be
Θ(k1/4/

√
n) (Paninski, 2008; Chan et al., 2014).

We now mention two special cases of our setting.

• When there are no information constraints (i.e.,W con-
tains any scheme), users can transmit Yi = Xi, namely
the samples can be sent as is. Then a γ-fraction of the
samples are corrupted, reducing to the strong contami-
nation model in robust estimation where a γ fraction
of the samples are corrupted. We denote the rates as
RDL(IT)(k, n, γ), droppingW from the notation.

1Note here by definition, supMC :|C|≤γn should be inside the
expectation since the attacker can observe the messages. However,
since MC is a function of Y n, supMC already covers all possible
attacks. Hence both minimax formulations have the same quantity.
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• When γ = 0, there is no manipulation and only infor-
mation constraints are present, and we denote the rates
by RDL(IT)(k, n,W).

Organization. We present our contributions and related
work in Section 2 and 3 respectively. In Section 4, we
establish our lower bound technique based on earth-mover
distance (EMD). In Section 5 we establish tight risk bounds
without manipulation attacks (γ = 0). In Section 6 we
show bounds for manipulation attacks under information
constraints.

2. Our contributions
Lower bounds from EMD. Since manipulation attacks can
change a γ-fraction of the n messages, we characterize the
difficulty of learning and testing under such attacks in terms
of the earth-mover distance (EMD) between messages with
Hamming distance as the metric, stated in Theorem 1. Using
Le Cam’s method, the lower bounds are provided in terms
of EMD between distributions of messages from mixtures of
sources (distributions), which is critical for obtaining tight
bounds.

Robust learning and testing. Without information con-
straints, the server observes the true samples from p but with
γ-fraction adversarially corrupted. For distribution learning
the minimax risk is Θ(

√
k/n + γ). While this result is

standard, we provide it for completeness in Corollary 3. For
testing, the optimal risk is more involved. In Theorem 2
we show that when γ fraction of the samples are corrupted,
the risk is Θ(k1/4/

√
n+ γ +

√
kγ/n+

√
γ 4
√
k/n) where

the first term corresponds to the statistical rate proved in
(Paninski, 2008; Valiant & Valiant, 2014; Diakonikolas et al.,
2018). In particular, when γ � min{1/

√
k, 1/
√
n} the risk

increases significantly compared to the uncorrupted case.

Manipulation attacks under information constraints. In
Corollary 14, we provide a general lower bound for estimat-
ing and testing distributions under information constraints
and a γ-fraction manipulation attack. The result builds on
the recently developed framework for distributed inference
in (Acharya et al., 2019b) and bounds the EMD between
messages in terms of the trace norm of a channel informa-
tion matrix (Definition 3).

Communication constraints. In Theorem 8 and 9, we estab-
lish risk bounds for distribution learning and testing under
`-bit communication constraints. We propose a protocol
based on random hashing which matches the lower bound
we prove up to logarithmic factors. Our bounds suggest that
manipulation attacks are significantly stronger with com-
munication constraints on the channels. More precisely,
the error due to manipulation attack can be as large as
Θ̃(γ

√
k/2`) compared to γ in the unconstrained setting.

We also provide a robust testing algorithm under communi-
cation constraints based on an `1/`1 isometry in (Acharya
et al., 2020a). However, the bounds only match the lower
bounds for ` = O(1) or ` = Θ(log k). The testing bound
in the unconstrained case suggests more effort is needed to
study how communication constraints limit EMD. Closing
this gap is an interesting future direction.

Privacy constraints. In Theorem 10 we prove a lower bound
that matches the upper bounds provided in (Cheu et al.,
2021) for both testing (up to a constant factor) and learning
(up to logarithmic factor). We note that in (Cheu et al.,
2021), a lower bound smaller by a logarithmic factor is
proved under a weaker threat model, which is not directly
comparable to our result.

The results are summarized in Table 12.

