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Abstract
Fine-tuning large pre-trained models is an effec-
tive transfer mechanism in NLP. However, in the
presence of many downstream tasks, fine-tuning
is parameter inefficient: an entire new model is
required for every task. As an alternative, we
propose transfer with adapter modules. Adapter
modules yield a compact and extensible model;
they add only a few trainable parameters per task,
and new tasks can be added without revisiting
previous ones. The parameters of the original
network remain fixed, yielding a high degree of
parameter sharing. To demonstrate adapter’s ef-
fectiveness, we transfer the recently proposed
BERT Transformer model to 26 diverse text clas-
sification tasks, including the GLUE benchmark.
Adapters attain near state-of-the-art performance,
whilst adding only a few parameters per task. On
GLUE, we attain within 0.4% of the performance
of full fine-tuning, adding only 3.6% parameters
per task. By contrast, fine-tuning trains 100% of
the parameters per task.

1. Introduction
Transfer from pre-trained models yields strong performance
on many NLP tasks (Dai & Le, 2015; Howard & Ruder,
2018; Radford et al., 2018). BERT, a Transformer network
trained on large text corpora with an unsupervised loss,
attained state-of-the-art performance on text classification
and extractive question answering (Devlin et al., 2018).

In this paper we address the online setting, where tasks
arrive in a stream. The goal is to build a system that per-
forms well on all of them, but without training an entire new
model for every new task. A high degree of sharing between
tasks is particularly useful for applications such as cloud
services, where models need to be trained to solve many

*Equal contribution 1Google Research 2Jagiellonian University.
Correspondence to: Neil Houlsby <neilhoulsby@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

105 106 107 108 109

Num trainable parameters / task

−25

−20

−15

−10

−5

0

5

A
cc

u
ra

cy
 d

e
lt

a
 (

%
)

Adapters (ours)

Fine-tune top layers

Figure 1. Trade-off between accuracy and number of trained task-
specific parameters, for adapter tuning and fine-tuning. The y-axis
is normalized by the performance of full fine-tuning, details in
Section 3. The curves show the 20th, 50th, and 80th performance
percentiles across nine tasks from the GLUE benchmark. Adapter-
based tuning attains a similar performance to full fine-tuning with
two orders of magnitude fewer trained parameters.

tasks that arrive from customers in sequence. For this, we
propose a transfer learning strategy that yields compact and
extensible downstream models. Compact models are those
that solve many tasks using a small number of additional
parameters per task. Extensible models can be trained in-
crementally to solve new tasks, without forgetting previous
ones. Our method yields a such models without sacrificing
performance.

The two most common transfer learning techniques in NLP
are feature-based transfer and fine-tuning. Instead, we
present an alternative transfer method based on adapter
modules (Rebuffi et al., 2017). Features-based transfer in-
volves pre-training real-valued embeddings vectors. These
embeddings may be at the word (Mikolov et al., 2013), sen-
tence (Cer et al., 2019), or paragraph level (Le & Mikolov,
2014). The embeddings are then fed to custom downstream
models. Fine-tuning involves copying the weights from a
pre-trained network and tuning them on the downstream
task. Recent work shows that fine-tuning often enjoys better
performance than feature-based transfer (Howard & Ruder,
2018).
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Both feature-based transfer and fine-tuning require a new
set of weights for each task. Fine-tuning is more parameter
efficient if the lower layers of a network are shared between
tasks. However, our proposed adapter tuning method is even
more parameter efficient. Figure 1 demonstrates this trade-
off. The x-axis shows the number of parameters trained per
task; this corresponds to the marginal increase in the model
size required to solve each additional task. Adapter-based
tuning requires training two orders of magnitude fewer pa-
rameters to fine-tuning, while attaining similar performance.

