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Abstract
Learning from demonstrations can be challeng-
ing when the quality of demonstrations is diverse,
and even more so when the quality is unknown
and there is no additional information to estimate
the quality. We propose a new method for imi-
tation learning in such scenarios. We show that
simple quality-estimation approaches might fail
due to compounding error, and fix this issue by
jointly estimating both the quality and reward us-
ing a variational approach. Our method is easy to
implement within reinforcement-learning frame-
works and also achieves state-of-the-art perfor-
mance on continuous-control benchmarks. Our
work enables scalable and data-efficient imitation
learning under more realistic settings than before.

1. Introduction
Sequential decision making aims to learn a good policy
that makes good decisions (Puterman, 1994). Imitation
Learning (IL) is a specific case which learns such a pol-
icy from demonstrations (Schaal, 1999), and it performs
well when high-quality demonstrations from experts are
available (Ho & Ermon, 2016; Fu et al., 2018; Peng et al.,
2019). However, in reality, the quality of demonstrations
can be diverse, i.e., high- and low-quality demonstrations
are mixed. This scenario typically happens when collect-
ing demonstrations from experts is costly, e.g., in robotics
where experts must have domain-specific knowledge (Man-
dlekar et al., 2018; Osa et al., 2018). Unfortunately, learning
from diverse-quality demonstrations is challenging, because
low-quality demonstrations often negatively affect learn-
ing performance, e.g., in robotics where they may cause
damages to robots (Shiarlis et al., 2016). In this paper, we
propose a new method to solve this learning problem under
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an assumption that diversity is caused by noise-densities.

Learning from diverse-quality demonstrations becomes less
challenging when the quality of demonstrations is known.
In such scenarios, we can use data-cleaning techniques to re-
move low-quality demonstrations (Han et al., 2011), or use
multi-modal approaches to learn good policies that corre-
spond to high-quality demonstrations (Li et al., 2017; Wang
et al., 2017). In some scenarios, experts may not provide the
quality directly. Instead, they provide additional information
about the quality. With such information, learning is still
relatively easy, since the quality can be estimated by their
confidence scores (Wu et al., 2019), ranking scores (Brown
et al., 2019), or a small number of high-quality demonstra-
tions (Audiffren et al., 2015). However, these scenarios
assume the availability of experts who provide the quality
or additional information. Our goal in this paper is to go be-
yond these scenarios and perform IL under a more realistic
setting where experts are not required.

We propose a new method for IL with diverse-quality
demonstrations by modeling the quality with a probabilis-
tic graphic model under a noise-density assumption. We
show that simple quality-estimation approaches might fail
due to compounding error, and fix this issue by estimat-
ing the quality along with a reward function that represents
an intention of experts’ decision making. To handle large
state-action spaces, we use a variational approach, which
can be easily implemented within reinforcement-learning
frameworks (Sutton & Barto, 1998) and is scalable to large
state-action spaces by using neural networks. We also pro-
pose importance sampling to improve the data-efficiency
of our method. The final method is called Variational IL
with Diverse-quality demonstrations (VILD). Experiments
on continuous-control tasks demonstrate that VILD is ro-
bust against diverse-quality demonstrations and achieves
state-of-the-art performance.

2. IL with Diverse-quality Demonstrations
Before delving into our main contribution, we first give
backgrounds about RL and IL. Then, we formulate a new
setting in IL called IL with diverse-quality demonstrations
and discuss deficiencies of existing methods.
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Figure 1. Graphical models describe p‹
pτ sa, kq and pdpτ su, kq of expert demonstrations and diverse-quality demonstrations, respectively.

Shaded and unshaded nodes indicate observed and unobserved random variables, respectively. st P S is a state with transition densities
pspst`1|st,atq, at P A is an action with density π‹

pat|stq, ut P A is a noisy action with density pnput|st,at, kq, and k P t1, . . . ,Ku

is an identification number with distribution νpkq. Actions at are unobserved in Figure 1(b) because they are not executed in the MDP.

2.1. Reinforcement Learning

Reinforcement Learning (RL) (Sutton & Barto, 1998)
aims to learn an optimal policy of a Markov deci-
sion process (MDP) (Puterman, 1994). We consider
a finite-horizon continuous MDP defined by M “

pS,A, psps
1|s,aq, µps1q, rps,aqqwith a state st P S Ď Rds ,

an action at P A Ď Rda , a transition probability density
pspst`1|st,atq, an initial state density µps1q, and a reward
function r : SˆA ÞÑ R, where the subscript t P t1, . . . , T u
denotes the time step. We denote τ sa “ ps1:T`1,a1:T q a
(finite-horizon) trajectory of st and at. A decision making
of an agent is determined by a policy πpat|stq, which is a
conditional probability density of action given state. RL
seeks for an optimal policy π‹pat|stq which maximizes the
expected cumulative reward: Epπ rΣTt“1rpst,atqs, where
pπpτ saq “ µps1qΠ

T
t“1pspst`1|st,atqπpat|stq is a trajec-

tory probability density induced by π. A major limitation
of RL is that it relies on the reward function which may be
unavailable in practice (Schaal, 1999).