3. Related work
Without local information constraints, our work is related to
the literature of robust statistical inference. Robust statistics
has a long history (Huber, 2004). More recently, the interest
focuses on designing computationally efficient robust algo-
rithms in high-dimensional estimation (Diakonikolas et al.,
2016; Lai et al., 2016). See (Diakonikolas & Kane, 2019) for
a survey. In (Diakonikolas et al., 2016; Chen et al., 2016), it
is proved that for estimating a single Gaussian distribution,
the risk due to adversarial attack is Θ(γ). For discrete dis-
tributions, a line of work (Qiao & Valiant, 2018; Chen et al.,
2020; Jain & Orlitsky, 2020a;b) consider robust estimation
in the distributed setting where each user contributes s� 1
samples. Compared to the result in Corollary 3, they show
that in this case the risk due to manipulation can be much
smaller than γ.

(Valiant & Valiant, 2011; Daskalakis et al., 2018) study
tolerant identity testing where the goal is to test between
dTV(p, q) ≤ α/10 and dTV(p, q) ≥ α for a reference dis-
tribution q. The optimal sample complexity has been estab-
lished as Θ(k/α2 log k). Suppose γ = α, then a γ-robust
identity tester is also a tolerant tester since with γ fraction
of the users controlled, the adversary can simply change
the distribution to another distribution within TV distance
α
2 with high probability. Theorem 2 shows that the robust
setting is strictly harder by showing that Θ(k) samples are
needed when γ and α are both constants. This is due to
the richer class of attacks that the adversary can perform
compared to the tolerant testing where the samples are still
independent.

Robust identity testing Gaussian distributions without in-
formation constraints has been studied in (Diakonikolas

2All stated risk bounds are upper bounded by 1, which is omit-
ted throughout the paper for simplicity.
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Task Constraint Manipulation risk (UB) Manipulation risk (LB)

DL

None O

(√
k
n + γ

)
Ω

(√
k
n + γ

)
(Folklore) (Folklore, Corollary 3)

ε-LDP Õ

(√
k2

ε2n +
√
k
ε · γ

)
Ω

(√
k2

ε2n +
√
k
ε · γ

)
(†)

(Cheu et al., 2021) (Theorem 10)

`-bit Õ

(√
k2

2`n
+
√

k
2`
· γ
)

Ω

(√
k2

2`n
+
√

k
2`
· γ
)

(Theorem 8) (Theorem 8)

IT

None O

(
k

1
4√
n

+ γ +
√

kγ
n + 4

√
kγ2

n

)
Ω

(
k

1
4√
n

+ γ +
√

kγ
n + 4

√
kγ2

n

)
(Theorem 2) (Theorem 2)

ε-LDP O

(√
k
ε2n +

√
k
ε · γ

)
Ω

(√
k
ε2n +

√
k
ε · γ

)
(†)

(Cheu et al., 2021) (Theorem 10)

`-bit O

(√
k

2`/2n
+
√

k
2`
·
(
γ +

√
2`γ
n + 4

√
2`γ2

n

))
Ω

(√
k

2`/2n
+
√

k
2`
·
(
γ +

√
2`γ
n

))
(Theorem 9) (Theorem 9)

Table 1. Summary of results. For problems marked by (†), (Cheu et al., 2021) also provides lower bounds lower than the stated bounds by
a logarithmic factor under a weaker threat model.

& Kane, 2020), where the contamination model is slightly
different. In (Acharya et al., 2020c), identity testing of Gaus-
sians is studied under communication constraints without
manipulation attacks.

Without manipulation attacks, there is significant recent
work interest in studying discrete distribution learning
and testing in the distributed setting under information
constraints. Optimal risks have been established under
communication constraints (Han et al., 2018; Han et al.,
2018; Acharya et al., 2020d; 2019b; 2020b) and LDP con-
straints (Duchi et al., 2013; Kairouz et al., 2016; Sheffet,
2017; Acharya et al., 2019a; 2020b).

In distributed learning systems, especially federated learn-
ing (Kairouz et al., 2019), manipulation attack is related to
the so-called model poisoning attack (Bhagoji et al., 2019;
Bagdasaryan et al., 2020), where the attacker has full con-
trol of a fraction of the users and can change model updates
arbitrarily which doesn’t have to obey the local training and
messaging protocol. In these works, it is shown empirically
that manipulation attacks can significantly outperform the
classic data poisoning attack where the attacker can only
insert data points to local users whose messages still follow
the local messaging protocol.

