
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent

A. Additional results
A.1. Orthonormal vectors

In this experiment, we generated a dataset of 5000 unit vec-
tors in R5000, each aligned with one of the coordinate axes.
This dataset is exactly that used in the proof of Proposi-
tion 2.1, except that the number of datapoints N is fixed to
5000. We constructed coresets for each of the datasets via
uniformly random subsampling (RND), Frank–Wolfe (FW),
and GIGA. We compared the algorithms on two metrics:
reconstruction error, as measured by the 2-norm between
L(w) and L; and representation efficiency, as measured by
the size of the coreset. Fig. 5 shows the results of the ex-
periment, with reconstruction error in Fig. 5a and coreset
size in Fig. 5b. As expected, for early iterations FW per-
forms about as well as uniformly random subsampling, as
these algorithms generate equivalent coresets (up to some re-
ordering of the unit vectors) with high probability. FW only
finds a good coreset after all 5000 points in the dataset have
been added. These algorithms both do not correctly scale
the coreset; in contrast, GIGA scales its coreset correctly,
providing significant reduction in error.

A.2. Alternate inference algorithms

We reran the same experiment as described in Section 4.3,
except we swapped the inference algorithm for random-walk
Metropolis–Hastings (RWMH) and the No-U-Turn Sampler
(NUTS) (Hoffman & Gelman, 2014). When using RWMH,
we simulated a total of 50,000 steps: 25,000 warmup steps
including covariance adaptation with a target acceptance
rate of 0.234, and 25,000 sampling steps thinned by a factor
of 5, yielding 5,000 posterior samples. If the acceptance
rate for the latter 25,000 steps was not between 0.15 and 0.7,
we reran the procedure. When using NUTS, we simulated a
total of 6,000 steps: 1,000 warmup steps including leapfrog
step size adaptation with a target acceptance rate of 0.8, and
5,000 sampling steps.

The results for these experiments are shown in Figs. 6 and 7,
and generally corroborate the results from the experiments
using Hamiltonian Monte Carlo in the main text. One dif-
ference when using NUTS is that the performance versus
computation time appears to follow an “S”-shaped curve,
which is caused by the dynamic path-length adaptation pro-
vided by NUTS. Consider the log-likelihood of logistic
regression, which has a “nearly linear” region and a “nearly
flat” region. When the coreset is small, there are directions
in latent space that point along “nearly flat” regions; along
these directions, u-turns happen only after long periods of
travel. When the coreset reaches a certain size, these “nearly
flat” directions are all removed, and u-turns happen more
frequently. Thus we expect the computation time as a func-
tion of coreset size to initially increase smoothly, then drop
quickly, followed by a final smooth increase, in agreement

with Fig. 7b.

B. Technical Results and Proofs
Proof of Lemma 3.5. By setting sm = ‖Lm‖

‖L‖ for each m ∈
[N] in Eq. (29), we have that τ ≥ ‖L‖

σ > 0. Now sup-
pose ε ≤ 0; then there exists some conic combination
d of (d∞m)Nm=1 for which ‖d‖ = 1, 〈d, `〉 = 0, and
∀m ∈ [N], 〈−d, d∞m〉 ≤ 0. There must exist at least
one index n ∈ [N] for which 〈−d, d∞n〉 < 0, since oth-
erwise d is not in the linear span of (d∞m)Nm=1. This
also implies ‖d∞n‖ > 0 and hence ‖`n − 〈`n, `〉 `‖ > 0.
Then

〈
−d,

∑N
m=1 ξmd∞m

〉
< 0 for any ξ ∈ ∆N−1 with

ξn > 0. But setting ξn ∝ σn‖`n − 〈`n, `〉 `‖ results in∑N
n=1 ξnd∞n = 0, and we have a contradiction.

Proof of Lemma 3.6. We begin with the τ
√
Jt bound. For

any ξ ∈ ∆N−1,

〈dt, dtnt〉 = max
n∈[N]

〈dt, dtn〉 ≥
N∑
n=1

ξn 〈dt, dtn〉 . (40)

Suppose that ` =
∑N
n=1 sn`n for some s ∈ RN+ . Setting

ξn ∝ sn ‖`n − 〈`n, `(wt)〉 `(wt)‖ yields

〈dt, dtnt
〉 ≥ C−1 ‖`− 〈`, `(wt)〉 `(wt)‖ (41)

C :=

(
N∑
n=1

sn ‖`n − 〈`n, `(wt)〉 `(wt)‖

)
. (42)

Noting that the norms satisfy ‖`− 〈`, `(wt)〉 `(wt)‖ =√
Jt and ‖`n − 〈`n, `(wt)〉 `(wt)‖ ≤ 1, we have

