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Abstract

In this paper we learn heuristic functions that ef-
ficiently find the shortest path between two nodes
in a graph. We rely on the fact that often, several
elementary admissible heuristics might be pro-
vided, either by human designers or from for-
mal domain abstractions. These simple heuris-
tics are traditionally composed into a new ad-
missible heuristic by selecting the highest scor-
ing elementary heuristic in each distance evalu-
ation. We suggest that learning a weighted sum
over the elementary heuristics can often gener-
ate a heuristic with higher dominance than the
heuristic defined by the highest score selection.
The weights within our composite heuristic are
trained in an online manner using nodes to which
the true distance has already been revealed dur-
ing previous search stages. Several experiments
demonstrate that the proposed method typically
finds the optimal path while significantly reduc-
ing the search complexity. Our theoretical analy-
sis describes conditions under which finding the
shortest path can be guaranteed.

I ntroduction

This led researches to suggest algorithms, sucttafHart

et al, 1968), which introduce a heuristic factor into the

Finding the shortest path between two nodes in a graph IS
a problem which emerges in many domains ranging fro
train scheduling (Schulet al, 1999) to computer graph-
ics (Omer and Werman, 2006). However, the time com
plexity of the popular Dijkstra algorithm is intolerable if
a quick answer is required while searching large graph

the nodes stored in Dijkstra’s priority queue can effedyive
prune down the number of nodes visited during the search.

The A* algorithm guarantees that the shortest path is re-
turned, if the heuristic functioh is admissible namely it
never overestimates the true distance from a certain node to
the goal. In addition, the heuristdominancecharacteris-

tic provides that during the search, an admissible hearisti
h which consistently generates higher estimations than the
admissible heuristi’, will never visit more nodes thail
(Russell and Norvig, 2003).

In this paper we assume that several simple admissible
heuristics are provided, either by a human designer or from
formal domain abstractions (Minsky, 1963; Pearl, 1984;
Holte and Hernadvolgyi, 2004). By taking the maximum
value over these elementary heuristics a new admissible
heuristic can be generated. We term this thaximum
value approach. However, although the maximum value
of many elementary heuristics is guaranteed to be an ad-
missible heuristic, it might not be highly dominant. To
see this, let us assume a simplifieedimensional binary
search spac® = {0,1}", in which the true distance be-
tween nodes € V andt € Vis Y | |v; — ;. If each
domain abstraction provides the binary distance of a single
dimension, then the maximum over all abstractions will be
no larger thant (while the true distance might be in the
order ofn). This paper suggests an alternative method for
automating the heuristic composition process. Rather than
relying on taking the maximal value over the available ab-
tractions, we utilize state-of-the-art online learningam-

Mhnisms in order find an appropriate weight for summing

the elementary heuristic values. We suggest that when the

different elementary heuristics capture different aspett
the distance underlying the search space, weighting the in-

Sdividual abstractions is preferential to simply selectihg

highest scoring one.

search process. In addition to the standard search prold-he proposed approach is especially appealing in settings
lem variables (graph, starting node and goal node)Ahe where manually designing a heuristic function might not
algorithm receives as input a heuristic functién,which
is used to evaluate the remaining distance from each vissommunication network used by military vehicles in which
ited node to the goal node. Adding this heuristic score teevery node can transmit, receive or relay communications

be possible. For example, imagine a large scale distributed



from neighboring nodes. In this ad-hoc graph, the goal iOur setting follows thed* framework and assumes that the
to transmit communications in real time through the leasinumber of nodes visited during the search process must be
energy consuming path. Since the graph might be conminimized using a heuristic function: V' x V' — R. This
tinuously changing as the forces progress a static heauristiheuristic function guides the search by prioritizing whidh
function might be sub-optimal the nodes in the search frontier will be expanded next. The

Our setting assumes that a sequence of related search ta rIsOrlty scoref(v) . k(s,v) + h(v,g) Is the sum of the
. . IStancek(s, v), required to reach nodefrom nodes, and
must be performed using at* mechanism. At the end of D o L )
: .. of the heuristic contributioh(v, g) estimating the remain-
each search task the currently held composite heuristic re-

ceives feedback indicating where its estimates have maxf-ng distance needed to reach the goal ngdeom node
9 Unlike the traditionald* setting in which the heuristic

mally deviated from the true distances. Using this feedbacl?‘ tionh i llv desianed. and dto be k
the parameters of the heuristic function are updated so jnetionz 1s manually designed, and assume to € known