4. Moving the earth: the power of
manipulation attacks

We now characterize the power of manipulation attacks
in terms of the earth-mover (a.k.a. Wasserstein) distance

between the distributions of the messages at the output of
the channels. We first recall EMD with Hamming metric.
Definition 1. Let Q1 and Q2 be distributions over Yn and
π(Q1, Q2) be the set of all couplings between Q1 and Q2.
The earth-mover distance (EMD) between Q1 and Q2 is

dEM (Q1, Q2) :=

inf
Q∈π(Q1,Q2)

E(Y n
(1)
,Y n

(2)
)∼Q

[
dHam(Y n(1), Y

n
(2))
]
.

Note that a γ-manipulation attack can change Y n(1) ∈ Y
n to

another sequence Y n(2) ∈ Y
n as long as dHam(Y n(1), Y

n
(2)) ≤

γn. If Q1 and Q2 are distributions over length-n messages
in Yn with EMD at most c · γn, for some small constant
c, the attack can effectively confuse sequences generated
from Q1 and Q2. We formalize this intuition in Theorem 1
below. A key ingredient in the theorem below is to consider
message distributions from a mixture of input distributions.

Let q ∈ 4k be some reference distribution and P ⊂ 4k be
a finite set such that for all p ∈ P ,

dTV(p, q) ≥ α. (2)

Let p̃ be uniformly drawn from P . Further, for a fixed
Wn ∈ Wn

E
[
p̃Y

n
]

=
1

|P|

∑
p∈P

pY
n

. (3)

be the message distribution when the input distribution is
uniformly chosen from P .



Robust Testing and Estimation under Manipulation Attacks

Theorem 1. SupposeP satisfies (2) for some q and E
[
p̃Y

n]
is as defined in (3). If for all Wn ∈ Wn,

dEM

(
E
[
p̃Y

n
]
, qY

n
)
≤ γn

2
,

then for both distribution learning and testing,

RIT(k, n,W, γ) = Ω(α), RDL(k, n,W, γ) = Ω(α).

Proof. We first show a reduction from testing to learning.
Suppose there exists a distribution learning algorithm with
risk α/20 under any γ-manipulation attack. We can use this
for testing as follows: (i) By Markov’s inequality, we learn
the distribution to output a p̂ such that with probability at
least 0.9, dTV(p̂, p) ≤ α/2 , and then (ii) test if dTV(p̂, q) ≷
α/2 to perform testing with respect to q. This shows that
RDL(k, n,W, γ) ≥ c ·RIT(k, n,W, γ), for some c. There-
fore, we only need to prove that RIT(k, n,W, γ) = Ω(α).

Fix Wn ∈ Wn, we have dEM

(
E
[
p̃Y

n]
, qY

n) ≤
γn/2.3 By the existence of minimizer for optimal trans-
port4, there exists a randomized mapping F such that
if Y n(1) ∼ E

[
p̃Y

n]
, then Y n(2)

D
= F (Y n(1)) ∼ qY

n

and

E
[
dHam(Y n1 , F (Y n(1)))

]
≤ γn

2 . By Markov’s inequality,
we have

Pr
(
dHam(Y n(1), F (Y n(1))) > γn

)
≤ 1

2
. (4)

Consider the following γ-manipulation attack MC :

MC(Y n(1)) =

{
F (Y n(1)), if dHam(Y n(1), F (Y n(1))) ≤ γn,
Y n(1), if dHam(Y n(1), F (Y n(1))) > γn.

Then by (4), we have

dTV(MC(Y n(1)), Y
n
(2)) = dTV(MC(Y n(1)), F (Y n(1))) ≤

1

2
.

Hence, if the attacker sends the true messages when the dis-
tribution is q, by Bayes risk, it is impossible to test between
q and E

[
p̃Y

n]
with success probability at least 9/10. By

applying Le Cam’s two-point method, it is impossible to tell
whether the unknown distribution p equals q, or comes from
P , which concludes the proof.

With the main technique at hand, for each family of channels,
we prove lower bounds by designing distributions that are
separated in TV distances while the corresponding messages
are close in earth-mover distance. We start with the uncon-
strained setting in Section 5 and turn to the constrained case
in Section 6.

3Without loss of generality, we assume Wn is fixed since the
adversary can observe public randomness U .

4Hamming distance is a lower semi-continuous cost function.

5. Robust identity testing and learning
We consider robust identity testing without information con-
straints, i.e., the server observes the raw samples, γ fraction
of which are adversarially corrupted. We prove the follow-
ing tight minimax rate.