Adapters are new modules added between layers of a
pre-trained network. Adapter-based tuning differs from
feature-based transfer and fine-tuning in the following way.
Consider a function (neural network) with parameters w:
φw(x). Feature-based transfer composes φw with a new
function, χv, to yield χv(φw(x)). Only the new, task-
specific, parameters, v, are then trained. Fine-tuning in-
volves adjusting the original parameters, w, for each new
task, limiting compactness. For adapter tuning, a new
function, ψw,v(x), is defined, where parameters w are
copied over from pre-training. The initial parameters v0

are set such that the new function resembles the original:
ψw,v0(x) ≈ φw(x). During training, only v are tuned.
For deep networks, defining ψw,v typically involves adding
new layers to the original network, φw. If one chooses
|v| � |w|, the resulting model requires ∼ |w| parameters
for many tasks. Since w is fixed, the model can be extended
to new tasks without affecting previous ones.

Adapter-based tuning relates to multi-task and continual
learning. Multi-task learning also results in compact models.
However, multi-task learning requires simultaneous access
to all tasks, which adapter-based tuning does not require.
Continual learning systems aim to learn from an endless
stream of tasks. This paradigm is challenging because net-
works forget previous tasks after re-training (McCloskey
& Cohen, 1989; French, 1999). Adapters differ in that the
tasks do not interact and the shared parameters are frozen.
This means that the model has perfect memory of previous
tasks using a small number of task-specific parameters.

We demonstrate on a large and diverse set of text classifica-
tion tasks that adapters yield parameter-efficient tuning for
NLP. The key innovation is to design an effective adapter
module and its integration with the base model. We propose
a simple yet effective, bottleneck architecture. On the GLUE
benchmark, our strategy almost matches the performance of
the fully fine-tuned BERT, but uses only 3% task-specific
parameters, while fine-tuning uses 100% task-specific pa-
rameters. We observe similar results on a further 17 public
text datasets, and SQuAD extractive question answering. In
summary, adapter-based tuning yields a single, extensible,
model that attains near state-of-the-art performance in text
classification.

2. Adapter tuning for NLP
We present a strategy for tuning a large text model on several
downstream tasks. Our strategy has three key properties:
(i) it attains good performance, (ii) it permits training on
tasks sequentially, that is, it does not require simultaneous
access to all datasets, and (iii) it adds only a small number
of additional parameters per task. These properties are
especially useful in the context of cloud services, where
many models need to be trained on a series of downstream
tasks, so a high degree of sharing is desirable.

To achieve these properties, we propose a new bottleneck
adapter module. Tuning with adapter modules involves
adding a small number of new parameters to a model, which
are trained on the downstream task (Rebuffi et al., 2017).
When performing vanilla fine-tuning of deep networks, a
modification is made to the top layer of the network. This is
required because the label spaces and losses for the upstream
and downstream tasks differ. Adapter modules perform
more general architectural modifications to re-purpose a pre-
trained network for a downstream task. In particular, the
adapter tuning strategy involves injecting new layers into
the original network. The weights of the original network
are untouched, whilst the new adapter layers are initialized
at random. In standard fine-tuning, the new top-layer and
the original weights are co-trained. In contrast, in adapter-
tuning, the parameters of the original network are frozen
and therefore may be shared by many tasks.

Adapter modules have two main features: a small number
of parameters, and a near-identity initialization. The adapter
modules need to be small compared to the layers of the orig-
inal network. This means that the total model size grows
relatively slowly when more tasks are added. A near-identity
initialization is required for stable training of the adapted
model; we investigate this empirically in Section 3.6. By
initializing the adapters to a near-identity function, original
network is unaffected when training starts. During training,
the adapters may then be activated to change the distribution
of activations throughout the network. The adapter mod-
ules may also be ignored if not required; in Section 3.6 we
observe that some adapters have more influence on the net-
work than others. We also observe that if the initialization
deviates too far from the identity function, the model may
fail to train.

2.1. Instantiation for Transformer Networks

We instantiate adapter-based tuning for text Transformers.
These models attain state-of-the-art performance in many
NLP tasks, including translation, extractive QA, and text
classification problems (Vaswani et al., 2017; Radford et al.,
2018; Devlin et al., 2018). We consider the standard Trans-
former architecture, as proposed in Vaswani et al. (2017).
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Figure 2. Architecture of the adapter module and its integration
with the Transformer. Left: We add the adapter module twice
to each Transformer layer: after the projection following multi-
headed attention and after the two feed-forward layers. Right: The
adapter consists of a bottleneck which contains few parameters rel-
ative to the attention and feedforward layers in the original model.
The adapter also contains a skip-connection. During adapter tun-
ing, the green layers are trained on the downstream data, this
includes the adapter, the layer normalization parameters, and the
final classification layer (not shown in the figure).