2.2. Imitation Learning

Imitation Learning (IL) was proposed to address the above
limitation of RL (Schaal, 1999; Ng & Russell, 2000). IL
aims to learn the optimal policy from demonstrations that
encode information about the optimal policy, without using
the reward function r of the MDP. A common setting of
most IL methods is the setting of IL with expert demon-
strations. Namely, demonstrations are collected by K ě 1
demonstrators who execute actions at drawn from π‹pat|stq
for every states st. A graphical model describing this data
collection process is depicted in Figure 1(a), where a ran-
dom variable k P t1, . . . ,Ku denotes each demonstrator’s
identification number and νpkq denotes the probability of
collecting a demonstration from the k-th demonstrator. Un-
der this assumption, expert demonstrations tpτ sa, kqnu

N
n“1

are regarded to be drawn independently from

p‹pτ sa, kq “ νpkqµps1q

T
ź

t“1

pspst`1|st,atqπ
‹pat|stq. (1)

Note that k can be omitted since k and τ sa are independent.

IL has shown to work well in benchmark tasks (Ho & Ermon,
2016; Fu et al., 2018; Peng et al., 2019), but it has been
rarely used in practice (Silver et al., 2012; Schroecker et al.,
2019). One of the main reasons is that most methods assume
the availability of high-quality demonstrations collected
from experts according to Eq. (1). In practice, high-quality
demonstrations are often too costly, and even when we
obtain them, the number of demonstrations is often too few
to accurately learn the optimal policy (Osa et al., 2018).

2.3. Diverse-quality Demonstrations

To make IL more practical, we consider IL with diverse-
quality demonstrations, where demonstrations are collected
from demonstrators with different level of expertise. Such
demonstrations can be obtained cheaply via crowdsourc-
ing (Mandlekar et al., 2018), but learning the optimal policy
from them is challenging, as will be discussed below.

In this paper, we consider the following noise-density as-
sumption of diverse-quality demonstrations. Namely, we
assume that at each time step t, demonstrators execute noisy
action ut „ pnput|st,at, kq where ut P A, instead of ac-
tion at „ π‹pat|stq. A graphical model describing this
process is depicted in Figure 1(b). Under this assumption,
diverse-quality demonstrations tpτ su, kqnu

N
n“1 are regarded

to be drawn from a probability density

pdpτ su, kq “ νpkqµps1q

T
ź

t“1

pspst`1|st,utq

ˆ

ż

A
π‹pat|stqpnput|st,at, kqdat, (2)
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where τ su “ ps1:T`1,u1:T q is a trajectory of st and ut.
Indeed, the noise density pn determines the level of demon-
strator’ expertise as well as the quality of demonstrations.
The goal of IL with diverse-quality demonstrations is to
learn the optimal policy using dataset tpτ su, kqnu

N
n“1.

We emphasize that identification numbers do not contain
information about the quality and do not need to be provided
by experts. When the number is not given, a simple strategy
is to set k “ n and K “ N , which corresponds to assuming
that each demonstrator collects one demonstration.

2.4. The Deficiency of Existing Methods

Indeed, methods for high-quality demonstrations in Sec-
tion 2.2 are unsuitable for diverse-quality demonstrations in
Section 2.3 due to the differences between p‹ and pd. Specif-
ically, by comparing p‹ and pd, we can see that these meth-
ods would learn a policy pπ that averages over noise-densities,
i.e., pπput|stq « ΣKk=1νpkq

ş

A π
‹pat|stqpnput|st,at, kqdat.

This averaging policy clearly differs from the optimal policy.

Multi-modal IL methods (Li et al., 2017; Hausman et al.,
2017; Wang et al., 2017) are also unsuitable for diverse-
quality demonstrations. Specifically, these methods aim
to learn a multi-modal policy where different modalities
estimate different policies. These methods are suitable
for diverse demonstrations which are collected by experts
with different optimal policies, because different modalities
simply estimate optimal policy of different experts. How-
ever, these methods become unsuitable with diverse-quality
demonstrations, because some modalities estimate policy of
amateurs. For this reason, it is crucial to choose good modal-
ities that estimate experts’ policies, but doing so typically
requires knowing the quality of demonstrations.