Theorem 2.

RIT(k, n, γ) = Θ

(
k1/4√
n

+ γ +

√
kγ

n
+

4

√
kγ2

n

)
.

The first term is the statistical rate which is implied by the
sample complexity bound in (Paninski, 2008). Our bound
implies that when γ > min{1/

√
n, 1/

√
k}, the risk due to

manipulation can be significantly larger than the statistical
risk. The upper bound is based on the `1-tester proposed
in (Diakonikolas et al., 2018), which we present in Sec-
tion 5.1. The lower bound is proved using the technique
based on earth-mover distance developed in Section 4, pro-
vided in Section 5.2.

We get the next corollary for learning under γ-manipulation
attacks without information constraints.

Corollary 3 (folklore).

RDL(k, n, γ) = Θ

(√
k

n
+ γ

)
.

The upper bound is achieved by the empirical distribution.
The first term is the standard risk without manipulation, and
the second term follows from the second term in Theorem 2
and the reduction from testing to learning. We omit the
details.

5.1. Upper bound for testing

Our upper bound proceeds in two stages. We will first re-
duce identity testing to uniformity testing, and then provide
an algorithm for uniformity testing.

Reduction from identity to uniformity testing. For uncon-
strained distribution estimation, Theorem 1 of (Goldreich,
2016) showed that, up to constant factors, the risk for test-
ing identity of any distribution is upper bounded by the
risk of uniformity testing. We extend their argument to the
γ-manipulation attack. In particular, we will show that

Lemma 4.

RIT(k, n, γ) ≤ 3RUT(6k, n, γ).

Proof. (Goldreich, 2016) showed that for any distribution q
over [k], there exists a randomized function Gq : [k] →
[6k] such that if X ∼ q, then Gq(X) ∼ u[6k], and
if X ∼ p for a distribution with dTV(p, q) ≥ α, then
dTV(Gq(X), u[6k]) ≥ α/3.
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Let Xn be n samples from p, and Zn be a γ-
corrupted version of Xn. We then apply Gq indepen-
dently to each of the Zi to obtain a new sequence
Gq(Z

n):=(Gq(Z1) . . . Gq(Zn)). If p = q, Gq(Xn) is dis-
tributed according to u[6k] and Gq(Zn) is a γ-manipulated
version of it. If dTV(p, q) ≥ α, Gq(Xn) is distributed
according to a distribution at least α/3-far from u[6k].
Therefore, an algorithm for γ-robust uniformity testing with
α′ = α/3 can be used for α-identity testing with q.

We now present an algorithm for γ-robust uniformity testing.
Recall that Zn is obtained upon perturbing γn samples
from Xn ∼ p. For z ∈ [k], let Mz(Z

n) be the number
of appearances of z in Zn. The TV distance between the
empirical histogram of Zn and uniform, which was used
in (Diakonikolas et al., 2018),

S(Zn):=
1

2
·
k∑
z=1

∣∣∣∣Mz(Z
n)

n
− 1

k

∣∣∣∣ (5)

will be used as our test statistic.

We now bound the difference in test statistic between Zn

and Xn when dHam(Zn, Xn) ≤ γn.
Lemma 5. Suppose Zn is obtained from Xn by manipulat-
ing at most γn samples, then

|S(Xn)− S(Zn)| ≤ min
(
γ,
nγ

k

)
.

Proof. For the first term, by the triangle inequality for any
a, b ∈ R, we have ||a| − |b|| ≤ |a− b|. Using this in (5), we
obtain,

|S(Xn)− S(Zn)| ≤ 1

2
·
k∑
x=1

∣∣∣∣Mx(Xn)−Mx(Zn)

n

∣∣∣∣ ≤ γ,
where we used the fact that changing one sample from Xn

changes Mx(Xn) for at most two x ∈ [k] each by at most
one, and therefore

∑k
x=1 |Mx(Xn)−Mx(Zn)| ≤ 2γn.

We note that the second term is smaller than the first when
n < k. When n < k,

S(Xn)

=
1

2
·

 ∑
x:Mx(Zn)≥1

(
Mz(X

n)

n
− 1

k

)
+

∑
x:Mx(Xn)=0

1

k


=

1

2

(
1−

(
1− Φ0(Xn)

k

)
+

Φ0(Xn)

k

)
=

Φ0(Xn)

k
.

where Φ0(Xn) is the number of symbols not appearing in
Xn. Therefore,

|S(Xn)− S(Zn)| ≤ 1

k
· |Φ0(Xn)− Φ0(Zn)| ≤ nγ

k
.