- . in advance, our setting assumes th& notknown a-priori
can better capture the characteristics of the distancerunde . .
lying the specific sequence of search tasks. Our setting i%nd must therefore be leamed online during Theearch
related to other repeated graph search settings (Korf,;199(50unds'
Culberson and Schaeffer, 1996; Edelkamp and EckerleQur setting focuses on heuristics over gearch-spacé&’,
1997; Koeniget al, 2004), however, while these methods which are induced by linear regression functions in a re-
rely on memorization for transferring heuristic knowledge latedR" learning-space
our method relies on the machine learning notion of gen-

!/ /

eralization. This approach is inspired by previous attasmpt h(v,v') = T(w - ¢(v,v)) . 1)
to learn the.s_pecific char.acteristics of large search spaces It is assumed that a function : V x V — R" is pro-
order to facilitate searching prlocedures (quan and- Moo.re\’/ided, which receives a pair of nodes from the search space
2000). The novel componentin our work is |n.adapt|ng this v,v') and returns an dimensional feature mapping in the
approach to the shc_>rtes_t path problem and in our attemq arning-space. Each featupgis an elementary heuristic,
to derive formal optimality guarantees on the the returne ypically a simplification generated by ignoring some of the
paths. domain constraints. The regression function multiplies th
The feedback signal we require for training the heuristicfeatures of¢ by a weight vectow € R™ and then ap-
function h, could naturally emerge as part of the searchplies some reversible non-decreasing functibnR — R,
process. For example, in the vehicle communication sysmapping distance values from the learning-space, back to
tem, the shortest path search procedure must be performelistances in the search-space. We will later rely on the as-
efficiently. However, once the goal node was foundsial ~ sumption that this transformation must maintain that as a
time, the system can derive the evaluation feedback by percertain distance in the learning-space goes to 0, the ana-
forming an exact searcbff line. This reverse search can log distance in the search-space goes to 0 as well. Al-
start from the goal node and utilize the maximum valuethough somewhat limited, we demonstrate that this family
heuristic in order to calculate the true distances to alheft of heuristics is not as meager as it initially seems.
evaluations the heuristit performed during theeal time
search. Unlike traditional online supervised learning set
tings in which labels require an external teacher, traiiming
search problems has the elegant property of being able
rely on exact search mechanisms for supervision.

At each round in our online setting at* search process

is performed using the current heuristic functin Dur-

ing this search the algorithm visits a set of nodes, we de-
tIg?ote asM;. When the search is concluded, the shortest
pathp, must be returned. In order to tune the vector of
regression parametews, it is assumed that after the short-
2 Problem Setting est path is found the algorithm receives a feedback signal.
This feedback includes the nodee M; on which the cur-
rent heuristic estimation had the maximal (learning-space

— i i /
LetG = (V, E) be agraphin which each edgee V,v' € deviation fromy, — T~ (d(v, g)), or more formally,

V) € E is associated with a positive cogtv,v’) > 0.
We define ashortest path search problebyy the triplet vy = argmax |y, — Wy - ¢(v, g¢)| -
(G,s,g) wheres € V is the source node ang € V is vEM;

the goal node. LetG1,s1,91)...(Gr,sr,gr) be an on-
line sequence of shortest path search problems. At ea
roundl < ¢t < T, the algorithm receives search problem
(G4, st, g¢) and must produce the edges of the shortest pat
pe from s; to g;.

In addition to the maximally deviating node, the feedback

Czﬂso includes the true distange = T~ !(d(v, g)). Using

his feedback the algorithm can update the weights of the
euristic function in order to improve its performance in

the subsequent rounds.

Throughout the paper we assume that dynamic graph changds0r' concreteness let us review an example using the map
occur in a longer time constant than that of the search psoces in Figure 1, depicting the road grid and the shopping malls



Figure 1: A graph of the road grid in Anytown, USA. The

the existing heuristic was defined y = (0, 0), the maxi-
mally deviating node would be nod#, 2) which has an ac-
tual distance of 29 to the goal (white, - ¢((2,2), (11, 8))
is 0). Thus, the feedback for training will §€2, 2), 29).

