
Online Learning of Search Heuristics

Michael Fink
Center for Neural Computation

The Hebrew University of Jerusalem
Jerusalem, Israel 91904

Abstract

In this paper we learn heuristic functions that ef-
ficiently find the shortest path between two nodes
in a graph. We rely on the fact that often, several
elementary admissible heuristics might be pro-
vided, either by human designers or from for-
mal domain abstractions. These simple heuris-
tics are traditionally composed into a new ad-
missible heuristic by selecting the highest scor-
ing elementary heuristic in each distance evalu-
ation. We suggest that learning a weighted sum
over the elementary heuristics can often gener-
ate a heuristic with higher dominance than the
heuristic defined by the highest score selection.
The weights within our composite heuristic are
trained in an online manner using nodes to which
the true distance has already been revealed dur-
ing previous search stages. Several experiments
demonstrate that the proposed method typically
finds the optimal path while significantly reduc-
ing the search complexity. Our theoretical analy-
sis describes conditions under which finding the
shortest path can be guaranteed.

1 Introduction

Finding the shortest path between two nodes in a graph is
a problem which emerges in many domains ranging from
train scheduling (Schulzet al., 1999) to computer graph-
ics (Omer and Werman, 2006). However, the time com-
plexity of the popular Dijkstra algorithm is intolerable if
a quick answer is required while searching large graphs.
This led researches to suggest algorithms, such asA∗, (Hart
et al., 1968), which introduce a heuristic factor into the
search process. In addition to the standard search prob-
lem variables (graph, starting node and goal node), theA∗

algorithm receives as input a heuristic function,h, which
is used to evaluate the remaining distance from each vis-
ited node to the goal node. Adding this heuristic score to

the nodes stored in Dijkstra’s priority queue can effectively
prune down the number of nodes visited during the search.

The A∗ algorithm guarantees that the shortest path is re-
turned, if the heuristic functionh is admissible, namely it
never overestimates the true distance from a certain node to
the goal. In addition, the heuristicdominancecharacteris-
tic provides that during the search, an admissible heuristic
h which consistently generates higher estimations than the
admissible heuristich′, will never visit more nodes thanh′

(Russell and Norvig, 2003).

In this paper we assume that several simple admissible
heuristics are provided, either by a human designer or from
formal domain abstractions (Minsky, 1963; Pearl, 1984;
Holte and Hernadvolgyi, 2004). By taking the maximum
value over these elementary heuristics a new admissible
heuristic can be generated. We term this themaximum
value approach. However, although the maximum value
of many elementary heuristics is guaranteed to be an ad-
missible heuristic, it might not be highly dominant. To
see this, let us assume a simplifiedn-dimensional binary
search spaceV = {0, 1}n, in which the true distance be-
tween nodesv ∈ V andt ∈ V is

∑n

i=1 |vi − ti|. If each
domain abstraction provides the binary distance of a single
dimension, then the maximum over all abstractions will be
no larger than1 (while the true distance might be in the
order ofn). This paper suggests an alternative method for
automating the heuristic composition process. Rather than
relying on taking the maximal value over the available ab-
stractions, we utilize state-of-the-art online learning mech-
anisms in order find an appropriate weight for summing
the elementary heuristic values. We suggest that when the
different elementary heuristics capture different aspects of
the distance underlying the search space, weighting the in-
dividual abstractions is preferential to simply selectingthe
highest scoring one.

The proposed approach is especially appealing in settings
where manually designing a heuristic function might not
be possible. For example, imagine a large scale distributed
communication network used by military vehicles in which
every node can transmit, receive or relay communications



from neighboring nodes. In this ad-hoc graph, the goal is
to transmit communications in real time through the least
energy consuming path. Since the graph might be con-
tinuously changing as the forces progress a static heuristic
function might be sub-optimal1.