〈dt, dtnt
〉 ≥ ‖s‖−11

√
Jt . (43)

Maximizing over all valid choices of s yields

〈dt, dtnt〉 ≥ τ
√
Jt . (44)

Next, we develop the f(Jt) bound. Note that

N∑
n=1

wtn ‖`n − 〈`n, `〉 `‖ d∞n =

N∑
n=1

wtn(`n − 〈`n, `〉 `)

(45)

= `(wt)− 〈`(wt), `〉 `,
(46)

so we can express `(wt) =
√
Jt d +

√
1− Jt ` and dt =√

Jt `−
√

1− Jt d for some vector d that is a conic combi-
nation of (d∞n)

N
n=1 with ‖d‖ = 1 and 〈d, `〉 = 0. Then by

the definition of ε in Eq. (30) and Lemma 3.5, there exists

Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent

(a) (b)

Figure 5. Comparison of different coreset constructions on the synthetic axis-aligned vector dataset. Fig. 5a shows a comparison of
2-norm error between the coreset L(w) and the true sum L as a function of construction iterations. Fig. 5b shows a similar comparison of
coreset size.

(a) (b)

Figure 6. Results for the experiment described in Section 4.3 with posterior inference via random-walk Metropolis–Hastings.

an n ∈ [N] such that 〈−d, d∞n〉 ≥ ε > 0. Therefore

〈dt, dtnt〉 (47)
≥ 〈dt, dtn〉 (48)

=

〈√
Jt `−

√
1− Jt d,

`n − 〈`n, `(wt)〉 `(wt)
‖`n − 〈`n, `(wt)〉 `(wt)‖

〉
(49)

=

√
1− Jt 〈−d, `n〉+

√
Jt 〈`, `n〉√

1−
(√

1− Jt 〈`n, `〉+
√
Jt 〈`n, d〉

)2 (50)

=

√
1− Jt

√
1− 〈`n, `〉2 〈−d, d∞n〉+

√
Jt 〈`, `n〉√

1−
(√

1− Jt 〈`n, `〉+
√
Jt

√
1− 〈`n, `〉2 〈d, d∞n〉

)2
.

(51)

We view this bound as a function of two variables 〈`, `n〉
and 〈−d, d∞n〉, and we view the worst-case bound as the

minimization over these variables. We further lower-bound
by removing the coupling between them. Fixing 〈−d, d∞n〉,
the derivative in 〈`, `n〉 is always nonnegative, and note that
〈`n, `〉 > −1 since otherwise 〈−d, d∞n〉 = 0 by the remark
after Eq. (18), so setting

β = 0 ∧
(

min
n∈[N]

〈`, `n〉 s.t. 〈`, `n〉 > −1

)
, (52)

we have

〈dt, dtnt〉 ≥ (53)
√
1− Jt

√
1− β2 〈−d, d∞n〉+

√
Jt β√

1−
(√

1− Jt β +
√
Jt
√

1− β2 〈d, d∞n〉
)2 . (54)

We add {0} into the minimization since β ≤ 0 guarantees
that the derivative of the above with respect to Jt is nonpos-

Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent

(a) (b)

Figure 7. Results for the experiment described in Section 4.3 with posterior inference via NUTS.

itive (which we will require in proving the main theorem).
For all Jt small enough such that

√
1− Jt

√
1− β2 ε +√

Jt β ≥ 0, the derivative of the above with respect to
〈−d, d∞n〉 is nonnegative. Therefore, minimizing yields

〈dt, dtnt〉 ≥
√

1− Jt
√

1− β2 ε+
√
Jt β√

1−
(√

1− Jt β −
√
Jt
√

1− β2 ε
)2 .

(55)

which holds for any such small enough Jt. But note that
we’ve already proven the 〈dt, dtnt

〉 ≥ τ
√
Jt bound, which

is always nonnegative; so the only time the current bound is
“active” is when it is itself nonnegative, i.e. when Jt is small
enough. Therefore the bound

〈dt, dtnt〉 ≥ τ
√
Jt ∨

√
1−Jt
√

1−β2 ε+
√
Jt β√

1−
(√

1−Jt β−
√
Jt
√

1−β2 ε
)2

(56)

holds for all Jt ∈ [0, 1].