Adapter modules present many architectural choices. We
provide a simple design that attains good performance. We
experimented with a number of more complex designs, see
Section 3.6, but we found the following strategy performed
as well as any other that we tested, across many datasets.

Figure 2 shows our adapter architecture, and its application
it to the Transformer. Each layer of the Transformer contains
two primary sub-layers: an attention layer and a feedforward
layer. Both layers are followed immediately by a projection
that maps the features size back to the size of layer’s input.
A skip-connection is applied across each of the sub-layers.
The output of each sub-layer is fed into layer normalization.
We insert two serial adapters after each of these sub-layers.
The adapter is always applied directly to the output of the
sub-layer, after the projection back to the input size, but
before adding the skip connection back. The output of
the adapter is then passed directly into the following layer
normalization.

To limit the number of parameters, we propose a bottle-
neck architecture. The adapters first project the original
d-dimensional features into a smaller dimension, m, apply
a nonlinearity, then project back to d dimensions. The total
number of parameters added per layer, including biases, is
2md + d + m. By setting m � d, we limit the number
of parameters added per task; in practice, we use around
0.5 − 8% of the parameters of the original model. The
bottleneck dimension, m, provides a simple means to trade-
off performance with parameter efficiency. The adapter
module itself has a skip-connection internally. With the
skip-connection, if the parameters of the projection layers
are initialized to near-zero, the module is initialized to an
approximate identity function.

Alongside the layers in the adapter module, we also train
new layer normalization parameters per task. This tech-
nique, similar to conditional batch normalization (De Vries
et al., 2017), FiLM (Perez et al., 2018), and self-
modulation (Chen et al., 2019), also yields parameter-

efficient adaptation of a network; with only 2d parameters
per layer. However, training the layer normalization pa-
rameters alone is insufficient for good performance, see
Section 3.4.

3. Experiments
We show that adapters achieve parameter efficient transfer
for text tasks. On the GLUE benchmark (Wang et al., 2018),
adapter tuning is within 0.4% of full fine-tuning of BERT,
but it adds only 3% of the number of parameters trained by
fine-tuning. We confirm this result on a further 17 public
classification tasks and SQuAD question answering. Analy-
sis shows that adapter-based tuning automatically focuses
on the higher layers of the network.

3.1. Experimental Settings

We use the public, pre-trained BERT Transformer network
as our base model. To perform classification with BERT,
we follow the approach in Devlin et al. (2018). The first
token in each sequence is a special “classification token”.
We attach a linear layer to the embedding of this token to
predict the class label.

Our training procedure also follows Devlin et al. (2018).
We optimize using Adam (Kingma & Ba, 2014), whose
learning rate is increased linearly over the first 10% of the
steps, and then decayed linearly to zero. All runs are trained
on 4 Google Cloud TPUs with a batch size of 32. For each
dataset and algorithm, we run a hyperparameter sweep and
select the best model according to accuracy on the validation
set. For the GLUE tasks, we report the test metrics provided
by the submission website1. For the other classification
tasks we report test-set accuracy.

We compare to fine-tuning, the current standard for transfer
of large pre-trained models, and the strategy successfully

1https://gluebenchmark.com/
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used by BERT. For N tasks, full fine-tuning requires N×
the number of parameters of the pre-trained model. Our
goal is to attain performance equal to fine-tuning, but with
fewer total parameters, ideally near to 1×.