Our setting assumes that a sequence of related search tasks
must be performed using anA∗ mechanism. At the end of
each search task the currently held composite heuristic re-
ceives feedback indicating where its estimates have maxi-
mally deviated from the true distances. Using this feedback
the parameters of the heuristic function are updated so it
can better capture the characteristics of the distance under-
lying the specific sequence of search tasks. Our setting is
related to other repeated graph search settings (Korf, 1990;
Culberson and Schaeffer, 1996; Edelkamp and Eckerle,
1997; Koeniget al., 2004), however, while these methods
rely on memorization for transferring heuristic knowledge,
our method relies on the machine learning notion of gen-
eralization. This approach is inspired by previous attempts
to learn the specific characteristics of large search spacesin
order to facilitate searching procedures (Boyan and Moore,
2000). The novel component in our work is in adapting this
approach to the shortest path problem and in our attempt
to derive formal optimality guarantees on the the returned
paths.

The feedback signal we require for training the heuristic
function h, could naturally emerge as part of the search
process. For example, in the vehicle communication sys-
tem, the shortest path search procedure must be performed
efficiently. However, once the goal node was found inreal
time, the system can derive the evaluation feedback by per-
forming an exact searchoff line. This reverse search can
start from the goal node and utilize the maximum value
heuristic in order to calculate the true distances to all of the
evaluations the heuristich performed during thereal time
search. Unlike traditional online supervised learning set-
tings in which labels require an external teacher, trainingin
search problems has the elegant property of being able to
rely on exact search mechanisms for supervision.

2 Problem Setting

LetG = (V, E) be a graph in which each edge(v ∈ V, v′ ∈
V ) ∈ E is associated with a positive costc(v, v′) ≥ 0.
We define ashortest path search problemby the triplet
(G, s, g) wheres ∈ V is the source node andg ∈ V is
the goal node. Let(G1, s1, g1) . . . (GT , sT , gT ) be an on-
line sequence of shortest path search problems. At each
round1 ≤ t ≤ T , the algorithm receives search problem
(Gt, st, gt) and must produce the edges of the shortest path
pt from st to gt.

1Throughout the paper we assume that dynamic graph changes
occur in a longer time constant than that of the search process.

Our setting follows theA∗ framework and assumes that the
number of nodes visited during the search process must be
minimized using a heuristic functionh : V ×V → R. This
heuristic function guides the search by prioritizing whichof
the nodes in the search frontier will be expanded next. The
priority scoref(v) = k(s, v) + h(v, g) is the sum of the
distancek(s, v), required to reach nodev from nodes, and
of the heuristic contributionh(v, g) estimating the remain-
ing distance needed to reach the goal nodeg from node
v. Unlike the traditionalA∗ setting in which the heuristic
functionh is manually designed, and assumed to be known
in advance, our setting assumes thath is notknown a-priori
and must therefore be learned online during theT search
rounds.

Our setting focuses on heuristics over thesearch-spaceV ,
which are induced by linear regression functions in a re-
latedR

n learning-space,

h(v, v′) = T(w · φ(v, v′)) . (1)

It is assumed that a functionφ : V × V → R
n is pro-

vided, which receives a pair of nodes from the search space
(v, v′) and returns ann dimensional feature mapping in the
learning-space. Each featureφi is an elementary heuristic,
typically a simplification generated by ignoring some of the
domain constraints. The regression function multiplies the
features ofφ by a weight vectorw ∈ R

n and then ap-
plies some reversible non-decreasing function,T : R→ R,
mapping distance values from the learning-space, back to
distances in the search-space. We will later rely on the as-
sumption that this transformation must maintain that as a
certain distance in the learning-space goes to 0, the ana-
log distance in the search-space goes to 0 as well. Al-
though somewhat limited, we demonstrate that this family
of heuristics is not as meager as it initially seems.

At each round in our online setting anA∗ search process
is performed using the current heuristic functionh. Dur-
ing this search the algorithm visits a set of nodes, we de-
note asMt. When the search is concluded, the shortest
pathpt must be returned. In order to tune the vector of
regression parametersw, it is assumed that after the short-
est path is found the algorithm receives a feedback signal.
This feedback includes the nodevt ∈Mt on which the cur-
rent heuristic estimation had the maximal (learning-space)
deviation fromyv = T

−1(d(v, g)), or more formally,

vt = argmax
v∈Mt

|yv −wt · φ(v, gt)| .

In addition to the maximally deviating node, the feedback
also includes the true distanceyt = T

−1(d(vt, g)). Using
this feedback the algorithm can update the weights of the
heuristic functionh in order to improve its performance in
the subsequent rounds.