Next we use the following result from (Diakonikolas
et al., 2018), which shows a separation in the test statis-
tic under p = u[k] and dTV(p, u[k]) ≥ α. Let
µ(p):=EXn∼p [S(Xn)] be the expectation of the statistic
of the original samples.

Lemma 6 ((Diakonikolas et al., 2018), Lemma 4). Let Xn

be i.i.d. samples from p over [k]. For every β ∈ (0, 1), there

exist constants c1, c2 such that if α ≥ c1 · k
1
4√
n

, then with
probability at least 1− β,

1. when p = u[k],

S(Xn)− µ(u[k]) < 9
10c2α

2 min
{
n2

k2 ,
√

n
k ,

1
α

}
,

2. when dTV(p, u[k]) ≥ α,

S(Xn)− µ(u[k]) > 11
10c2α

2 min
{
n2

k2 ,
√

n
k ,

1
α

}
.

Our test for uniformity is the following:

T =

{
yes if S(Zn)− µ(u[k]) ≤ c2α2 min

{
n2

k2 ,
√

n
k ,

1
α

}
no otherwise.

(6)

By Lemma 5, when α ≥ 10
c2
·
(
γ +

√
kγ
n + 4

√
kγ2

n

)
,

|S(Xn)− S(Zn)| ≤ 1

10
· c2α2 min

{
n2

k2
,

√
n

k
,

1

α

}
.

Setting β = 1/10 in Lemma 6 shows that the test in (6)
solves the uniformity testing problem.

Remark 3. Note that the proof shows that for any constant
failure probability β, the risk for robust identity testing is
the same as that in Theorem 2 up to a constant factor, i.e.,
for any β, there is a constant c(β), such that

RβIT(k, n,W, γ) ≤ c(β)

(
k

1
4

√
n

+ γ +

√
kγ

n
+

4

√
kγ2

n

)
.

This will be important when we consider error boosting in
the proof of Theorem 12.

5.2. Lower bound

In uniformity testing we have q = u[k]. We will use P
to be the following class of 2k/2 distributions from (Panin-
ski, 2008) indexed by z ∈ {±1}k/2, i.e., P = {pz : z ∈
{±1}k/2}, where

pz(2i− 1) =
1 + zi · 2α

k
, pz(2i) =

1− zi · 2α
k

. (7)

Note that for any z ∈ {±1}k/2, dTV(pz, u[k]) = α. The
following lemma, proved in (Acharya et al., 2018) charac-
terizes the earth-mover distance between EZ∼u{±1}k/2 [pnZ ]
and u[k]n.
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Lemma 7 ((Acharya et al., 2018) Lemma 7).

dEM

(
EZ∼u{±1}k/2 [pnZ ] , u[k]n

)
= O

(
n ·min

{
nα2

k
,

√
nα2

√
k
, α

})
.

Note in the centralized case Y n = Xn, hence pY
n

= pn.
Plugging Lemma 7 in Theorem 1, we get the lower bound
by setting the EMD to be γn/2 and solving for α.

6. Robust constrained inference
In this section we consider learning and testing under com-
munication and LDP constraints. We first state the results,
then in Section 6.1 and 6.2 establish the upper bounds and
finally close with lower bounds in Section 6.3.

Communication constraints. For distribution learning under
`-bit communication constraints, we establish the following
risk bound, which is optimal up to logarithmic factors.

Theorem 8.

RDL(k, n,W`, γ) = Θ̃

(√
k2

n(2` ∧ k)
+ γ

√
k

2` ∧ k

)
.

The first term is the risk under communication constraints
without manipulation attacks (Han et al., 2018; Acharya
et al., 2020d). The second term shows that if ` < log k,

manipulation attack increases the risk by Θ
(
γ
√

k
2`

)
com-

pared to the the increase of Θ(γ) in the unconstrained setting
(Corollary 3).

For identity testing, we obtain the following risk bounds.