3.2. GLUE benchmark

We first evaluate on GLUE.2 For these datasets, we trans-
fer from the pre-trained BERTLARGE model, which con-
tains 24 layers, and a total of 330M parameters, see Devlin
et al. (2018) for details. We perform a small hyperparam-
eter sweep for adapter tuning: We sweep learning rates
in {3 · 10−5, 3 · 10−4, 3 · 10−3}, and number of epochs
in {3, 20}. We test both using a fixed adapter size (num-
ber of units in the bottleneck), and selecting the best size
per task from {8, 64, 256}. The adapter size is the only
adapter-specific hyperparameter that we tune. Finally, due
to training instability, we re-run 5 times with different ran-
dom seeds and select the best model on the validation set.

Table 1 summarizes the results. Adapters achieve a mean
GLUE score of 80.0, compared to 80.4 achieved by full
fine-tuning. The optimal adapter size varies per dataset. For
example, 256 is chosen for MNLI, whereas for the smallest
dataset, RTE, 8 is chosen. Restricting always to size 64,
leads to a small decrease in average accuracy to 79.6. To
solve all of the datasets in Table 1, fine-tuning requires 9×
the total number of BERT parameters.3 In contrast, adapters
require only 1.3× parameters.

3.3. Additional Classification Tasks

To further validate that adapters yields compact, performant,
models, we test on additional, publicly available, text clas-
sification tasks. This suite contains a diverse set of tasks:
The number of training examples ranges from 900 to 330k,
the number of classes ranges from 2 to 157, and the av-
erage text length ranging from 57 to 1.9k characters. We
supply statistics and references for all of the datasets in the
appendix.

For these datasets, we use a batch size of 32. The datasets
are diverse, so we sweep a wide range of learning rates:
{1 · 10−5, 3 · 10−5, 1 · 10−4, 3 · 10−3}. Due to the large
number of datasets, we select the number of training epochs
from the set {20, 50, 100} manually, from inspection of the
validation set learning curves. We select the optimal values
for both fine-tuning and adapters; the exact values are in the
appendix.

2 We omit WNLI as in Devlin et al. (2018) because the no
current algorithm beats the baseline of predicting the majority
class.

3 We treat MNLIm and MNLImm as separate tasks with individ-
ually tuned hyperparameters. However, they could be combined
into one model, leaving 8× overall.

We test adapters sizes in {2, 4, 8, 16, 32, 64}. Since some
of the datasets are small, fine-tuning the entire network
may be sub-optimal. Therefore, we run an additional base-
line: variable fine-tuning. For this, we fine-tune only
the top n layers, and freeze the remainder. We sweep
n ∈ {1, 2, 3, 5, 7, 9, 11, 12}. In these experiments, we use
the BERTBASE model with 12 layers, therefore, variable
fine-tuning subsumes full fine-tuning when n = 12.

Unlike the GLUE tasks, there is no comprehensive set of
state-of-the-art numbers for this suite of tasks. Therefore, to
confirm that our BERT-based models are competitive, we
collect our own benchmark performances. For this, we run
a large-scale hyperparameter search over standard network
topologies. Specifically, we run the single-task Neural Au-
toML algorithm, similar to Zoph & Le (2017); Wong et al.
(2018). This algorithm searches over a space of feedfor-
ward and convolutional networks, stacked on pre-trained
text embeddings modules publicly available via TensorFlow
Hub4. The embeddings coming from the TensorFlow Hub
modules may be frozen or fine-tuned. The full search space
is described in the appendix. For each task, we run AutoML
for one week on CPUs, using 30 machines. In this time
the algorithm explores over 10k models on average per task.
We select the best final model for each task according to
validation set accuracy.

The results for the AutoML benchmark (“no BERT base-
line”), fine-tuning, variable fine-tuning, and adapter-tuning
are reported in Table 2. The AutoML baseline demon-
strates that the BERT models are competitive. This baseline
explores thousands of models, yet the BERT models per-
form better on average. We see similar pattern of results to
GLUE. The performance of adapter-tuning is close to full
fine-tuning (0.4% behind). Fine-tuning requires 17× the
number of parameters to BERTBASE to solve all tasks. Vari-
able fine-tuning performs slightly better than fine-tuning,
whilst training fewer layers. The optimal setting of variable
fine-tuning results in training 52% of the network on average
per task, reducing the total to 9.9× parameters. Adapters,
however, offer a much more compact model. They intro-
duce 1.14% new parameters per task, resulting in 1.19×
parameters for all 17 tasks.