Table 1: Average path length and average visited nodes.

Algorithm length # visited
Dijkstra: w=(0,0) 2447  159.71
Block Distancew=(1,1) 24.47 103.88
Optimal Admissiblew=(3,1) 24.47 62.01
Online Learning to Search 24.49 44.32

The challenge posed by our setting is to characterize the

L-shaped structures represent shopping malls. Nodes 0q,pnditions under which the heuristic function learned by

the shortest path fromto g are indicated by. Notice the

increasing heuristic dominance between: Dijkstra (Black)

Block Distance (Dark Gray), Optimal Admissible (Light
Gray) and Online Learning to Search (White).

in Anytown, USA. Let us assume that the search task at

roundt emerges from a car driver in positiey wishing
to receive the shortest path to a goal destinationThis

roundt is both:

mality of the returned path can be guaranteed

1. admissible \(, (v, g:) < d(v,g:)) so that the opti-

2. maximally dominant¥: ,h(v,g¢:) > h'(v,g:)), SO
that the search process is maximally reduced

degenerate example presents the same graph in all searsh | N€ Online Learning to Search Algorithm

rounds ¥:G: = G). In many regions, municipal pol-

icy, highway layout or terrain constraints cause the traf-We now describe the learning algorithm aimed at acquir-

fic flow in a certain direction (say East-West) to be sig-

nificantly faster than in other directions (North-South). |
Anytown, the cost of driving from any intersectienone
block West to intersectiony is ¢(v, v") = 1, while the cost
of driving from intersectiorv one block North to intersec-
tion v” is ¢(v,v”) = 3. Using this information, the length
of the shortest path (indicated by-s) from intersection
s = (6,6) to intersectiony = (11, 8) can be calculated
as:7 x 1+ 2 x 3 = 13. An appropriate two dimensional
feature mapping for this example i, (v, v') = |v, — V.|
and¢s(v,v') = |v, — v, |, wherev, andv, are the coor-
dinates of intersection on the road grid (in this example
T(z) = z). In the following section we propose an algo-

rithm which learns during an online sequence of searches

a weight vectorw aimed at maximizing the tradeoff be-

tween admissibility and efficiency. Figure 1 depicts the
nodes visited by four algorithms: Dijkstra’s Shortest Path

Algorithm w = (0,0), Block Distancew = (1,1), Op-

ing a heuristic evaluation function during the online skarc
gueries. As stated above we assume that a relevant feature
mappinge : V x V. — R", is provided and that our task is

to learn a weight vectow € R™, characterizing a heuris-

tic function h(v,v') = T(w - ¢(v,v’)). We would like

this heuristic function to efficiently reduce the number of
visited nodes during the search while maintaining admissi-
bility, so that finding an optimal path could be guaranteed.

The proposed method relies on the linear regression al-
gorithms described within the online Passive Aggressive
framework (Crammeet al,, 2006). For clarity of presenta-
tion we focus on adapting the simplest mechanism within
the Passive-Aggressive framework. This regression mech-
anism assumes that the family of learned heuristics has the
capacity to approximate the true distandgs, v’) up to a
constante.

Recall that on every round, our algorithm performs4in

timal Admissiblew = (1, 3) and our Online Learning to search using the currently held heuristic function. Once
Search Algorithm. Table 1 presents the path length and theoncluding this search, the algorithm receives as feedback
number of nodes visited by the four algorithms averagedhe nodev, € M; on which the current heuristic esti-
over a random selection of 100 start nodes and goal nodemation had the maximal deviation in the learning-space.
Our algorithm learns using feedback received at the end ofhus, the instance used for training in the learning-space
each round, which contains the true distance for the node iis ¢(v;, g:) (abbreviatep(¢)) and the target value ig, =

the current search that the existing heuristic function-maxT~(d(v¢, g;)). We will later address such paif$(t), v:),
imally deviated from. For example, if at the current round as our training examples. Our proposed algorithm relies on



the e-insensitive hinge loss function: INPUT: ¢(v, ") feature mapping
T learn-space to search-space transformation