Theorem 9. Suppose ` ≤ log k,

RIT(k, n,W`, γ) =

O

(√
k

2`/2n
+

√
k

2`
·

(
γ +

√
2`γ

n
+

4

√
2`γ2

n

))
,

and

RIT(k, n,W`, γ) = Ω

(√
k

2`/2n
+

√
k

2`
·

(
γ +

√
2`γ

n

))
.

The first term above is the risk of testing underW` without
information constraints. The risk due to manipulation attack

in the upper bound is increased by a factor of
√

k
2`

compared
to the unconstrained case in Theorem 2 . We remark that
the upper and lower bounds above match (up to constant
factors) for ` = Θ(1) and for ` = Θ(log k) (when ` = log k,
it matches the risk for unconstrained testing in Theorem 2).

We believe that the upper bound is tight and proving a better
lower bound is an interesting future work.

Local privacy constraints. We establish the following lower
bounds for learning and testing under ε-LDP.
Theorem 10. Suppose ε = O(1),

RDL(k, n,Wε, γ) = Ω

(√
k2

nε2
+ γ

√
k

ε2

)
,

RIT(k, n,Wε, γ) = Ω

(√
k

nε2
+ γ

√
k

ε2

)
.

We note that (Cheu et al., 2021) designs algorithms that
achieve the bounds above up to a constant factor for testing
and up to logarithmic factors for learning. However, their
lower bounds are a logarithmic factor smaller than Theo-
rem 10 under a weaker threat model, making the bounds
incomparable.

6.1. Distribution estimation with ` bits under
manipulation

Without loss of generality, we assume ` < log k. We now
present a scheme based on random hasing that achieves the
upper bound for learning with the rate in Theorem 8. Ran-
dom hashing has been previously used for sparse estimation
under communication constraints (Acharya et al., 2021).
Definition 2. A random mapping h : [k]→ [2`] is a random
hashing function if ∀x ∈ [k], y ∈ [2`], Pr (h(x) = y) = 1

2`
.

Let T be the set of all k × 2` binary matrices that have
exactly one ‘1’ in each row. A random hashing function h is
equivalent to a Th drawn uniformly at random from T with
the correspondence

Th(x, y) = 1 {h(x) = y} .

Now for any fixed y ∈ [2`], the yth column of Th has each
entry as an independent Ber(1/2`) random variable.

We describe the protocol and the estimator below.

1. Using randomness U users obtain independent random
hashing functions h1, . . . , hn and send

Yi = hi(Xi).

2. Upon receiving the manipulated samples Zn ∈ [2`]n,
the server outputs

p̂(Zn) =
2`

n(2` − 1)

(
n∑
i=1

Thi(·, Zi)−
n

2`

)
.

Without manipulation attacks, when the server receives Y n,
it has been shown in (Acharya et al., 2021) that

E [dTV(p̂(Y n), p)] = O

(√
k2

2`n

)
.
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Note that in Theorem 8, the second term becomes larger
than one when γ > c ·

√
2`/k. We therefore focus on

γ <
√

2`/k. By the triangle inequality, it suffices to bound
E [dTV(p̂(Y n), p̂(Zn))]. Let C be the set of samples that
are manipulated, and hence |C| ≤ γn = m. Therefore,

dTV(p̂(Y n), p̂(Zn))

=
2`

2n(2` − 1)

∥∥∥∥∥∑
i∈C

(Thi(·, Yi)− Thi(·, Zi))

∥∥∥∥∥
1

≤ 1

n
max
|C′|=m

max
yi,zi∈[2`]

∥∥∥∥∥∑
i∈C′

(Thi(·, yi)− Thi(·, zi))

∥∥∥∥∥
1

(8)

=
1

n
max
|C′|=m

max
yi,zi∈[2`]

max
v∈{±1}k

vT
∑
i∈C′

(Thi(·, yi)−Thi(·, zi)),

(9)

where (8) follows by maximizing over C, and (9) holds
since for u ∈ Rk, ‖u‖1 = maxv∈{±1}k v

Tu.

Recall that for ∀i ∈ [k] and yi, zi ∈ Y , Thi(·, yi) and
Thi(·, zi) are both k-dimensional binary vectors with each
coordinate an independent Ber(1/2`). Then for any C ′ ⊂
[n], with |C ′| = m, x ∈ [k], yi, zi ∈ [2`], and v ∈ {±1}k,
vT
∑
i∈C′ Thi(·, yi) − Thi(·, zi)) is distributed as the dif-

ference between two Binom(km, 1/2`) random variables5

since hi’s are independently generated.

