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Abstract
Given a vector w ∈ Rp and a positive semi-definite matrix A ∈ Rp×p, we study the expansion ratio
bound for the following defined Mahalanobis hard thresholding operator of w:

HA,k(w) := arg min
‖θ‖0≤k

1

2
‖θ − w‖2A,

where k ≤ p is the desired sparsity level. The core contribution of this paper is to prove that for
any k̄-sparse vector w̄ with k̄ < k, the estimation error ‖HA,k(w)− w̄‖A satisfies

‖HA,k(w)− w̄‖2A ≤

1 +O

κ(A, 2k)

√
k̄

k − k̄

 ‖w − w̄‖2A,
where κ(A, 2k) is the restricted strong condition number of A over (2k)-sparse subspace. This
estimation error bound is nearly non-expansive when k is sufficiently larger than k̄. Specially when
A is the identity matrix such that κ(A, 2k) ≡ 1, our bound recovers the previously known nearly
non-expansive bounds for Euclidean hard thresholding operator. We further show that such a bound
extends to an approximate version of HA,k(w) estimated by Hard Thresholding Pursuit (HTP) al-
gorithm. We demonstrate the applicability of these bounds to the mean squared error analysis of
HTP and its novel extension based on preconditioning method. Numerical evidence is provided to
support our theory and demonstrate the superiority of the proposed preconditioning HTP algorithm.

Keywords: hard thresholding pursuit, Mahalanobis distance, compressed sensing, preconditioning.

1. Introduction

We study the following generalized hard thresholding estimator for truncating a vector w ∈ Rp with
respect to a positive semi-definite matrix A ∈ Rp×p:

HA,k(w) := arg min
‖θ‖0≤k

1

2
‖θ − w‖2A, (1)

where ‖ ·‖A is the Mahalanobis distance associated with A and k ≤ p is the sparsity level of trunca-
tion. We callHA,k(·) as Mahalanobis hard thresholding (MHT) estimator. Specially for the identity
matrixA = Ip×p, the MHT estimator reduces to the conventional Euclidean hard thresholding (HT)
operatorHk(w) = arg min‖θ‖0≤k

1
2‖θ−w‖

2 which plays an important role underlying a large body
of greedy pursuit algorithms for compressed sensing (Blumensath and Davies, 2009; Needell and
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MAHALANOBIS HARD THRESHOLDING

Tropp, 2009; Foucart, 2011; Wang and Li, 2017) and sparse learning (Bahmani et al., 2013; Blu-
mensath, 2013; Yuan and Zhang, 2013). In general, MHT can be regarded as a projection operator
that projects a vector w onto an `0-ball with respect to Mahalanobis distance. In this paper, we are
interested in the following fundamental problem associated with MHT for estimating an unknown
sparse vector:

Given a k̄-sparse vector w̄ with k̄ ≤ k, how close is ‖HA,k(w)− w̄‖A to ‖w − w̄‖A?

First off, we must have that the expansion ratio between ‖HA,k(w)−w̄‖A and ‖w−w̄‖A should
be no larger than 2, which is directly implied by the definition of MHT such that

‖HA,k(w)− w̄‖A = ‖HA,k(w)−w+w− w̄‖A ≤ ‖HA,k(w)−w‖A + ‖w− w̄‖A ≤ 2‖w− w̄‖A.

Obviously, the above bound with expansion ratio 2 is far from tight especially when k � k̄. For
example, in the extreme case when k = p, we just have ‖HA,k(w)− w̄‖A = ‖w− w̄‖A. Therefore,
intuitively speaking, the expansion ratio of the MHT estimator is expected to be close to one when
k becomes close to p. This inspires us to raise the following key question:

Can we find a tighter expansion ratio bound for ‖HA,k(w)−w̄‖A
‖w−w̄‖A that approaches to 1 as k → p?

Although intuitive, the problem is challenging because the computation of HA,k(w) is itself
a compressed sensing problem and thus highly non-trivial to solve. In the reduced case when
A = Ip×p is an identity matrix, Hk(w) has a close-form solution that preserves the top k (in
magnitude) entries of w, of which the expansion ratio bound has been well understood in Li et al.
(2016); Shen and Li (2018). In sharp contrast, for general A � 0, the estimator has no close-form
expression and usually needs to be approximately estimated using sparsity recovery algorithms
such as those iterative greedy pursuit methods (Pati et al., 1993; Blumensath and Davies, 2009).
Therefore, the existing hard thresholding analysis does not readily extend to MHT and we need to
propose new treatments to analyze its expansion ratio guarantee even if the estimator is assumed to
be exactly known, no menton when HA,k(w) is approximately estimated by complex sparsity re-
covery algorithms. Particularly, denote HHTP

A,k (w) the estimation of MHT via the popularly applied
hard thresholding pursuit (HTP) algorithm (Foucart, 2011). We will investigate the closely relevant
problem of how to bound the expansion ratio ‖HHTP

A,k (w)− w̄‖A/‖w − w̄‖A as tight as possible.