0 (W - (t)ye| < e learning feasibili
L(w: (), 1)) = _ ¢ learning feasibility parameter
(w3 (o), 1)) { |w - ¢(t)y:| — e otherwise INITIALIZE © w) < 0

wheree > 0 is a learning feasibility parameter controlling For t = 1,2, ...
the sensitivity to regression errors. This loss is zero when define current heuristik(v, v') = T(wy - ¢(v,v"))
the predicted target deviates from the true target by less receive search probletd;, s, g;)

thane and otherwise grows linearly witlw - ¢(¢)y;|. provide path(p;, M;) «— A*(Gy, st, g1, h)

Our algorithm is initialized by settingr; to (0, ... ,0). At receivev; = argmax |y, — W - ¢(v, g¢ )|

the end of each round, this weight vector is updated to be, wherey vij\%_l (d(v, g:))

! setly, « [yt — weo(t)] — €|+
W1 = afvger]giniﬂw—wtﬂ st le(w; (o(t), 1)) =0 . If Ly, >0
. L,
. SeLT — e
The se{w € R™ : I.(w; (¢(¢),y:)) = 0} is a hyper-slab update:w; | « w; + sign(y; — wio(t)) 7o(t)

of width 2¢. The rational behind this update rule is to per-
form the minimal adjustment to the present weight vector
that makes it accurately predict the target value of round
Geometricallyw is projected onto the-insensitive hyper-
slab at the end of every round. Using the following three

Figure 2: The online learning to search algorithm.

definitions,
1. Weighted Block distance is formally defined as,
o(w) = y—w-ot) ¢i(v,v") = |v; — v}, whereg;, indicates theith out-
by, = le(we; (0(t), 1)) put feature value of the functiop. The learned weights
I over the features (coordinates) express the degree of impor
Tt = ||¢(’5;H2 tance each dimension has in determining the total distance.

For weighted block distance the identity transfer function
the update rule can be restated by the closed form solutiof}(z) = T~!(z) = z, is appropriate. We will later focus

our analysis on this type of representation.

w = wi + sgn(dy(wy)) 72 o(t) .
. ¢+ sgn(8e(we)) 7 4(1) 2. Weighted Euclidean distance can occasionally capture

A summary of the Online Learning to Search Algorithm the se_arch-_spac_e better_ than the weighted block (_Jllstance.
Learning this weighted distance could be cast as a linear re-

is presented in Figure 2. It should be noted that (Cram- . o , o .
) e gression task by defining; (v, v") = (v; — v})* and main-
mer et al, 2006) provide modifications of the update rule =_." " q Y
i : : . taining thatT(z) = /z (andT~'(z) = z*). Here too
which are more resistant to noisy data and evaluation out; . . : _
: : . S : he regression function learns to associate an importance
liers. The essential change is constraining the magnitideg . L L . L
. ... weight to each deviation in an individual dimension in the
7, SO that the update steps are less aggressive. In addition
o : ) . séarch-space.
generalizations of this update rule exist for settings wher
the feedback signal provided at each round, incladehe 3. Weighted Mahalanobis distance does not preserve the
true distances rather than just the most deviant one (Crangimensionality of the search-space representation (4o tha
mer and Singer, 2003). One additional modification mightn = k2 wherek is the dimension of the search-space). This
be appropriate for applications in which path optimality is feature mapping is defined as(v, v') = (v; —v}) (v —v;)
essential. If this is the case we might aim at evaluatingvhereT(z) = y/z. If the n elements ofw are reorganized
ad(v,v") rather thani(v,v’), where0 < o < 1, isapa- as a matrix4, a linear regression over the defined map-

rameter controlling the trade-off between path optimalityping ¢ can express distances of general quadratic form,

and computational efficiency. T(w - ¢(v,0')) = \/Zj,l Aji(vj — v;,)(vl —}). By in-
) _ _ corporating an additional projection step en A could
4 Representationsin Learning Space be maintained a positive semi-definite (PSD) matrix, which

enables importance weights to be assigned to linear combi-
Although, the family of heuristic functions parameterized nations of the original search-space rather than to each di-
by Eq. (1) relies on linear regression functions, it never-mension individually (Shalev-Shwarét al,, 2004). Thus,
theless has the capacity to characterize several integesti if the matrix A resulting from reorganizing the elements
search spaces. This will be demonstrated by providingf w is PSD, A could be decomposed intd = B’B and
three realization of the feature mappingand an appro- /(v —v')A(v — v’) = || Bv — BY/||. This means that the
priate reversible non-decreasing transfer function distance learned by is equivalent to measuring Euclidean




distance between; andv’ after both vectors had under- p, then all nodes with aff value less thatp| are expanded
gone the linear transformatid®. Thus, if on a certainmap while at least some of the nodes within the optimal path
traffic flows three times faster in the NE-SW axes, the op-are not (or else an optimal path would have been found).