For concreteness let us review an example using the map
in Figure 1, depicting the road grid and the shopping malls



x x x x x x

x

x

s

g

Figure 1: A graph of the road grid in Anytown, USA. The
L-shaped structures represent shopping malls. Nodes on
the shortest path froms to g are indicated by×. Notice the
increasing heuristic dominance between: Dijkstra (Black),
Block Distance (Dark Gray), Optimal Admissible (Light
Gray) and Online Learning to Search (White).

in Anytown, USA. Let us assume that the search task at
roundt emerges from a car driver in positionst wishing
to receive the shortest path to a goal destinationgt. This
degenerate example presents the same graph in all search
rounds (∀tGt = G). In many regions, municipal pol-
icy, highway layout or terrain constraints cause the traf-
fic flow in a certain direction (say East-West) to be sig-
nificantly faster than in other directions (North-South). In
Anytown, the cost of driving from any intersectionv one
block West to intersectionv′ is c(v, v′) = 1, while the cost
of driving from intersectionv one block North to intersec-
tion v′′ is c(v, v′′) = 3. Using this information, the length
of the shortest path (indicated by×-s) from intersection
s = (6, 6) to intersectiong = (11, 8) can be calculated
as: 7 × 1 + 2 × 3 = 13. An appropriate two dimensional
feature mapping for this example is,φ1(v, v′) = |vx − v′x|
andφ2(v, v′) = |vy − v′y|, wherevx andvy are the coor-
dinates of intersectionv on the road grid (in this example
T(x) = x). In the following section we propose an algo-
rithm which learns during an online sequence of searches
a weight vectorw aimed at maximizing the tradeoff be-
tween admissibility and efficiency. Figure 1 depicts the
nodes visited by four algorithms: Dijkstra’s Shortest Path
Algorithm w = (0, 0), Block Distancew = (1, 1), Op-
timal Admissiblew = (1, 3) and our Online Learning to
Search Algorithm. Table 1 presents the path length and the
number of nodes visited by the four algorithms averaged
over a random selection of 100 start nodes and goal nodes.
Our algorithm learns using feedback received at the end of
each round, which contains the true distance for the node in
the current search that the existing heuristic function max-
imally deviated from. For example, if at the current round

the existing heuristic was defined bywt = (0, 0), the maxi-
mally deviating node would be node(2, 2) which has an ac-
tual distance of 29 to the goal (whilewt · φ((2, 2), (11, 8))
is 0). Thus, the feedback for training will be((2, 2), 29).

Table 1: Average path length and average visited nodes.

Algorithm length # visited

Dijkstra: w=(0,0) 24.47 159.71
Block Distance:w=(1,1) 24.47 103.88
Optimal Admissible:w=(3,1) 24.47 62.01
Online Learning to Search 24.49 44.32

The challenge posed by our setting is to characterize the
conditions under which the heuristic function learned by
roundt is both:

1. admissible (∀vh(v, gt) ≤ d(v, gt)) so that the opti-
mality of the returned path can be guaranteed

2. maximally dominant (∀h′,vh(v, gt) ≥ h′(v, gt)), so
that the search process is maximally reduced

3 The Online Learning to Search Algorithm

We now describe the learning algorithm aimed at acquir-
ing a heuristic evaluation function during the online search
queries. As stated above we assume that a relevant feature
mappingφ : V × V → R

n, is provided and that our task is
to learn a weight vectorw ∈ R

n, characterizing a heuris-
tic function h(v, v′) = T(w · φ(v, v′)). We would like
this heuristic function to efficiently reduce the number of
visited nodes during the search while maintaining admissi-
bility, so that finding an optimal path could be guaranteed.

The proposed method relies on the linear regression al-
gorithms described within the online Passive Aggressive
framework (Crammeret al., 2006). For clarity of presenta-
tion we focus on adapting the simplest mechanism within
the Passive-Aggressive framework. This regression mech-
anism assumes that the family of learned heuristics has the
capacity to approximate the true distancesd(v, v′) up to a
constant,ǫ.