3.4. Parameter/Performance trade-off

The adapter size controls the parameter efficiency, smaller
adapters introduce fewer parameters, at a possible cost to
performance. To explore this trade-off, we consider different
adapter sizes, and compare to two baselines: (i) Fine-tuning
of only the top k layers of BERTBASE. (ii) Tuning only the
layer normalization parameters. The learning rate is tuned
using the range presented in Section 3.2.

4https://www.tensorflow.org/hub
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Total num
params

Trained
params / task CoLA SST MRPC STS-B QQP MNLIm MNLImm QNLI RTE Total

BERTLARGE 9.0× 100% 60.5 94.9 89.3 87.6 72.1 86.7 85.9 91.1 70.1 80.4
Adapters (8-256) 1.3× 3.6% 59.5 94.0 89.5 86.9 71.8 84.9 85.1 90.7 71.5 80.0
Adapters (64) 1.2× 2.1% 56.9 94.2 89.6 87.3 71.8 85.3 84.6 91.4 68.8 79.6

Table 1. Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are evaluated using F1 score. STS-B is
evaluated using Spearman’s correlation coefficient. CoLA is evaluated using Matthew’s Correlation. The other tasks are evaluated using
accuracy. Adapter tuning achieves comparable overall score (80.0) to full fine-tuning (80.4) using 1.3× parameters in total, compared to
9×. Fixing the adapter size to 64 leads to a slightly decreased overall score of 79.6 and slightly smaller model.

Dataset No BERT
baseline

BERTBASE
Fine-tune

BERTBASE
Variable FT

BERTBASE
Adapters

20 newsgroups 91.1 92.8± 0.1 92.8± 0.1 91.7± 0.2
Crowdflower airline 84.5 83.6± 0.3 84.0± 0.1 84.5± 0.2
Crowdflower corporate messaging 91.9 92.5± 0.5 92.4± 0.6 92.9± 0.3
Crowdflower disasters 84.9 85.3± 0.4 85.3± 0.4 84.1± 0.2
Crowdflower economic news relevance 81.1 82.1± 0.0 78.9± 2.8 82.5± 0.3
Crowdflower emotion 36.3 38.4± 0.1 37.6± 0.2 38.7± 0.1
Crowdflower global warming 82.7 84.2± 0.4 81.9± 0.2 82.7± 0.3
Crowdflower political audience 81.0 80.9± 0.3 80.7± 0.8 79.0± 0.5
Crowdflower political bias 76.8 75.2± 0.9 76.5± 0.4 75.9± 0.3
Crowdflower political message 43.8 38.9± 0.6 44.9± 0.6 44.1± 0.2
Crowdflower primary emotions 33.5 36.9± 1.6 38.2± 1.0 33.9± 1.4
Crowdflower progressive opinion 70.6 71.6± 0.5 75.9± 1.3 71.7± 1.1
Crowdflower progressive stance 54.3 63.8± 1.0 61.5± 1.3 60.6± 1.4
Crowdflower US economic performance 75.6 75.3± 0.1 76.5± 0.4 77.3± 0.1
Customer complaint database 54.5 55.9± 0.1 56.4± 0.1 55.4± 0.1
News aggregator dataset 95.2 96.3± 0.0 96.5± 0.0 96.2± 0.0
SMS spam collection 98.5 99.3± 0.2 99.3± 0.2 95.1± 2.2

Average 72.7 73.7 74.0 73.3

Total number of params — 17× 9.9× 1.19×
Trained params/task — 100% 52.9% 1.14%

Table 2. Test accuracy for additional classification tasks. In these experiments we transfer from the BERTBASE model. For each task
and algorithm, the model with the best validation set accuracy is chosen. We report the mean test accuracy and s.e.m. across runs with
different random seeds.

Figure 3 shows the parameter/performance trade-off ag-
gregated over all classification tasks in each suite (GLUE
and “additional”). On GLUE, performance decreases dra-
matically when fewer layers are fine-tuned. Some of the
additional tasks benefit from training fewer layers, so per-
formance of fine-tuning decays much less. In both cases,
adapters yield good performance across a range of sizes two
orders of magnitude fewer than fine-tuning.