timal weights must be set tay = (1, — %, — %, 1),  Assume for the purpose of contradiction, that the length of

andB = ( f% ;é ) This is knowledge the first two the optimal pathi(s, g), is smaller tharp|—r. Thus, all the
A nodes on the optimal path have Awalue smaller thatp)|

representa‘uons couild not acquire. and must have been expanded while ugingontradicting
It is worth while mentioning that the algorithm presentedthe fact that a strictly suboptimal path was found. =

in Figure 2 can be further enriched by incorporating Mer-

cer kernels. Note that the vecter can be represented as Theorem 1 WhenT(z) = T~'(z) = «, if the conditions
a sum of vectors of the form(v;, g;) wherei < t. We  of Lemma 1 hold and” — oo then the value: bounds
can therefore replace the inner-products in this sum with 4he average deviation of the returned pathsrom the true
general Mercer kernel operatds,(é(v;, g;), (v, g;))- distances,

5 Analysis %Z Z c(v,v") — d(st, gt) < €
t=1 (v,v')Ep:

We denote by, = I(u; (¢(t),y:)) the loss of a fixed pre-

dictor u € R™ to which we are comparing our perfor-

mance. Our analysis focuses on the realizable case, th

assuming that there exists a veatsuch that,, = 0 for all

t. We start with a lemma that provides a bound on the cu-

mulative squared loss of the maximally deviating nodes as T

a function ofu. This lemma is a simple adaptation of The- Z ly: — we - d(t)] —€]y) — 0 . @)

orem 2 from (Crammeet al,, 2006) and is provided in the t=1

Appendix for completeness. Next, we follow (Shimbo and

Ishida, 2003) and provide theadditive admissibleemma,  USINg Ed. (2) and the fact thaly, — wy - 6(¢)] — |4 >

stating that if a heuristic functioh never overestimates 19+ — ¢(t)| — €, we obtain the following bound,

by more than a constant valuethen the path returned by T

A* usingh is guaranteed to be not longer thé(s, g) + r. Z lye — we - p(1)]) <

Using these two lemmas we prove that whifx) = = ]

and for a sufficiently largd” the average deviation of the

returned heuristic paths from the optimal ones goes to Therefore, since the deviances in the learning space are

Whene goes to zero we obtain convergence to the optimaPounded by, so are the deviances in the search space,

paths.

Proof Lemma 1 provides thgt,_, 12, < |lul*R?. Di-
dlng by T', we obtain that the average squared loss goes
to 0 and therefore the average loss itself goes to 0 as well,

’ﬂ |

T
Lemmal Let(é(1),41),...,(¢(T),yr) be asequence of Z (o, (v, 91) = (i, go)l) < € - (3)
examples wherg(t) € R", v, € Rand|¢(t)|| < R for all =t
t. Assume that there exists a vectosuch thatl, = 0 for et us define the maximal deviance in search space at round
all t. Then, the cumulative squared loss on this sequence afas,r; = |hy, (vs, g:) — d(vy, g¢)|. Using this definition we

examples is bounded by, now average Lemma 2 over all tifé rounds, and obtain
that,

S, < |ulPR? . T T
t=1 ! Z Z )—d(St,gt)S%z’f’t .

t:l (’U )Gpt t=1

Lemma 2 If a heuristic functiom. never overestimates the o Eq. (3) we know thak ST 1, < ¢, and therefore,
true distanced by more than a constant value then the =t

pathp returned by anA* search using: is guaranteed to T
be not greater thaw(s, g) + r, Z > (v, v) —d(si,g) < €
t=1 (v,v’)Ep;s
Z c(v,v") —d(s,g) <r
(vv')ep [ |

If u can attain a loss df with an e that approache, the
Proof Let|p| = Z(v v)ep € c¢(v,v") be the length of path. returned paths will converge to the optimal ones. The con-
If using the heuristic, A* flnds a strictly suboptimal path vergence tce is a function of ratio betweetju||? R% and



T. Intuitively, |[u||? R? indicates the necessary model com- ™[ RN ,

plexity for correctly characterizing the examples in the on wl Yt ST e
line search stream. Thus, although using a sufficiently high v
dimensional feature mappingmight make a smakt fea- wop
sible, this procedure will typically increase the complexi H
term||ul|2R?2 by swelling the radius of the training exam- £ ™/
plesR.