Recall that on every round, our algorithm performs anA∗

search using the currently held heuristic function. Once
concluding this search, the algorithm receives as feedback
the nodevt ∈ Mt on which the current heuristic esti-
mation had the maximal deviation in the learning-space.
Thus, the instance used for training in the learning-space
is φ(vt, gt) (abbreviateφ(t)) and the target value isyt =
T
−1(d(vt, gt)). We will later address such pairs(φ(t), yt),

as our training examples. Our proposed algorithm relies on



theǫ-insensitive hinge loss function:

lǫ(w; (φ(t), yt)) =

{

0 |w · φ(t)yt| ≤ ǫ
|w · φ(t)yt| − ǫ otherwise

whereǫ ≥ 0 is a learning feasibility parameter controlling
the sensitivity to regression errors. This loss is zero when
the predicted target deviates from the true target by less
thanǫ and otherwise grows linearly with|w · φ(t)yt|.
Our algorithm is initialized by settingw1 to (0, . . . , 0). At
the end of each round, this weight vector is updated to be,

wt+1 = argmin
w∈Rn

1

2
‖w−wt‖ s.t. lǫ

(

w; (φ(t), yt)
)

= 0 .

The set{w ∈ R
n : lǫ(w; (φ(t), yt)) = 0} is a hyper-slab

of width 2ǫ. The rational behind this update rule is to per-
form the minimal adjustment to the present weight vector
that makes it accurately predict the target value of roundt.
Geometrically,wt is projected onto theǫ-insensitive hyper-
slab at the end of every round. Using the following three
definitions,

δt(w) = yt −w · φ(t)

lwt
= lǫ(wt; (φ(t), yt))

τt =
lwt

‖φ(t)‖2

the update rule can be restated by the closed form solution,

wt+1 = wt + sgn(δt(wt)) τt φ(t) .

A summary of the Online Learning to Search Algorithm
is presented in Figure 2. It should be noted that (Cram-
meret al., 2006) provide modifications of the update rule
which are more resistant to noisy data and evaluation out-
liers. The essential change is constraining the magnitude of
τ , so that the update steps are less aggressive. In addition,
generalizations of this update rule exist for settings where
the feedback signal provided at each round, includesall the
true distances rather than just the most deviant one (Cram-
mer and Singer, 2003). One additional modification might
be appropriate for applications in which path optimality is
essential. If this is the case we might aim at evaluating
αd(v, v′) rather thand(v, v′), where0 ≤ α ≤ 1, is a pa-
rameter controlling the trade-off between path optimality
and computational efficiency.

4 Representations in Learning Space

Although, the family of heuristic functions parameterized
by Eq. (1) relies on linear regression functions, it never-
theless has the capacity to characterize several interesting
search spaces. This will be demonstrated by providing
three realization of the feature mappingφ and an appro-
priate reversible non-decreasing transfer functionT:

INPUT: φ(v, v′) feature mapping
T learn-space to search-space transformation
ǫ learning feasibility parameter

INITIALIZE : w1 ← 0

For t = 1, 2, . . .

define current heuristich(v, v′) = T(wt · φ(v, v′))

receive search problem(Gt, st, gt)

provide path(pt, Mt)← A∗(Gt, st, gt, h)

receivevt = argmax
v∈Mt

|yv −wt · φ(v, gt)|

whereyv = T
−1(d(v, gt))

setlwt
← [|yt −wtφ(t)| − ǫ]+

If lwt
> 0

set:τt ← lwt

‖φ(t)‖2

update:wt+1 ← wt + sign(yt −wtφ(t)) τtφ(t)

Figure 2: The online learning to search algorithm.

1. Weighted Block distance is formally defined as,
φi(v, v′) = |vi − v′i|, whereφi, indicates theith out-
put feature value of the functionφ. The learned weights
over the features (coordinates) express the degree of impor-
tance each dimension has in determining the total distance.
For weighted block distance the identity transfer function
T(x) = T

−1(x) = x, is appropriate. We will later focus
our analysis on this type of representation.

2. Weighted Euclidean distance can occasionally capture
the search-space better than the weighted block distance.
Learning this weighted distance could be cast as a linear re-
gression task by definingφi(v, v′) = (vi − v′i)

2 and main-
taining thatT(x) =

√
x (andT

−1(x) = x2). Here too
the regression function learns to associate an importance
weight to each deviation in an individual dimension in the
search-space.