Figure 4 shows more details for two GLUE tasks: MNLIm
and CoLA. Tuning the top layers trains more task-specific
parameters for all k > 2. When fine-tuning using a compa-
rable number of task-specific parameters, the performance
decreases substantially compared to adapters. For instance,
fine-tuning just the top layer yields approximately 9M train-
able parameters and 77.8%± 0.1% validation accuracy on
MNLIm. In contrast, adapter tuning with size 64 yields ap-
proximately 2M trainable parameters and 83.7% ± 0.1%

validation accuracy. For comparison, full fine-tuning attains
84.4%± 0.02% on MNLIm. We observe a similar trend on
CoLA.

As a further comparison, we tune the parameters of layer
normalization alone. These layers only contain point-wise
additions and multiplications, so introduce very few train-
able parameters: 40k for BERTBASE. However this strategy
performs poorly: performance decreases by approximately
3.5% on CoLA and 4% on MNLI.

To summarize, adapter tuning is highly parameter-efficient,
and produces a compact model with a strong performance,
comparable to full fine-tuning. Training adapters with sizes
0.5− 5% of the original model, performance is within 1%
of the competitive published results on BERTLARGE.
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Figure 3. Accuracy versus the number of trained parameters, aggregated across tasks. We compare adapters of different sizes (orange)
with fine-tuning the top n layers, for varying n (blue). The lines and shaded areas indicate the 20th, 50th, and 80th percentiles across
tasks. For each task and algorithm, the best model is selected for each point along the curve. For GLUE, the validation set accuracy is
reported. For the additional tasks, we report the test-set accuracies. To remove the intra-task variance in scores, we normalize the scores
for each model and task by subtracting the performance of full fine-tuning on the corresponding task.
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Figure 4. Validation set accuracy versus number of trained parameters for three methods: (i) Adapter tuning with an adapter sizes 2n

for n = 0 . . . 9 (orange). (ii) Fine-tuning the top k layers for k = 1 . . . 12 (blue). (iii) Tuning the layer normalization parameters only
(green). Error bars indicate ±1 s.e.m. across three random seeds.

3.5. SQuAD Extractive Question Answering

Finally, we confirm that adapters work on tasks other than
classification by running on SQuAD v1.1 (Rajpurkar et al.,
2018). Given a question and Wikipedia paragraph, this task
requires selecting the answer span to the question from the
paragraph. Figure 5 displays the parameter/performance
trade-off of fine-tuning and adapters on the SQuAD valida-
tion set. For fine-tuning, we sweep the number of trained lay-
ers, learning rate in {3·10−5, 5·10−5, 1·10−4}, and number
of epochs in {2, 3, 5}. For adapters, we sweep the adapter
size, learning rate in {3 · 10−5, 1 · 10−4, 3 · 10−4, 1 · 10−3},
and number of epochs in {3, 10, 20}. As for classification,
adapters attain performance comparable to full fine-tuning,
while training many fewer parameters. Adapters of size 64
(2% parameters) attain a best F1 of 90.4%, while fine-tuning

attains 90.7. SQuAD performs well even with very small
adapters, those of size 2 (0.1% parameters) attain an F1 of
89.9.

3.6. Analysis and Discussion

We perform an ablation to determine which adapters are
influential. For this, we remove some trained adapters and
re-evaluate the model (without re-training) on the valida-
tion set. Figure 6 shows the change in performance when
removing adapters from all continuous layer spans. The
experiment is performed on BERTBASE with adapter size 64
on MNLI and CoLA.

First, we observe that removing any single layer’s adapters
has only a small impact on performance. The elements on
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Figure 5. Validation accuracy versus the number of trained param-
eters for SQuAD v1.1. Error bars indicate the s.e.m. across three
seeds, using the best hyperparameters.

the heatmaps’ diagonals show the performances of removing
adapters from single layers, where largest performance drop
is 2%. In contrast, when all of the adapters are removed
from the network, the performance drops substantially: to
37% on MNLI and 69% on CoLA – scores attained by
predicting the majority class. This indicates that although
each adapter has a small influence on the overall network,
the overall effect is large.