80|

Visited Nodes

60

6 Experiments
Our experiments aim at examining whether the Online woll
Learning to Search algorithm can return near optimal paths
while gradually reducing the number of visited nodes. Ex- % w0 2 a0 4 s s 7 8 s 10
periment 1 focuses on a route planning task, and is aimed Rounds

at demonstrating that a learned distance adapted to the spe- _ o )
cific contingencies of the data can have an advantage ov&i9ure 3: Number of visited nodes averaged over all previ-

a predefined heuristic. Experiment 2 shows that the Onlin@US online learning rounds: Dijkstra (dashed), Aerial dis-

Learning to Search algorithm can prune down the searcince (doted) and Online Learning to Search method using
process without prior domain knowledge. For this, a naive? full matrix (solid).

representation of the TopSpin puzzle is applied and the

learning mechanism is provided with a large set of autation a further reduction in the number of visited nodes

tomatically generated abstractions. Experiment 3, showgas observed (Table 1: full matrix Online Learning to

that even in a well studied domain, such as the 8-puzzlegearch). The gradual reduction in the average number of
where certain features are known to be effective, the Ong;sited nodes is depicted in Figure 3. When averaging

line Learning to Search algorithm can neverthelessimprovg,. over the last 20 rounds we receive the veosor—
performance. (16.22, —1.11, —1.11,10.71). Thus the learned metric ac-
It should be noted that the feedback signal provided in alAuired the fact that traveling along the coast is shorter (in
the reported experiments was derived at the end of eaclpad distance) than traveling in the orthogonal direction.
search by running a search process which started at the goal

state and continued until exact distances to all of the nodes]-ab|e 2: East coast map: path lengths and search extent.
visited during the current search were evaluated.

Algorithm length # visited
6.1 RoutePlanning Dijkstra 826 143
Our first experiment focused on a route planning task where gd?jssll_ble A_enatl dlsstancre] %2267 1(152
nodes were 231 cities along the East coast of the United niine Learning to earc
(full matrix) 827 56

States. Graph edges were defined by road distances. Lon-
gitude and latitude coordinates of the cities were provided

as the source of heuristic information. The selected rep- _
resentation was weighted Euclidean distances. The onlin@2 ToPSpin
sequence of search tasks included 100 trials, each of WhiCPhis
was composed of a randomly selected starting gitgnd fied version of the TopSpin puzzle (see

goal cityg,. www.passionforpuzzles.com/virtualcube/topspin). The
Three heuristics were compared: Dijkstra’s search algonaive representation of assigning 1 as the anchor and
rithm (wy = (0,0)), Euclidean distancew; = (1,1)) enumerating clockwise was selected. In this experiment
and our Online Learning to Search mechanism. Table 228 elementary domain abstraction definedEach feature
displays the average path length and the average numbeounted within an arbitrary set of dimensions, how many
of nodes visited by these three alternatives. It could benismatches were present between the current state and
seen that the average deviation of the Online Learning téhe desired goal state (ignoring all other dimensions). For
Search algorithm from the optimal path is 1 mile. How- examplepsy counted mismatches in dimensions 3, 4 and
ever, the percentage of visited nodes compared to Dijk5. In this experiment, Dijkstra’s search algorithm was
stra’s algorithm 47%) and to the Aerial distance heuristic compared to the traditional Maximal Value composition
(60%) might justify this sub-optimality. Next, we tested mechanism and to our Online Learning to Search mech-
the weighted Mahalanobis distance. Using this represeranism. The task of our algorithm was to discover during

experiment, focused on a  simpli-



100 online rounds, what combination of the candidate

features best contributes to the heuristic search. Table 4: 8-Puzzle: path lengths and search extent.