3. Weighted Mahalanobis distance does not preserve the
dimensionality of the search-space representation (so that
n = k2 wherek is the dimension of the search-space). This
feature mapping is defined asφi(v, v′) = (vj−v′j)(vl−v′l)
whereT(x) =

√
x. If the n elements ofw are reorganized

as a matrixA, a linear regression over the defined map-
ping φ can express distances of general quadratic form,

T(w · φ(v, v′)) =
√

∑

j,l Aj,l(vj − v′j)(vl − v′l). By in-

corporating an additional projection step onw, A could
be maintained a positive semi-definite (PSD) matrix, which
enables importance weights to be assigned to linear combi-
nations of the original search-space rather than to each di-
mension individually (Shalev-Shwartzet al., 2004). Thus,
if the matrix A resulting from reorganizing the elements
of w is PSD,A could be decomposed intoA = B′B and
√

(v − v′)A(v − v′) = ‖Bv − Bv′‖. This means that the
distance learned byw is equivalent to measuring Euclidean



distance between,v andv′ after both vectors had under-
gone the linear transformationB. Thus, if on a certain map
traffic flows three times faster in the NE-SW axes, the op-
timal weights must be set to,w = (1, − 1

2 , − 1
2 , 1),

andB =
(

−

1

2
−

1

2

−

√
3

2

√
3

2

)

. This is knowledge the first two

representations could not acquire.

It is worth while mentioning that the algorithm presented
in Figure 2 can be further enriched by incorporating Mer-
cer kernels. Note that the vectorw can be represented as
a sum of vectors of the formφ(vi, gi) wherei < t. We
can therefore replace the inner-products in this sum with a
general Mercer kernel operator,K(φ(vi, gi), φ(vj , gj)).

5 Analysis

We denote bylu = l
(

u; (φ(t), yt)
)

the loss of a fixed pre-
dictor u ∈ R

n to which we are comparing our perfor-
mance. Our analysis focuses on the realizable case, thus
assuming that there exists a vectoru such thatlu = 0 for all
t. We start with a lemma that provides a bound on the cu-
mulative squared loss of the maximally deviating nodes as
a function ofu. This lemma is a simple adaptation of The-
orem 2 from (Crammeret al., 2006) and is provided in the
Appendix for completeness. Next, we follow (Shimbo and
Ishida, 2003) and provide theǫ additive admissiblelemma,
stating that if a heuristic functionh never overestimatesd
by more than a constant valuer, then the path returned by
A∗ usingh is guaranteed to be not longer thand(s, g) + r.
Using these two lemmas we prove that whenT(x) = x
and for a sufficiently largeT the average deviation of the
returned heuristic paths from the optimal ones goes toǫ.
Whenǫ goes to zero we obtain convergence to the optimal
paths.

Lemma 1 Let(φ(1), y1), . . . , (φ(T ), yT ) be a sequence of
examples whereφ(t) ∈ R

n, yt ∈ R and‖φ(t)‖ ≤ R for all
t. Assume that there exists a vectoru such thatlu = 0 for
all t. Then, the cumulative squared loss on this sequence of
examples is bounded by,

T
∑

t=1

l2
wt
≤ ‖u‖2R2 .

Lemma 2 If a heuristic functionh never overestimates the
true distanced by more than a constant valuer, then the
pathp returned by anA∗ search usingh is guaranteed to
be not greater thand(s, g) + r,

∑

(v,v′)∈p

c(v, v′)− d(s, g) ≤ r

Proof Let |p| = ∑

(v,v′)∈p c(v, v′) be the length of pathp.
If using the heuristich, A∗ finds a strictly suboptimal path

p, then all nodes with anf value less than|p| are expanded
while at least some of the nodes within the optimal path
are not (or else an optimal path would have been found).
Assume for the purpose of contradiction, that the length of
the optimal pathd(s, g), is smaller than|p|−r. Thus, all the
nodes on the optimal path have anf value smaller than|p|
and must have been expanded while usingh, contradicting
the fact that a strictly suboptimal path was found.

Theorem 1 WhenT(x) = T
−1(x) = x, if the conditions

of Lemma 1 hold andT → ∞ then the valueǫ bounds
the average deviation of the returned pathspt from the true
distances,

1

T

T
∑

t=1

∑

(v,v′)∈pt

c(v, v′)− d(st, gt) ≤ ǫ .