Second, Figure 6 suggests that adapters on the lower layers
have a smaller impact than the higher-layers. Removing
the adapters from the layers 0− 4 on MNLI barely affects
performance. This indicates that adapters perform well
because they automatically prioritize higher layers. Indeed,
focusing on the upper layers is a popular strategy in fine-
tuning (Howard & Ruder, 2018). One intuition is that the
lower layers extract lower-level features that are shared
among tasks, while the higher layers build features that are
unique to different tasks. This relates to our observation that
for some tasks, fine-tuning only the top layers outperforms
full fine-tuning, see Table 2.

Next, we investigate the robustness of the adapter modules
to the number of neurons and initialization scale. In our
main experiments the weights in the adapter module were
drawn from a zero-mean Gaussian with standard deviation
10−2, truncated to two standard deviations. To analyze the
impact of the initialization scale on the performance, we
test standard deviations in the interval [10−7, 1]. Figure 6
summarizes the results. We observe that on both datasets,
the performance of adapters is robust for standard deviations
below 10−2. However, when the initialization is too large,
performance degrades, more substantially on CoLA.

To investigate robustness of adapters to the number of neu-
rons, we re-examine the experimental data from Section 3.2.
We find that the quality of the model across adapter sizes is
stable, and a fixed adapter size across all the tasks could be
used with small detriment to performance. For each adapter

size we calculate the mean validation accuracy across the
eight classification tasks by selecting the optimal learning
rate and number of epochs5. For adapter sizes 8, 64, and
256, the mean validation accuracies are 86.2%, 85.8% and
85.7%, respectively. This message is further corroborated
by Figures 4 and 5, which show a stable performance across
a few orders of magnitude.

Finally, we tried a number of extensions to the adapter’s
architecture that did not yield a significant boost in perfor-
mance. We document them here for completeness. We
experimented with (i) adding a batch/layer normalization to
the adapter, (ii) increasing the number of layers per adapter,
(iii) different activation functions, such as tanh, (iv) inserting
adapters only inside the attention layer, (v) adding adapters
in parallel to the main layers, and possibly with a multi-
plicative interaction. In all cases we observed the resulting
performance to be similar to the bottleneck proposed in
Section 2.1. Therefore, due to its simplicity and strong per-
formance, we recommend the original adapter architecture.

4. Related Work
Pre-trained text representations Pre-trained textual rep-
resentations are widely used to improve performance on
NLP tasks. These representations are trained on large cor-
pora (usually, but not always, unsupervised), and fed as
features to downstream models. In deep networks, these fea-
tures may also be fine-tuned on the downstream task. Brown
clusters, trained on distributional information, are a classic
example of pre-trained representations (Brown et al., 1992).
Turian et al. (2010) show that pre-trained embeddings of
words outperform those trained from scratch. Since the
deep-learning era, word embeddings have been widely used,
and training strategies these have arisen (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al., 2017).
Embeddings of longer texts, sentences and paragraphs, have
also been developed (Le & Mikolov, 2014; Kiros et al.,
2015; Conneau et al., 2017; Cer et al., 2019).

To encode context in these representations, features are
extracted from internal representations of sequence models,
such as MT systems (McCann et al., 2017), and BiLSTM
language models, as used in ELMo (Peters et al., 2018). As
with adapters, ELMo exploits the layers other than the top
layer of a pre-trained network. However, this strategy only
reads from the inner layers. In contrast, adapters write to
the inner layers, re-configuring the processing of features
through the entire network.