Hence, by Chernoff bound (multiplicative form) and union
bound, we have ∀η ∈ (0,

√
km/2`),

Pr

(
vT
∑
i∈C′

(Thi(·, yi)−Thi(·, zi))>2

√
km

2`
η

)
≤2e−

η2

3 .

(10)

Taking union bound over
(
n
m

)
subsets C ′, (2`)m × (2`)m

possible choices of {yi, zi}i∈C′ , and 2k choices of v ∈
{±1}k, by (9) and (10), we have

Pr

(
dTV(p̂(Y n), p̂(Zn))>

2

n

√
km

2`
η

)
≤

2
(
n
m

)
(2`)2m2k

e
η2

3

.

For η =
√

6(k + 2m` log 2 +m log n+ log(2`/γ2k)),
we have6,

Pr

(
dTV(p̂(Y n), p̂(Zn)) >

2

n

√
km

2`
η

)
≤ γ

√
k

2`
.

Hence using n = m/γ, we have

E [dTV(p̂(Y n), p̂(Zn))] = Õ

(
γ

√
k

2`
+

√
k2

2`n

)
.

5It is possible that these two binomials are correlated. However,
the union bound used after this still holds.

6` < log k implies the choice of η ∈ (0,
√
km/2`).

6.2. `-bit identity testing under manipulation

We now establish the upper bound in Theorem 9. We first
reduce the problem to an unconstrained testing problem
over a domain of size [2`] that can be represented using `
bits and then invoke our bounds from Theorem 2 for robust
identity testing without information constraints.

For the reduction, we use the domain compression tech-
nique proposed in (Acharya et al., 2020a) to compress the
observed samples to a smaller domain of size 2`. More-
over, the protocol preserves the TV distance between any
pair of distributions up to a factor of Ω(

√
2`/k) with a con-

stant probability. More precisely, we will use the following
lemma from (Acharya et al., 2020a).
Lemma 11 (Theorem 3.2 (Acharya et al., 2020a)). For any
` < log k, there exists a mapping ϕ : {0, 1}∗ × [k]→ [2`]
and universal constants c1 and c2 such that ∀p, q ∈ 4k
with dTV(p, q) ≥ α, we have

Pr
U

[
dTV(ϕ(U, p), ϕ(U, q)) ≥ c1α ·

√
2`

k

]
≥ c2,

where U is a public random string and with a slight abuse of
notation we denote by ϕ(U, p) the distribution of ϕ(U,X)
when X ∼ p.

Using this lemma, our testing scheme is the following.

1. Divide users into N = dlog1−c2/2(1/10)e disjoint
batches of equal size, where c2 is the constant in
Lemma 11. For each batch Bj , j ∈ [N ], generate
an independent public random string Uj .

2. Each user i ∈ Bj sends the `-bit message Yi =
ϕ(Uj , Xi).

3. For j ∈ [N ], let Z(Bj) be the messages received
from users in Bj . Perform the robust testing algo-
rithm in Section 5.1 with alphabet size 2` and dis-
tance RβIT(2`, n/N,Nγ) where β = min{c2/2, 1 −
N
√

9/10}.
4. If all tests output yes, output yes, else, output no.

We now analyze the algorithm.

In the null case, when p = q, ϕ(U, p) = ϕ(U, q), the test
in each batch outputs yes with probability at least 1 − β
(see Remark 3). Since the batches are disjoint, all tests
output yes with probability at least (1−β)N ≥ 9/10 since
β ≤ 1− N

√
9/10.

Now in the alternate case, suppose that

dTV(p, q) ≥ 1

c1
·
√
k

2`
·RβIT(2`, n/N,Nγ).

Then with probability at least c2 over the randomness of U ,
we have

dTV(ϕ(U, p), ϕ(U, q)) ≥ RβIT
(

2`,
n

N
, γN

)
.
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Conditioned on this event, by Theorem 2, we have the test
in this batch outputs no with probability at least 1− c2/2
since β < c2/2. By disjointness of the batches, and the
union bound we have at least one of the tests output no with
probability at least 1− (1− c2/2)N ≥ 9/10 by the choice
of N .