Proof Lemma 1 provides that
∑T

t=1 l2
wt
≤ ‖u‖2R2. Di-

viding by T , we obtain that the average squared loss goes
to 0 and therefore the average loss itself goes to 0 as well,

1

T

T
∑

t=1

([|yt −wt · φ(t)| − ǫ]+)→ 0 . (2)

Using Eq. (2) and the fact that[|yt − wt · φ(t)| − ǫ]+ ≥
|yt −wt · φ(t)| − ǫ, we obtain the following bound,

1

T

T
∑

t=1

(|yt −wt · φ(t)|) ≤ ǫ .

Therefore, since the deviances in the learning space are
bounded byǫ, so are the deviances in the search space,

1

T

T
∑

t=1

(|hwt
(vt, gt)− d(vt, gt)|) ≤ ǫ . (3)

Let us define the maximal deviance in search space at round
t as,rt = |hwt

(vt, gt)−d(vt, gt)|. Using this definition we
now average Lemma 2 over all theT rounds, and obtain
that,

1

T

T
∑

t=1

∑

(v,v′)∈pt

c(v, v′)− d(st, gt) ≤
1

T

T
∑

t=1

rt .

From Eq. (3) we know that1
T

∑T

t=1 rt ≤ ǫ, and therefore,

1

T

T
∑

t=1

∑

(v,v′)∈pt

c(v, v′)− d(st, gt) ≤ ǫ .

If u can attain a loss of0 with an ǫ that approaches0, the
returned paths will converge to the optimal ones. The con-
vergence toǫ is a function of ratio between‖u‖2R2 and



T . Intuitively,‖u‖2R2 indicates the necessary model com-
plexity for correctly characterizing the examples in the on-
line search stream. Thus, although using a sufficiently high
dimensional feature mappingφ might make a smallǫ fea-
sible, this procedure will typically increase the complexity
term‖u‖2R2 by swelling the radius of the training exam-
plesR.

6 Experiments

Our experiments aim at examining whether the Online
Learning to Search algorithm can return near optimal paths
while gradually reducing the number of visited nodes. Ex-
periment 1 focuses on a route planning task, and is aimed
at demonstrating that a learned distance adapted to the spe-
cific contingencies of the data can have an advantage over
a predefined heuristic. Experiment 2 shows that the Online
Learning to Search algorithm can prune down the search
process without prior domain knowledge. For this, a naive
representation of the TopSpin puzzle is applied and the
learning mechanism is provided with a large set of au-
tomatically generated abstractions. Experiment 3, shows
that even in a well studied domain, such as the 8-puzzle,
where certain features are known to be effective, the On-
line Learning to Search algorithm can nevertheless improve
performance.

It should be noted that the feedback signal provided in all
the reported experiments was derived at the end of each
search by running a search process which started at the goal
state and continued until exact distances to all of the nodes
visited during the current search were evaluated.

6.1 Route Planning

Our first experiment focused on a route planning task where
nodes were 231 cities along the East coast of the United
States. Graph edges were defined by road distances. Lon-
gitude and latitude coordinates of the cities were provided
as the source of heuristic information. The selected rep-
resentation was weighted Euclidean distances. The online
sequence of search tasks included 100 trials, each of which
was composed of a randomly selected starting cityst and
goal citygt.

Three heuristics were compared: Dijkstra’s search algo-
rithm (wt = (0, 0)), Euclidean distance (wt = (1, 1))
and our Online Learning to Search mechanism. Table 2
displays the average path length and the average number
of nodes visited by these three alternatives. It could be
seen that the average deviation of the Online Learning to
Search algorithm from the optimal path is 1 mile. How-
ever, the percentage of visited nodes compared to Dijk-
stra’s algorithm (47%) and to the Aerial distance heuristic
(60%) might justify this sub-optimality. Next, we tested
the weighted Mahalanobis distance. Using this represen-
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Figure 3: Number of visited nodes averaged over all previ-
ous online learning rounds: Dijkstra (dashed), Aerial dis-
tance (doted) and Online Learning to Search method using
a full matrix (solid).

tation a further reduction in the number of visited nodes
was observed (Table 1: full matrix Online Learning to
Search). The gradual reduction in the average number of
visited nodes is depicted in Figure 3. When averaging
wt over the last 20 rounds we receive the vectorw =
(16.22,−1.11,−1.11, 10.71). Thus the learned metric ac-
quired the fact that traveling along the coast is shorter (in
road distance) than traveling in the orthogonal direction.