1.1. Motivation

The importance of offering a nearly non-expansive error bound of Hk(w) for high-dimensional
sparse recovery analysis was extensively justified in Shen and Li (2018). The main motivation of
studying the generic MHT with metric matrix A � 0 comes from the mean squared error analysis
of sparsity-constrained least squared regression. Assume that the data sample Dn = {xi, yi}ni=1

obeys the linear model yi = w̄>xi + εi where w̄ is a k-sparse parameter vector and εi’s are n
i.i.d. zero-mean sub-Gaussian random variables with parameter σ2. The model can be compactly
expressed as Y = Xw̄ + ε where X ∈ Rn×p is the design matrix and Y, ε ∈ Rn are respectively
vectors of response and random noise. In compressed sensing, the following sparsity-constrained
least squares regression model is commonly considered for estimating the true sparse signal w̄:

ŵ`0 = arg min
‖w‖0≤k

{
F (w) :=

1

2n

n∑
i=1

(yi − w>xi)2 =
1

2n
‖Y −Xw‖2

}
. (2)
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In the fixed design setting where X is deterministic, the mean squared error (MSE) is often used as
the prediction performance measurement of a sparse estimator ŵ, which is defined by

MSE(ŵ, w̄;X) =
1

n
‖X(ŵ − w̄)‖2 = ‖ŵ − w̄‖2H ,

where H = 1
nX
>X is the sample covariance matrix. It is well understood (see, e.g., Raskutti et al.,

2011; Rigollet, 2015) that the following MSE bound of w`0 holds with probability at least 1− δ:

MSE(ŵ`0 , w̄;X) ≤ O
(
σ2k log(p/k)

n
+
σ2k

n
+
σ2 log(1/δ)

n

)
. (3)

The above MSE bound immediately implies a parameter estimation error bound of ŵ`0 given by

‖ŵ`0 − w̄‖2 ≤ O
(

1

λmin(H, 2k)
MSE(ŵ`0 , w̄;X)

)
,

where λmin(H, 2k) is the minimal (2k)-parse eigenvalue of H . For comparison, the parameter
estimation error bound based on objective value sub-optimality analysis scales as ‖ŵ`0 − w̄‖2 ≤
O
(
n−1λ−2

min(H, 2k)σ2k log(p/k))
)

(Yuan et al., 2016; Shen and Li, 2017), which is inferior to
the above MSE implied bound in the sense of an additional factor λ−1

min(H, 2k). Moreover, in ill-
conditioned problems where λmin(H, 2k) would be fairly small, the MSE bound itself will be much
tighter than the parameter estimation error bounds in terms of signal reconstruction and prediction.

It is, however, not clear so far whether the MSE bound in (3) extends to sparsity recovery al-
gorithms often used for approximately estimating ŵ`0 . As will be shown shortly in this paper,
the expansion ratio analysis of MHT turns out to be a useful tool for analyzing the MSE perfor-
mance of the HTP algorithm for estimating (2). To gain an intuition, let ŵHTP be the corresponding
HTP estimator of ŵ`0 and consider an index set S = supp(w̄) ∪ supp(ŵ`0) ∪ supp(ŵHTP). Let
w̃ = arg minsupp(w)⊆S F (w). Then we can verify that ŵHTP = HHTP

HSS ,k
(w̃) and ‖w̃ − w̄‖2HSS ≤

O
(
n−1σ2k log(p/k)

)
. Provided that we can well bound the ratio ‖HHTP

HSS ,k
(w̃) − w̄‖2HSS/‖w̃ −

w̄‖2HSS from above, it follows directly that ‖ŵHTP−w̄‖2H = ‖ŵHTP−w̄‖2HSS ≤ O
(
n−1σ2k log(p/k)

)
.

This shows that the MSE upper bound of HTP is nearly identical to that of ŵ`0 . A detailed MSE
analysis of HTP can be found in Section 4.1. Interestingly, the MHT expansion bound has also
been found beneficial for analyzing a preconditioning HTP method which provably enjoys superior
computational efficiency to HTP in large-scale problems.

1.2. Main results

As the main result of this paper, we establish in Theorem 3 the following error expansion bound of
MHT for estimating any k̄-sparse vector w̄ and sparsity level k > k̄:

‖HA,k(w)− w̄‖2A ≤ min

4, 1 + 3κ(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
When A is identity matrix with κ(A, 2k) ≡ 1, our bound reduces to be identical to those non-
expansive error ratio bounds of HT established in Li et al. (2016); Shen and Li (2018). For general
A � 0, the above result shows that the sparse estimation error of MHT is still nearly non-expansive
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when k is large enough. Furthermore, we show in Theorem 5 that a similar error expansion bound
to the above one holds for a stationary estimation HHTP

A,k (w) after Õ (kκ(A, 2k)) rounds of HTP it-
eration. Here we have used big o notation Õ to hide logarithmic factors. In view of these bounds of
MHT, we then provide an MSE analysis for HTP for solving the sparsity-constrained linear regres-
sion problem (2). Our result in Theorem 7 shows that for any k ≥ O(κ2(H, 2k)k̄), a nearly identical
MSE bound to (3) can be established for HTP after sufficient rounds of iteration. Particularly, the
MSE bound of HTP then implies a stronger parameter estimation error bound of HTP than the prior
results. As another significant contribution, we develop a novel preconditioning HTP algorithm and
show that the new algorithm enjoys a similar strong MSE guarantee to HTP but with substantial-
ly reduced computational complexity in large-scale problems. Preliminary numerical results are
provided to verify our theoretical findings and demonstrate the efficiency of our algorithm.