In supervised-learning, a well-known approach for handling
diverse-quality data is to estimate the quality of data (An-
gluin & Laird, 1988; Raykar et al., 2010). Based on this
approach, the quality of demonstrations may be estimated by
using a parameterized model pθ,ω to estimate pd as follows:

pθ,ωpτ su, kq “ νpkqµps1q

T
ź

t“1

pspst`1|st,utq

ˆ

ż

A
πθpat|stqpωput|st,at, kqdat. (3)

The parameters θ and ω can be learned by a regression
method (see Appendix B.2), where πθ estimates the optimal
policy and pω estimates the noise-density. However, this
approach suffers from the issue of compounding error (Ross
& Bagnell, 2010) and tends to perform poorly at test time.
Namely, regression methods assume that data distributions
are identical during training and testing. However, data
distributions in IL depend on policies (Puterman, 1994),
which leads to discrepancies between data distributions dur-
ing training and testing. Due to this, compounding error

can occur during testing, where prediction errors increase
in future time steps due to changing data distributions.

Our goal is to tackle IL with diverse-quality demonstrations
under this realistic setting (i.e., experts are unavailable),
while avoiding these deficiencies.

3. VILD: A Robust Method for
Diverse-quality Demonstrations

This section presents VILD, namely a robust method for
tackling the challenge from diverse-quality demonstrations.
Specifically, we build a parameterized model that explic-
itly describes the noise-density and a reward function (Sec-
tion 3.1), and estimate its parameters by a variational ap-
proach (Section 3.2), which can be implemented easily by
RL (Section 3.3). We also improve data-efficiency by using
importance sampling (Section 3.4). Mathematical deriva-
tions are provided in Appendix A.

3.1. Modeling Diverse-quality Demonstrations

Our key idea to overcome the challenge of diverse-quality
demonstrations is to estimate the quality of demonstrations.
To avoid the deficiency of the model pθ,ω in Eq. (3), we
utilize inverse RL (IRL) (Ng & Russell, 2000), where we
learn a reward function from diverse-quality demonstrations.
IL problems can be solved by a combination of IRL and RL,
where we learn a reward function by IRL and then learn a
policy from the reward function by RL1. This combination
avoids the issue of compounding error, since the policy is
learned by RL which takes into account the dependency
between data distribution and policy (Ho & Ermon, 2016).

Specifically, our parameterized model for estimating pd

is based on a model of maximum entropy IRL (ME-
IRL) (Ziebart et al., 2010), which learns a reward
function from expert demonstrations by using a model
pφpτ saq 9 µps1qΠ

T
t“1pspst`1|st,atqe

rφpst,atq, where φ is
the parameter. Based on this model, we propose to learn the
reward function and noise-density by

pφ,ωpτ su, kq “
1

Zφ,ω
νpkqµps1q

T
ź

t“1

pspst`1|st,utq

ˆ

ż

A
erφpst,atqpωput|st,at, kqdat, (4)

where φ and ω are parameters, and Zφ,ω is the normaliza-
tion term ensuring that pφ,ω integrates to one. By comparing
pφ,ω to pd, the reward parameter φ should be learned so
that the cumulative reward is proportional to a joint prob-
ability density of actions given by the optimal policy, i.e.,
eΣTt“1rφpst,atq 9 ΠT

t“1π
‹pat|stq. In other words, the cumu-

1IRL differs from RL; IRL learns a reward function from
demonstrations, but RL learns a policy from a reward function.
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lative reward is large for trajectories induced by the opti-
mal policy. Therefore, the optimal policy can be learned
by maximizing reward rφ under transition probability ps.
Meanwhile, the model pω estimates the noise-density pn,
and the estimated level of demonstrators’ expertise can be
determined from pω .

To learn parameters of this model, we propose to minimize
the KL divergence from the data distribution to the model:
minφ,ω KLppd||pφ,ωq. By ignoring constants and letting
lφ,ωpst,at,ut, kq “ rφpst,atq ` log pωput|st,at, kq, min-
imizating the KL divergence is equivalent to solving

max
φ,ω

fpφ,ωq ´ gpφ,ωq, (5)

where

fpφ,ωq “ Epd

«

T
ÿ

t“1

log

ˆ
ż

A
elφ,ωpst,at,ut,kqdat

˙

ff

, (6)

gpφ,ωq “ logZφ,ω. (7)

Solving this maximization requires computing the integrals
over both state space S (contained in g) and action space A.
Computing these integrals is feasible for small state-action
spaces, but is infeasible for large state-action spaces. To
scale up our model to large state-action spaces, we leverage
a variational approach in the followings.

3.2. A Variational Approach for Parameter Estimation

The central idea of the variational approach is to lower-
bound an integral by the Jensen inequality and a variational
distribution (Jordan et al., 1999). The main benefit of the
approach is that the integral can be computed via an expec-
tation over an optimal variational distribution; This makes it
easier to solve an optimization problem. However, finding
the optimal variational distribution usually requires solving
a sub-optimization problem.