Table 2: East coast map: path lengths and search extent.

Algorithm length # visited

Dijkstra 826 143
Admissible Aerial distance 826 113
Online Learning to Search 827 68

(full matrix) 827 56

6.2 TopSpin

This experiment, focused on a simpli-
fied version of the TopSpin puzzle (see
www.passionforpuzzles.com/virtualcube/topspin). The
naive representation of assigning 1 as the anchor and
enumerating clockwise was selected. In this experiment
128 elementary domain abstraction definedφ. Each feature
counted within an arbitrary set of dimensions, how many
mismatches were present between the current state and
the desired goal state (ignoring all other dimensions). For
example,φ80 counted mismatches in dimensions 3, 4 and
5. In this experiment, Dijkstra’s search algorithm was
compared to the traditional Maximal Value composition
mechanism and to our Online Learning to Search mech-
anism. The task of our algorithm was to discover during



100 online rounds, what combination of the candidate
features best contributes to the heuristic search.

Table 3 displays the fact that although the features were an
automatically generated set of domain abstractions, both
heuristic mechanisms were able to prune down the number
of visited nodes, while returning the shortest paths. How-
ever, the average number of nodes visited by our learned
heuristic (88), is significantly smaller than the number of
nodes visited by the heuristic search guided by the Max-
imum Value mechanism (201). This result indicates that
different domain abstractions capture different aspects of
the distance underlying the search space and thus weighting
the individual domain abstractions is preferential to simply
selecting the highest scoring feature2.

Table 3: TopSpin: path lengths and search extent.

Algorithm length # visited

Dijkstra 3.4 281
Maximum Value 3.4 201
Online Learning to Search 3.4 88

6.3 8-puzzle

Our last experiment returns to the well studied 8-puzzle,
where the (non-admissible) Nilsson sequence score is
known to be highly effective in pruning down the search
space. This score is defined over two features,h(v, g) =
P (v, g) + 3S(v, g). P (v, g) is the Manhattan distance of
each tile inv from its proper position ing and the feature
S(v, g) is a sequence score obtained by checking around
the non-central squares in turn, allotting 2 for every tile
not followed by its proper successor and 0 for every other
tile (except that a piece in the center scores 1). Thus, in
this case the representation is well known and well stud-
ied yet the question remains whether the weights assigned
for each feature are indeed optimal. The 18 dimensional
representation included: 9 Manhattan distance features + 8
binary Nilsson sequence features describing whether each
of the peripheral tiles follows the appropriate predecessor
+ 1 binary feature describing whether the central tile is in
place. Here too, 100 rounds of online search tasks were
presented. As can been seen in Table 4, the Online Learn-
ing to Search is capable of outperforming Nilsson’s Heuris-
tic while maintaining admissibility.

2Although, it was assumed that the rich features will get the
highest weights, these weights were consistently assignedto fea-
tures of intermediate abstraction (e.g. counting mismatches in 4
elements). This demonstrates that the automated learning process
is often free of misleading biases the human designer might pos-
sess.

Table 4: 8-Puzzle: path lengths and search extent.

Algorithm length # visited

Dijkstra 4.22 148.50
Nilsson’s Sequence 4.28 45.90
Online Learning to Search 4.22 15.77

7 Discussion and future extensions

We described a method termed Online Learning to Search,
which utilizes state-of-the-art machine learning mecha-
nisms for acquiring a heuristic evaluation function. We re-
lied on the notion ofǫ-admissibility, to prove that when the
regression learning task is realizable with a smallǫ then the
average divergence from the optimal paths can go to zero.
The nature of the regression task ensures that the learned
heuristics are highly dominant, in the sense that they ef-
fectively prune down the search process. It is important
to note that batch regression methods (e.g. Support Vector
Regression) can be applied to our setting as well. However,
providing formal guarantees using these alternative models
is a challenging task. Specifically, it is difficult to see how
the i.i.d assumption, which is the cornerstone of statistical
inference in the batch setting, might hold in our case (where
heuristics must be learned from data with many dependen-
cies).