C. Cap-tree Search
When choosing the next point to add to the coreset, we need
to solve the following maximization withO(N) complexity:

nt = arg max
n∈[N]

〈`n, `− 〈`, `(wt)〉 `(wt)〉√
1− 〈`n, `(wt)〉2

. (57)

One option to potentially reduce this complexity is to first
partition the data in a tree structure, and use the tree struc-
ture for faster search. However, we found that in practice
(1) the cost of constructing the tree structure outlined be-
low outweighs the benefit of faster search later on, and (2)

the computational gains diminish significantly with high-
dimensional vectors `n. We include the details of our pro-
posed cap-tree below, and leave more efficient construction
and search as an open problem for future work.

Each node in the tree is a spherical “cap” on the surface of
the unit sphere, defined by a central direction ξ, ‖ξ‖ = 1
and a dot-product bound r ∈ [−1, 1], with the property that
all data in child leaves of that node satisfy 〈`n, ξ〉 ≥ r. Then
we can upper/lower bound the search objective for such data
given ξ and r. If we progress down the tree, keeping track
of the best lower bound, we may be able to prune large
quantities of data if the upper bound of any node is less than
the current best lower bound.

For the lower bound, we evaluate the objective at the vec-
tor `n closest to ξ. For the upper bound, define u :=
`−〈`,`(wt)〉`(wt)
‖`−〈`,`(wt)〉`(wt)‖ , and v := `(wt). Then ‖u‖ = ‖v‖ = 1

and 〈u, v〉 = 0. The upper bound is

max
ζ

〈ζ, u〉√
1− 〈ζ, v〉2

s.t. 〈ζ, ξ〉 ≥ r ‖ζ‖ = 1. (58)

If we write ζ = αuu+ αvv +
∑
i αizi where zi completes

the basis of u, v etc, and ξ = βuu+ βvv +
∑
i βizi,

max
α∈Rd

αu√
1− α2

v

(59)

s.t. αuβu + αvβv +
∑
i

αiβi ≥ r

α2
u + α2

v +
∑
i

α2
i = 1.

Noting that αi doesn’t appear in the objective, we maximize

Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent∑
i αiβi to find the equivalent optimization

max
αu,αv

αu√
1− α2

v

(60)

s.t. αuβu + αv|βv|+ ‖β‖
√

1− α2
u − α2

v ≥ r (61)

α2
u + α2

v ≤ 1, (62)

where the norm on |βv| comes from the fact that we can
choose the sign of αv arbitrarily, ensuring the optimum has
αv ≥ 0. Now define

γ :=
αu√

1− α2
v

η :=
1√

1− α2
v

, (63)

so that the optimization becomes

max
γ,η

γ (64)

s.t. γβu + |βv|
√
η2 − 1 + ‖β‖

√
1− γ2 ≥ rη (65)

γ2 ≤ 1, η ≥ 1. (66)

Since η is now decoupled from the optimization, we can
solve

max
η≥1
|βv|

√
η2 − 1 − rη (67)

to make the feasible region in γ as large as possible. If
|βv| > r, we maximize Eq. (67) by sending η →∞ yield-
ing a maximum of 1 in the original optimization. Otherwise,
note that at η = 1 the derivative of the objective is +∞,
so we know the constraint η = 1 is not active. Therefore,
taking the derivative and setting it to 0 yields

0 =
|βv|η√
η2 − 1

− r (68)

η =

√
r2

r2 − |βv|2
. (69)

Substituting back into the original optimization,

max
γ

γ (70)

s.t. γβu + ‖β‖
√

1− γ2 ≥
√
r2 − |βv|2 (71)

γ2 ≤ 1. (72)

If βu ≥
√
r2 − |βv|2 , then γ = 1 is feasible and the opti-

mum is 1. Otherwise, note that at γ = −1, the derivative
of the constraint is +∞ and the derivative of the objective
is 1, so the constraint γ = −1 is not active. Therefore,
we can solve the unconstrained optimization by taking the
derivative and setting to 0, yielding

γ =
βu
√
r2 − β2

v + ‖β‖
√

1− r2
‖β‖2 + β2

u

. (73)

Therefore, the upper bound is as follows:

U =


1 |βv| > r

1 βu ≥
√
r2 − β2

v
βu

√
r2−β2

v +‖β‖
√
1−r2

‖β‖2+β2
u

else.
(74)

D. Datasets
The Phishing dataset is available online at
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

binary.html. The DS1 dataset is available online at
http://komarix.org/ac/ds/. The BikeTrips dataset
is available online at http://archive.ics.uci.edu/ml/

datasets/Bike+Sharing+Dataset. The AirportDelays
dataset was constructed using flight delay data from
http://stat-computing.org/dataexpo/2009/the-data.html

and historical weather information from https:

//www.wunderground.com/history/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds/
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://stat-computing.org/dataexpo/2009/the-data.html
https://www.wunderground.com/history/
https://www.wunderground.com/history/