Before we proceed, notice that the difference fpφ,ωq ´
gpφ,ωq is not a joint concave function of the integrals, and
this prohibits using the Jensen inequality on this difference.
However, we can separately lower-bound f and g by the
Jensen inequality, since they are concave functions of their
corresponding integrals. Specifically, a variational distribu-
tion qψpat|st,ut, kq with parameter ψ yields an inequality

fpφ,ωq ě Epd

«

T
ÿ

t“1

Eqψ rlφ,ωpst,at,ut, kqs `Htpqψq

ff

“ Fpφ,ω,ψq, (8)

where we define Htpqψq “ ´Eqψ rlog qψpat|st,ut, kqs. It
can be verified that fpφ,ωq “ maxψ Fpφ,ω,ψq. Mean-
while, a variational distribution qθpat,ut|st, kq with param-

eter θ yields an inequality

gpφ,ωq ě E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq

ff

`Hpsqθq

“ Gpφ,ω,θq, (9)

where Hpsqθq “ ´E
sqθ

“

ΣTt“1 log qθpat,ut|st, kq
‰

,
sqθpτ sau, kq“νpkqµps1qΠ

T
t=1pspst`1|st,utqqθpat,ut|st, kq,

and τ sau “ ps1:T`1,a1:T ,u1:T q. The lower-bound G
resembles an objective function of maximum entropy
RL (Ziebart et al., 2010). Based on the optimality
results of maximum entropy RL, it can be verified that
gpφ,ωq “ maxθ Gpφ,ω,θq. Variational distributions
q‹ψ and q‹θ that maximize the lower-bounds (F and G,
respectively) are called optimal variational distributions.

By using the variational approach, Eq. (5) can be written as

max
φ,ω,ψ

min
θ

Fpφ,ω,ψq ´ Gpφ,ω,θq. (10)

It is feasible to solve Eq. (10) for large state-action spaces,
since F and G are defined as expectations and can be op-
timized straightforwardly. In practice, we represent the
variational distributions by parameterized functions (e.g.,
neural networks), and solve the optimization by stochas-
tic gradient methods where expectations are approximated
using mini-batch samples (Ranganath et al., 2014).

3.3. Choices of Density Models in Practice

In practice, we need to specify density models in our opti-
mization (Eq. (10)). For continuous-control tasks, we use

pωput|st,at, kq “ N put|at,Cωpkqq, (11)
qθpat,ut|st, kq “ qθpat|stqN put|at,Σkq, (12)

where N pa|b,Cq denotes a Gaussian distribution with
mean b and covariance C, and Σk is a hyper-parameter. We
use the Gaussian distribution for pω to incorporate a prior
assumption that noise-density pn tends to Gaussian. Indeed,
covariance Cωpkq gives an estimated expertise of the k-th
demonstrator: the covariance is small for high-expertise
demonstrators and vice-versa for low-expertise demonstra-
tors2. Meanwhile, the choice for qθpat,ut|st, kq in Eq. (12)
enables using RL to optimize θ, as will be described below.
The choices for qψpat|st,ut, kq and qθpat|stq are flexible;
We use Gaussians which are common for distributions over
continuous action (Duan et al., 2016), but other choices such
as the beta distributions can be used (Chou et al., 2017).

With the above density models, Eq. (10) is equivalent to

max
φ,ω,ψ

min
θ

Lpφ,ω,ψ,θq, (13)

2Different choices of pω incorporate different prior assump-
tions. For example, a Laplace distribution may be used to model
demonstrations with outliers (see Appendix A.4) (Murphy, 2013).
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where

Lpφ,ω,ψ,θq “

Epd

«

T
ÿ

t“1

Eqψ

„

rφpst,atq´
1

2
}ut ´ at}

2
C´1
ω pkq



`Htpqψq

ff

´ E
rqθ

«

T
ÿ

t“1

rφpst,atq

ff

´Hprqθq `
T

2
Eν

“

TrpC´1
ω pkqΣkq

‰

.

Here, rqθpτ saq “ µps1qΠ
T
t=1rpspst`1|st,atqqθpat|stq and

rpspst`1|st,atq “ Eν
“ş

Apspst`1|st,utqN put|at,Σkqdut
‰

.
Recall that the optimal policy may be learned by maximiz-
ing reward rφ under transition probability ps. As can be
seen, minimizing L w.r.t. θ is equivalent to solving maxi-
mum entropy RL with reward rφ and transition probability
rps. The discrepancy between ps and rps is determined by
Σk: smaller value of Σk yields less discrepancy. There-
fore, by choosing a reasonably small value of Σk, we can
optimize θ by RL to obtain qθpat|stq which estimates the
optimal policy. This is advantageous because we can use
state-of-the-art RL methods without significant modifica-
tions to implementations.