The proposed online learning mechanism can be extended
in several ways. First, the online setting could be applied
during asingle search taskby training with distances to
already approached nodes,k(s, v). The challenge in the
single search setting emerges from learning when only ap-
proximate feedback is available. Second, our online mech-
anism is suitable for tackling scenarios where the optimal
weights might be in a continuous state of drift (e.g. accom-
modating dynamic traffic changes during the day). It is
important to emphasize that once the learned heuristic ac-
curately approximates the true distance it is no longer mod-
ified and therefore does not require additional feedback (at
least until the edge values have been changed). In practice
the feedback can actually be given in a rate that is sufficient
to follow drifts in the graph characteristics.

The initial step in automating the process of heuristic de-
sign followed the observation that formal abstractions of
the search space can provide simplified heuristic functions.
This paper addresses the question of whether the task of
acquiring the appropriate composite heuristic for a certain
search space, can be automated as well. We believe that
the proposed online algorithm is an initial step in utilizing
machine learning for the fundamental challenges posed by
artificial intelligence.



Appendix: proof of Lemma 1

Let (φ(1), y1), . . . , (φ(T ), yT ) be an arbitrary sequence of
examples, whereφ(t) ∈ R

n andyt ∈ R for all t ≤ T .
Define∆t to be‖wt−u‖2−‖wt+1−u‖2. First note that
∑

t ∆t is a telescopic sum which collapses to,

T
∑

t=1

∆t =
T

∑

t=1

(

‖wt − u‖2 − ‖wt+1 − u‖2
)

= ‖w1 − u‖2 − ‖wT+1 − u‖2.

Using the facts thatw1 is defined to be the zero vector and
that‖wT+1−u‖2 is non-negative, we can upper bound the
right-hand side of the above by‖u‖2 and conclude that,

T
∑

t=1

∆t ≤ ‖u‖2 . (4)

We focus our attention on bounding∆t from below on
those rounds where∆t 6= 0. Using the recursive defini-
tion of wt+1, we rewrite∆t as,

∆t = ‖wt − u‖2 − ‖wt − u + sgn(δt(wt))τtφ(t)‖2

= −sgn(δt(wt))2τt(wt − u) · φ(t) − τ2
t ‖φ(t)‖2

We now add and subtract the termsgn(δt(wt))2τtyt from
the right-hand side above to get the bound,

∆t ≥ + sgn(δt(wt))2τt(δt(wt)) (5)

− sgn(δt(wt))2τt(δt(u))

− τ2
t ‖φ(t)‖2 .

Sincesgn(δt(wt))δt(wt) = |δt(wt)| and since we only
need to consider the case where∆t 6= 0, then lwt

=
|δt(wt)| − ǫ and we can rewrite the bound in Eq. (5) as,

∆t ≥ 2τt(lwt
+ǫ)− sgn(δt(wt))2τt(δt(u))− τ2

t ‖φ(t)‖2.

We also know that−sgn(δt(wt))δt(u) ≥ −|δt(u)| and
that−|δt(u)| ≥ −(lu + ǫ). This enables us to further
bound,

∆t ≥ 2τt(lwt
+ ǫ) − 2τt(lu + ǫ) − τ2

t ‖φ(t)‖2

= τt(2lwt
− τt‖φ(t)‖2 − 2lu) .

Summing the above over allt and comparing to the upper
bound in Eq. (4) proves that for anyu ∈ R

n,

T
∑

t=1

τt

(

2lwt
− τt‖φ(t)‖2 − 2lu

)

≤ ‖u‖2 . (6)

Using the assumption that the sequence is realizable by the
model (there exists au for which lu = 0 for all t) and
plugging the definition ofτt into the left-hand side of the
above gives,

T
∑

t=1

l2
wt

‖φ(t)‖2 ≤ ‖u‖
2 .

Now using the fact that‖φ(t)‖2 ≤ R2 for all t, we get,

T
∑

t=1

l2
wt

/R2 ≤ ‖u‖2 .
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