From Remark 3 we know that RβIT(2`, n/N,Nγ) is at most
larger thanRIT(2`, n, γ) by a multiplicative constant, which
gives the following reduction.
Lemma 12.

RIT(k, n,W`, γ) = O

(√
k

2` ∧ k
·RIT(2` ∧ k, n, γ)

)
.

To obtain the upper bound in Theorem 9, we only need
to plug in the bound of robust testing without information
constraints from Theorem 2.

6.3. Lower bounds by χ2-contraction

In order to establish the lower bounds, by Theorem 1, it is
sufficient to establish upper bounds on the EMD of messages
Y n induced by a suitably chosen mixture of distributions
from that induced by the uniform distribution.

In particular, we will relate the EMD under information con-
straints to the channel information matrices of the allowed
channels, which describes how the channel can exploit the
structure of the set of distributions in (7) to solve inference
tasks.
Definition 3 (Channel Information Matrix). For a chan-
nel W : [k] → Y , the channel information matrix of
W , denoted by H(W ), is a (k/2) × (k/2) matrix and
∀i1, i2 ∈ [k/2], H(W )(i1, i2):=∑
y∈Y

(W (y |2i1−1)−W (y |2i1))(W (y |2i2−1)−W (y |2i2))∑
x∈[k]W (y | x)

.

We will establish the following upper bounds on the EMD
under local information constraints.
Lemma 13. For P defined in (7), and p̃ be uniformly
drawn from P , and for any Wn ∈ Wn, let E

[
p̃Y

n]
=

1
2k/2

(∑
p∈P p

Y n
)

be the message distribution under a uni-
form mixture and channels Wn. Then,

dEM

(
E
[
pY

n

Z

]
, u[k]Y

n
)
≤ 2nα

√
maxW∈W ‖H(W )‖∗

k
.

We will use this lemma with Theorem 1 to obtain the fol-
lowing lower bound for robust inference.
Corollary 14.

RIT(DL)(k, n,W, γ) = Ω

(
γ

√
k

maxW∈W ‖H(W )‖∗

)
,

where ‖·‖∗ denotes the trace norm of a matrix.

Under privacy and communication constraints, we have
maxW∈Wε

‖H(W )‖∗ ≤ ε2 and maxW∈W`
‖H(W )‖∗ ≤

2`, which are proved in (Acharya et al., 2019b). Using
Corollary 14, we obtain the corresponding terms in the lower
bound part of Theorem 8, the 9, and 10. The first terms
in these bounds are the lower bounds without manipulation
attacks and are proved in (Acharya et al., 2019b; Han et al.,
2018; Duchi et al., 2013) respectively.
Remark 4. Lower bounds without information constraints
are automatically lower bounds of the constrained infer-

ence. Therefore, we get the lower bound of Ω

(√
kγ
n

)
in

Theorem 9 from Theorem 2.

Now it is enough to prove Lemma 13.

Proof. We will use the same lower bound construction
stated in (7). We bound the earth-mover distance using the
naive coupling for length-n independent sequences which
is equal to the sum of TV distances on each entry. Then
we can relate the TV distances to the χ2-divergence bounds
proved in (Acharya et al., 2019b), stated below.

Lemma 15 (Theorem IV.11 (Acharya et al., 2019b)). Let
‖·‖∗ denote the trace norm of a matrix,

EZ∼u{±1}k/2
[
dχ2(W · pZ ,W · u[k])

]
=

8α2

k
‖H(W )‖∗ ,

where ∀q, W · q denotes the distribution of the message Y
given the input X ∼ q, and pZ is defined in (7).

Let Z ∼ u{±1}k/2. Then we have

dEM

(
E
[
pY

n

Z

]
, u[k]Y

n
)

≤ E
[
dEM

(
pY

n

Z , u[k]Y
n
)]

(Convexity)

≤ E

[
n∑
i=1

dTV(Wi · pZ ,Wi · u[k])

]
(Naive coupling)

≤
n∑
i=1

E

[√
1

2
dχ2(Wi · pZ ,Wi · u[k])

]
(Pinkser’s Inequality)

≤
n∑
i=1

√
E
[

1

2
dχ2(Wi · pZ ,Wi · u[k])

]
(Concavity)

≤ 2nα

√
maxW∈W ‖H(W )‖∗

k
. (Lemma 15)
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