To sum up, VILD solves Eq. (13) to learn policy qθpat|stq,
where θ is optimized by RL with reward rφ, while φ,
ω, and ψ are optimized by stochastic gradient meth-
ods such as Adam (Kingma & Ba, 2015). Algorithm 1
shows the pseudo-code of VILD. We use a diagonal ma-
trix for Cωpkq and also include a regularization term
Lpωq “ TEνrlog |C´1

ω pkq|s{2 to penalize overly large
values of Cωpkq. Note that L already includes a penalty
EνrTrpC´1

ω pkqΣkqs, but its strength is too small because
Σk is chosen to be small. Similarly to prior works (Ho & Er-
mon, 2016), we implement VILD using feed-forward neural
networks with two hidden-layers and use Monte-Carlo esti-
mation to approximate expectations. We also pre-train the
Gaussian mean of qψ to obtain reasonable initial predictions;
We perform least-squares regression for 1000 gradient steps
with target value ut. More implementation details are given
in Appendix C3.

3.4. Importance Sampling for Reward Learning

To improve the convergence rate of VILD when optimiz-
ing φ, we use importance sampling (IS). Specifically, the
gradient ∇φLpφ,ω,ψ,θq indicates that φ needs to maxi-
mize the expected cumulative reward achieved by pd and
qψ , and at the same time minimize the expected cumulative
reward achieved by qθ. However, low-quality demonstra-
tions drawn from pd often yield low reward values which are
not informative for maximization. For this reason, stochas-
tic gradients estimated by these demonstrations tend to be
uninformative, which leads to slow convergence and poor

3Source code: www.github.com/voot-t/vild_code

data-efficiency.

To avoid estimating such uninformative gradients, we use
IS to estimate gradients using high-quality demonstrations
which are sampled with high probability. Briefly, IS is a
technique for estimating an expectation over a distribution
by using samples from a different distribution (Robert &
Casella, 2005). For VILD, we sample k from a distribution
rνpkq 9 }vecpC´1

ω pkqq}1 which assigns high probabilities
to k with high expertise (i.e., small Cωpkq). With this distri-
bution, the estimated gradients tend to be more informative
for reward learning. To reduce a sampling bias, we use a
truncated importance weight: wpkq “ minpνpkq{rνpkq, 1q,
which leads to an IS gradient:

∇IS
φ Lpφ,ω,ψ,θq “ E

rpd

«

wpkq
T
ÿ

t“1

Eqψ r∇φrφpst,atqs

ff

´ E
rqθ

«

T
ÿ

t“1

∇φrφpst,atq

ff

, (14)

where rpdpτ su, kq is defined similarly to pdpτ su, kq in
Eq. (2) but with rνpkq instead of νpkq. To obtain mini-
batch samples from rpd, we sample k from rνpkq and then
uniformly sample demonstrations associated with k from
dataset tpτ su, kqnu

N
n“1. Computing wpkq requires νpkq,

which can be estimated accurately since k is a discrete ran-
dom variable. For simplicity, we assume a uniform νpkq.

We note that the gradient in Eq. (14) is biased when
νpkq{rνpkq ą 1. Nonetheless, the biases may improve ro-
bustness against model misspecification, i.e., when the Gaus-
sian model pω in Eq. (11) cannot exactly represent noise-
density pn. Specifically, the optimal solution of Eq. (13)
may yield a poor policy when the model is misspecified. In
such cases, informative biases can be introduced such that
the solution has desirable properties4. For VILD, a desirable
property is that the reward function yields relatively large
values for high-expertise demonstrators. This is precisely
the consequence of using rνpkq for reward learning. Note
that the usefulness of these biases still depend on the relative
accuracy of estimated covariance.

3.5. Discussion

In this section, we discuss computational costs of VILD and
a connection between VILD and maximum entropy IRL.

Computational costs. VILD does not incur large additional
computational costs compared to prior methods. Specifi-
cally, additional costs of VILD include the cost of com-
puting gradients w.r.t. ω and ψ and the cost of sampling
from qψ. For ω, the cost of computing gradients is very
low because Cωpkq is a diagonal matrix. For ψ, the cost of

4For instance, an `2-regularization introduces biases to obtain
a solution with a small `2-norm (Hastie et al., 2001).

www.github.com/voot-t/vild_code
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Algorithm 1 VILD: Variational Imitation Learning with Diverse-quality demonstrations

1: Input: Diverse-quality demonstrations tpτ su, kqnu
N
n“1 „ pdpτ su, kq and a replay buffer B “ ∅.