Fine-tuning Fine-tuning an entire pre-trained model has
become a popular alternative to features (Dai & Le, 2015;

5 We treat here MNLIm and MNLImm as separate tasks. For
consistency, for all datasets we use accuracy metric and exclude
the regression STS-B task.
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Figure 6. Left, Center: Ablation of trained adapters from continuous layer spans. The heatmap shows the relative decrease in validation
accuracy to the fully trained adapted model. The y and x axes indicate the first and last layers ablated (inclusive), respectively. The
diagonal cells, highlighted in green, indicate ablation of a single layer’s adapters. The cell in the top-right indicates ablation of all adapters.
Cells in the lower triangle are meaningless, and are set to 0%, the best possible relative performance. Right: Performance of BERTBASE

using adapters with different initial weight magnitudes. The x-axis is the standard deviation of the initialization distribution.

Howard & Ruder, 2018; Radford et al., 2018) In NLP, the
upstream model is usually a neural language model (Ben-
gio et al., 2003). Recent state-of-the-art results on ques-
tion answering (Rajpurkar et al., 2016) and text classi-
fication (Wang et al., 2018) have been attained by fine-
tuning a Transformer network (Vaswani et al., 2017) with a
Masked Language Model loss (Devlin et al., 2018). Perfor-
mance aside, an advantage of fine-tuning is that it does not
require task-specific model design, unlike representation-
based transfer. However, vanilla fine-tuning does require a
new set of network weights for every new task.

Multi-task Learning Multi-task learning (MTL) involves
training on tasks simultaneously. Early work shows that
sharing network parameters across tasks exploits task reg-
ularities, yielding improved performance (Caruana, 1997).
The authors share weights in lower layers of a network,
and use specialized higher layers. Many NLP systems have
exploited MTL. Some examples include: text processing
systems (part of speech, chunking, named entity recogni-
tion, etc.) (Collobert & Weston, 2008), multilingual mod-
els (Huang et al., 2013), semantic parsing (Peng et al., 2017),
machine translation (Johnson et al., 2017), and question an-
swering (Choi et al., 2017). MTL yields a single model
to solve all problems. However, unlike our adapters, MTL
requires simultaneous access to the tasks during training.

Continual Learning As an alternative to simultaneous
training, continual, or lifelong, learning aims to learn from a
sequence of tasks (Thrun, 1998). However, when re-trained,
deep networks tend to forget how to perform previous tasks;
a challenge termed catastrophic forgetting (McCloskey &
Cohen, 1989; French, 1999). Techniques have been pro-
posed to mitigate forgetting (Kirkpatrick et al., 2017; Zenke
et al., 2017), however, unlike for adapters, the memory is
imperfect. Progressive Networks avoid forgetting by instan-
tiating a new network “column” for each task (Rusu et al.,
2016). However, the number of parameters grows linearly

with the number of tasks, since adapters are very small, our
models scale much more favorably.

Transfer Learning in Vision Fine-tuning models pre-
trained on ImageNet (Deng et al., 2009) is ubiquitous when
building image recognition models (Yosinski et al., 2014;
Huh et al., 2016). This technique attains state-of-the-art per-
formance on many vision tasks, including classification (Ko-
rnblith et al., 2018), fine-grained classifcation (Hermans
et al., 2017), segmentation (Long et al., 2015), and de-
tection (Girshick et al., 2014). In vision, convolutional
adapter modules have been studied (Rebuffi et al., 2017;
2018; Rosenfeld & Tsotsos, 2018). These works perform
incremental learning in multiple domains by adding small
convolutional layers to a ResNet (He et al., 2016) or VGG
net (Simonyan & Zisserman, 2014). Adapter size is lim-
ited using 1× 1 convolutions, whilst the original networks
typically use 3 × 3. This yields 11% increase in overall
model size per task. Since the kernel size cannot be further
reduced other weight compression techniques must be used
to attain further savings. Our bottleneck adapters can be
much smaller, and still perform well.

Concurrent work explores similar ideas for BERT (Stickland
& Murray, 2019). The authors introduce Projected Atten-
tion Layers (PALs), small layers with a similar role to our
adapters. The main differences are i) Stickland & Murray
(2019) use a different architecture, and ii) they perform mul-
titask training, jointly fine-tuning BERT on all GLUE tasks.
Sina Semnani (2019) perform an emprical comparison of
our bottleneck Adpaters and PALs on SQuAD v2.0 (Ra-
jpurkar et al., 2018).
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