Table 3 displays the fact that although the features were an Algorithm length 7 visited
b Nilsson’s Sequence 4.28 45.90

of visited nodes, while returning the shortest paths. How-
ever, the average number of nodes visited by our learned
heuristic §8), is significantly smaller than the number of
nodes visited by the heuristic search guided by the Max-
imum Value mechanisn(1). This result indicates that
different domain abstractions capture different aspetts 07 Djscussion and future extensions
the distance underlying the search space and thus weighting

the individual domain abstractions is preferential to dimp
selecting the highest scoring featdre

Online Learning to Search  4.22 15.77

We described a method termed Online Learning to Search,
which utilizes state-of-the-art machine learning mecha-
nisms for acquiring a heuristic evaluation function. We re-

Table 3: TopSpin: path lengths and search extent. lied on the notion ot-admissibility, to prove that when the

Algorithm length # visited regression learning task is realizable with a sméflen the
average divergence from the optimal paths can go to zero.
Dijkstra 3.4 281 The nature of the regression task ensures that the learned
Maximum Value 3.4 201 heuristics are highly dominant, in the sense that they ef-
Online Learning to Search 3.4 88 fectively prune down the search process. It is important

to note that batch regression methods (e.g. Support Vector
Regression) can be applied to our setting as well. However,
providing formal guarantees using these alternative nsodel
is a challenging task. Specifically, it is difficult to see how
the i.i.d assumption, which is the cornerstone of statistic
inference in the batch setting, might hold in our case (where

6.3 8-puzzle

Our last experiment returns to the well studied 8-puzzle - X
o . heuristics must be learned from data with many dependen-
where the (non-admissible) Nilsson sequence score Igies)
known to be highly effective in pruning down the search '
space. This score is defined over two featutds, g) = The proposed online learning mechanism can be extended
P(v,g) + 3S(v,g). P(v,g) is the Manhattan distance of in several ways. First, the online setting could be applied
each tile inv from its proper position iry and the feature during asingle search tasky training with distances to
S(v,g) is a sequence score obtained by checking aroundiready approached nodéss,v). The challenge in the
the non-central squares in turn, allotting 2 for every tilesingle search setting emerges from learning when only ap-
not followed by its proper successor and O for every othelproximate feedback is available. Second, our online mech-
tile (except that a piece in the center scores 1). Thus, irmnism is suitable for tackling scenarios where the optimal
this case the representation is well known and well studweights might be in a continuous state of drift (e.g. accom-
ied yet the question remains whether the weights assignegsiodating dynamic traffic changes during the day). It is
for each feature are indeed optimal. The 18 dimensionaimportant to emphasize that once the learned heuristic ac-
representation included: 9 Manhattan distance features + &uirately approximates the true distance it is no longer mod-
binary Nilsson sequence features describing whether eadfied and therefore does not require additional feedback (at
of the peripheral tiles follows the appropriate predecessoleast until the edge values have been changed). In practice
+ 1 binary feature describing whether the central tile is inthe feedback can actually be givenin a rate that is sufficient
place. Here too, 100 rounds of online search tasks werto follow drifts in the graph characteristics.

presented. A§ can been seen in Tablg 4, the On!lne Legrq.—he initial step in automating the process of heuristic de-
ing to Search is capable of outperforming Nilsson’s Heuris-

. ; o L sign followed the observation that formal abstractions of
tic while maintaining admissibility. . L L .
the search space can provide simplified heuristic functions
- This paper addresses the question of whether the task of
~ ®Although, it was assumed that the rich features will get theacquiring the appropriate composite heuristic for a certai
highest weights, these weights were consistently assignfs-  ga51ch space, can be automated as well. We believe that

tures of intermediate abstraction (e.g. counting misnegdh 4 th d onli lqorithm i initial step in utilii
elements). This demonstrates that the automated learnicg $s € proposed onlfine algorithm IS an initial Step In utifgin

is often free of misleading biases the human designer might p  Machine learning for the fundamental challenges posed by
sess. artificial intelligence.



Appendix: proof of Lemma 1 Now using the fact thate(¢)||? < R? for all ¢, we get,

Let (¢(1),41), ..., (6(T), yr) be an arbitrary sequence of ilz IR < |[u?
examples, where(t) € R" andy;, € Rforall ¢t < T. — Wt - ’
DefineA; to be||w¢ — u||? — ||w¢1 — ul|. First note that -

>, At is a telescopic sum which collapses to, u
T T
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