2: Pre-train qψpat|st,ut, kq by least-squares regression. (see Appendix C)
3: while Not converge do
4: while |B| ă B with batch size B do
5: Sample at „ qθpat|stq and εt „ N pεt|0,Σkq, observe s1t „ pps1t|st,at ` εtq, and include pst,at, s1tq into B
6: end while
7: Update qψ by an estimate of ∇ψLpφ,ω,ψ,θq.
8: Update pω by an estimate of ∇ωLpφ,ω,ψ,θq `∇ωLpωq.
9: Update rφ by an estimate of ∇IS

φ Lpφ,ω,ψ,θq.
10: Update qθ by an RL method (e.g., TRPO, SAC, or PPO) with reward function rφ.
11: end while

computing gradients depends on the size of neural networks,
and the cost of sampling depends on the number of sam-
ples drawn for Monte-Carlo estimation. In our experiments,
we draw one sample from qψ to reduce the cost and use
antithetic sampling to reduce estimation variances (Robert
& Casella, 2005). Overall, additional costs of VILD are
relatively low compared to the cost of collecting transition
samples from MDP which is the main computational burden
of many IL methods.

Relation to maximum entropy IRL. The model of VILD
is based on the model of maximum entropy IRL (ME-
IRL) (Ziebart et al., 2010) and VILD is closely related to
ME-IRL. Specifically, VILD reduces to ME-IRL under an
assumption that demonstrations are high-quality. This as-
sumption is equivalent to letting qψ and pω be Dirac deltas:
qψpat|st,ut, kq “ δat“ut and pωput|at, st, kq “ δut“at .
In this case, the optimization in Eq. (10) is equivalent to

max
φ

min
θ

Epd
”

řT
t“1rφpst,atq

ı

´ Eqθ
”

řT
t“1rφpst,atq

ı

´Hpqθq, (15)

where qθpτ saq “ µps1qΠ
T
t“1pspst`1|st,atqqθpat|stq. Note

that ψ and ω do not appear in this objective because qψ and
pω are Dirac deltas without parameters. This objective is
equivalent to that of ME-IRL. In practice, when all demon-
strations have high quality, we expect VILD to estimate
small covariance for all demonstrations and this implies that
qψpat|st,ut, kq Ñ δat“ut and pωput|at, st, kq Ñ δut“at .
Based on this, we conjecture that VILD performs compa-
rable to ME-IRL given high-quality demonstrations. Our
experiment in Appendix D.4 supports this conjecture.

4. Experiments
We experimentally evaluate VILD (with IS and without
IS) in continuous-control tasks. Performance is evaluated
using a cumulative ground-truth reward along trajectories
collected by policies (Ho & Ermon, 2016). We report the
mean and standard error computed over 5 trials.

4.1. Comparison in Continuous-control Benchmarks

In this section, we evaluate VILD in continuous-control
benchmark tasks (Brockman et al., 2016) (HalfCheetah,
Ant, Walker2d, and Humanoid) under scenarios where the
Gaussian model of pω is correct. Specifically, for each task,
we generate two datasets using two types of Gaussian noise-
density: pnput|st,at, kq “ N put|at,σ2

kq (time-action
independent), and pnput|st,at, kq “ N put|at,σ2

kpa, tqq
(time-action dependent). For each dataset, we use a pre-
trained π‹ and K “ 10 demonstrators to generate approxi-
mately 10000 state-action pairs.

4.1.1. COMPARISON AGAINST RL-BASED METHODS

Firstly, we compare VILD against RL-based methods that
use RL to optimize a policy. These methods include
GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018),
VAIL (Peng et al., 2019), ME-IRL (Ziebart et al., 2010),
and InfoGAIL (Li et al., 2017). These existing methods
are well-known in IL, but they do not take diverse-quality
into account. We use TRPO (Schulman et al., 2015) as
an RL method, except on the Humanoid task where we
use SAC (Haarnoja et al., 2018) since TRPO does not per-
form well. For InfoGAIL, a multi-modal IL method that
learns a context-dependent policy, we report performance
averaged over all contexts and performance with the best
context (denoted by InfoGAIL (best)). Note that in Info-
GAIL, modalities of a multi-modal policy are chosen based
on values of context. The number of contexts is set to K.

Figure 2 shows the performance against the number of tran-
sition samples collected by RL. The results show that VILD
with IS achieves state-of-the-art performance and outper-
forms the rest overall. VILD without IS also tends to out-
perform existing methods in terms of the final performance.
However, it is outperformed by VILD with IS, except on
the Humanoid task with time-action independent density
(Figure 2(a)). This is perhaps because bias from IS may
have a negative effect when the model choice is correct.
Nonetheless, the overall good performance of VILD with IS
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(a) Demonstrations are generated by time-action independent noise-density.
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(b) Demonstrations are generated by time-action dependent noise-density.

Figure 2. Comparison on continuous-control benchmarks against RL-based methods that do not take diverse-quality into account. VILD-
based methods perform overall better than the rest. Demonstrations are artificially generated. (VILD (IS) and VILD (w/o IS) denote
VILD with and without IS, respectively. Horizontal dots denote performance of 5 demonstrators. Shaded area denotes standard errors.)

demonstrates that it is more robust against diverse-quality
demonstrations compared to existing methods.

On the contrary, existing methods perform poorly, except
on the Humanoid task, where all methods except GAIL and
VAIL achieve statistically comparable performance accord-
ing to t-test. This result implies that diverse-quality demon-
strations in this task may not have strong negative-effects
on the performance. This is perhaps because amateurs in
this task perform relatively well compared to amateurs in
other tasks (see Appendix D.1).

We also evaluate the accuracy of quality-estimation in VILD,
where we compare estimated covariance Cωpkq against
ground-truth covariance σ2

k of noise-density. Figures of
this comparison are given in Appendix D.1 due to space lim-
itation. The results show that the estimation is quite accurate.
Nonetheless, the estimation tends to be less accurate for low-
expertise demonstrators. A reason for this phenomenon is
that low-quality demonstrations are highly dissimilar, which
makes quality-estimating more challenging.

4.1.2. COMPARISON AGAINST SL-BASED METHODS

Next, we compare VILD against supervised-learning (SL)-
based methods, namely behavior cloning (BC) (Pomerleau,
1988), Co-teaching, and BC with diverse-quality demonstra-
tions (BC-D). Specifically, BC performs regression without
taking diverse-quality data into account. Co-teaching is a

regression-extension of a recent classification method (Han
et al., 2018) that is robust against diverse-quality data. BC-
D takes diverse-quality data into account by performing
regression based on the simple model pθ,ω . We compare the
performance of these methods against the performance of
VILD with IS in the last 100 iteration of Figure 2.

Figure 3 shows the performance of these SL-based methods
against the number of gradient steps. Performances for
time-action dependent noise-density are similar and given
in Appendix D.1. As seen, SL-based methods perform very
poorly and their final performance is much worse compared
to VILD with IS. In particular, for the Humanoid task which
has the largest state-action space, SL-based methods could
not improve upon the initial policy at all.

Notice that the performance of SL-based methods sharply
degrades as training progresses. We conjecture that this
degradation is due to compounding error caused by over-
fitting. Specifically, these methods may learn reasonably
good policies early on (e.g., in Ant and Walker2d), but the
policies overfit to training data as training progresses. Dur-
ing testing, these overfitted policies may make incorrect
predictions which cause compounding error. In addition,
diverse-quality demonstrations also makes the issue more
severe, since neural networks tend to overfit to low-quality
data (Arpit et al., 2017). Due to these reasons, BC performs
poorly as it suffers from issues of compounding error and
diverse-quality demonstrations. Meanwhile, Co-teaching
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Figure 3. Comparison on continuous-control benchmarks against supervised-learning-based methods. BC-D and Co-teaching take diverse-
quality into account, while BC does not. VILD with IS (red horizontal lines) clearly performs better than these methods. Demonstrations
are artificially generated by time-action independent noise-density.
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Figure 4. Performance of InfoGAIL on Pen-
dulum with different values of context.
Clearly, choosing a good value of context
is crucial for InfoGAIL.
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Figure 5. Comparison on LunarLander
against GAIL and InfoGAIL. The model of
VILD is incorrect, but VILD with IS still
outperforms comparison methods.
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Figure 6. Results of quality-estimation by
VILD in LunarLander. The estimated co-
variance Cωpkq yields relatively accurate
quality for each demonstrator.

and BC-D are quite robust against diverse-quality demon-
strations, but they still suffer from compounding error and
perform worse than VILD with IS. Overall, these results
indicate that SL methods for diverse-quality data are not
suitable for diverse-quality demonstrations.

4.1.3. INVESTIGATING INFOGAIL IN PENDULUM TASK

From Figure 2, we can see that InfoGAIL performs poorly
when its performance is averaged over all contexts. Using
the best context improves its performance, but the improve-
ment is quite mild. We investigated this phenomenon and
found that the learned multi-modal policy yields similar
performance for all contexts (see Appendix D.1), which im-
plies that InfoGAIL fails to learn a good multi-modal policy.
This is perhaps because learning a multi-modal policy is
challenging in large state-action spaces. To verify our claim
that choosing good modalities is crucial for multi-modal
IL (Section 2.4), we perform an experiment in a Pendulum
task. This task has a much smaller state-action space and
we expect InfoGAIL to learn a good multi-modal policy.

Figure 4 shows the performance of InfoGAIL for different
values of context (denoted by different colors). As seen, the
performance of InfoGAIL crucially depends on the value
of context. Namely, a well-chosen context yields a policy
with good performance, whereas a poorly-chosen context

yields a policy with poor performance. Indeed, averaging
these policies over all contexts yields a policy with average
performance. This result supports our claim that choos-
ing good modalities is crucial for multi-modal IL methods.
However, recall that doing so is typically difficult when the
quality of demonstrations is unknown. In our experiments,
good modalities could be chosen based on performance, but
this is not possible when a ground-truth reward function for
performance evaluation is not available.

4.2. Robustness Against Incorrect Model Choices
Next, we evaluate the robustness of VILD against incorrect
model choices. Specifically, we evaluate VILD when pn is
not Gaussian. We consider a LunarLander task, where an op-
timal policy is available for generating high-quality demon-
strations (Brockman et al., 2016). To generate diverse-
quality demonstrations, we perturb parameters of the opti-
mal policy using half-Gaussian distributions with variance
depending on k. We use K “ 10 to generate a dataset with
approximately 20000 state-action pairs. We compare VILD
against GAIL and InfoGAIL; We expect other RL-based
methods to perform similarly to GAIL, based on bench-
mark results. We use PPO (Schulman et al., 2017) as an RL
method. We use a log-sigmoid reward function for VILD to
make comparison against GAIL fair (see Appendix D.2).
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Figure 7. RobosuiteReacher task. Rewards
are inverse proportional to distance be-
tween the end-effector and red object. De-
picted trajectory is obtained by VILD with
IS (left to right, top to bottom).
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Figure 8. Comparison on Robosuit-
eReacher against RL-based methods using
real-world demonstrations. VILD with IS
performs overall better than methods that
do not take diversity into account.
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Figure 9. Performance of InfoGAIL on Ro-
bosuiteReacher with different values of
context. Performance of InfoGAIL is
highly unstable.

Figure 5 shows the performance. It can be seen that VILD
with IS outperforms comparison methods and learns a good
policy. This result indicates that VILD with IS is robust
against incorrect model choices. On the other hand, VILD
without IS does not perform as well as VILD with IS. The
discrepancy between them is perhaps due to IS biases which
enable VILD with IS to learn a better solution. Meanwhile,
GAIL and InfoGAIL do not perform well. Using the best
context can improve the performance of InfoGAIL, but its
performance is still poor compared to VILD with IS.

Figure 6 shows results of quality-estimation by VILD. The
results show that the quality-estimation is reasonably ac-
curate under this scenario. Namely, the value of Cωpkq
of high-expertise demonstrators (i.e., k “ 1, 2, 3) is rel-
atively smaller than that of low-expertise demonstrators
(i.e., k “ 8, 9, 10). Note that we cannot directly evalu-
ate quality-estimation against the ground-truth because the
noise-density is not a Gaussian distribution.

4.3. Robustness Against Real-world Demonstrations

Lastly, we evaluate the robustness of VILD against real-
world demonstrations collected by crowdsourcing (Man-
dlekar et al., 2018). While the public datasets were col-
lected for Assembly tasks in a Robosuite platform (Fan
et al., 2018), we consider a Reacher task, where demon-
strations in Assembly tasks are clipped when the robot’s
end-effector contacts the object. We use a Reacher dataset
with approximately 5000 state-action pairs. We evaluate
RL-based methods where we use TRPO as an RL method.
For VILD, we use a log-sigmoid reward function which
improves the performance.

Figure 7 shows the task and a trajectory obtained by VILD
with IS, while Figure 8 shows the performance obtained
by collecting 5 million transition samples for RL training.
VILD with IS clearly outperforms comparison methods ex-
cept InfoGAIL (best). Meanwhile, VILD without IS tends

to outperform existing methods except VAIL, InfoGAIL,
and InfoGAIL (best). Overall, the results demonstrate that,
given 5 million transition samples, VILD with IS is more
robust against real-world demonstrations compared to meth-
ods that do not take diversity into account and InfoGAIL
that do not use the best context.

Note that the final performance of InfoGAIL (best) is com-
parable to that of VILD with IS, but InfoGAIL (best) learns
faster. Nonetheless, InfoGAIL (best) is unstable as its per-
formance fluctuates between good and poor. This instability
can be observed for most values of context as shown in
Figure 9. This is perhaps due to a large state-action space
which makes learning a multi-modal policy challenging.

5. Conclusion
This paper explored a realistic setting in IL where demon-
strations have diverse-quality. We showed the deficiency
of existing methods, and proposed a robust method called
VILD, which learns both the reward function and noise-
density by using the variational approach. Empirical eval-
uations on continuous-control tasks demonstrated that our
work enables scalable and data-efficient IL in this setting.

In this work, we considered the noise-density assumption
where the quality is determined by noise. In future, we will
consider different assumptions for determining the quality.
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