Paper organization. In Section 2 we briefly review the related literature. In Section 3 we present
the estimation error ratio bound analysis for exact MHT and its approximate estimation by HTP. In
Section 4 we show two implications of the established bounds in MSE analysis of HTP and a novel
algorithm extension of HTP via preconditioning method. A numerical study for theory verification
and algorithm evaluation is presented in Section 5. The concluding remarks are made in Section 6.
Finally, all the technical proofs are relegated to the appendix.

2. Related Work

The problem of learning parsimonious models under sparsity constraint has long been studied with
a vast body of beautiful theoretical results and efficient practical algorithms established in signal
processing, statistics and machine learning (Bach et al., 2012; Hastie et al., 2015). Early efforts
mainly lie in high-dimensional sparse signal recovery, or compressed sensing (Donoho, 2006), for
which a bunch of low-complexity greedy approximation methods have been developed including or-
thogonal matching pursuit (OMP) (Pati et al., 1993), iterative hard thresholding (IHT) (Blumensath
and Davies, 2009), compressed sampling matching pursuit (CoSaMP) (Needell and Tropp, 2009)
and subspace pursuit (SP) (Dai and Milenkovic, 2009). These compressed sensing algorithms have
later been extended to broader class of sparse machine learning problems with loss functions be-
yond least squared error (Shalev-Shwartz et al., 2010; Bahmani et al., 2013; Yuan et al., 2018).
Statistical consistency of learning with sparsity constraint are now well understood for some pop-
ular statistical learning models including least squares regression, logistic regression and principle
component analysis (Ma, 2013; Rigollet, 2015; Foucart and Rauhut, 2017). The out-of-sample gen-
eralization theory of sparsity-constrained/regularized learning models was studied in Chen and Lee
(2018); Abramovich and Grinshtein (2019); Yuan and Li (2020). Particularly, the mean squared
error bound of the `0-estimator for linear regression models, which is mostly closely relevant to our
work, has been analyzed in Raskutti et al. (2011); Rigollet (2015).

Among others, the IHT-style methods are popularly studied as they have been witnessed to
offer attractive efficiency and scalability in many cases (Yuan and Zhang, 2013; Jain et al., 2014;
Li et al., 2016). The rate of convergence and parameter estimation error of IHT-style methods
were initially analyzed under proper restricted isometry property (RIP) (Candes and Tao, 2005), or
restricted strong condition number, bounding conditions (Blumensath and Davies, 2009; Foucart,
2011; Yuan et al., 2018). The RIP-type conditions, however, tend to be too stringent to hold in
real-world high dimensional data analysis problems. It is noteworthy that the dependence of IHT
sparsity recovery analysis on RIP-type conditions mainly attributes to the HT operator which is
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non-convex and expansive in most cases. This is contrast to the convex soft thresholding operator
used by `1-estimators which is non-expansive (Boyd and Vandenberghe, 2004). To remedy this
deficiency, the following HT sub-optimality bound was proved in Jain et al. (2014)

‖Hk(w)− w‖2 ≤ p− k
p− k̄

‖w − w̄‖2.

Based on this bound, it was shown in that paper that under proper sparsity level relaxation, the
high-dimensional estimation consistency of IHT can be established without imposing RIP-type con-
ditions on the objective function. One shortcoming of the above bound lies in that the expansion
factor relies on feature dimension which could be huge. Later, the following dimension-free bound
of HT has been essentially independently established in Li et al. (2016); Shen and Li (2018):

‖Hk(w)− w̄‖2 ≤

1 +O

√ k̄

k − k̄

 ‖w − w̄‖2. (4)

Such a nearly non-expansive estimation error bound has been demonstrated beneficial for analyzing
the parameter estimation and sparsity recovery accuracy of IHT and its stochastic/distributed vari-
ants without assuming RIP-type conditions (Li et al., 2016; Shen and Li, 2018; Zhou et al., 2018;
Liu et al., 2019; Yuan and Li, 2020). Despite the remarkable success achieved in understanding
the benefit of tighter HT bounds for analyzing the IHT-style algorithms, these results are mostly
relevant to the objective value sub-optimality and parameter estimation accuracy. In contrast, the
theoretical understanding of the MHT operator, which is expected to be a backbone for the MSE
analysis of IHT-style methods, yet still remains an open issue that we aim to study in this paper.

3. Estimation Error Analysis of MHT

In this section, we analyze the expansion ratio of MHT for estimating a sparse vector. We distinguish
our analysis in two settings with regard to the exactness of MHT: in the first ideal setting we assume
that the MHT operator is exactly known, while in the second inexact but more realistic setting we
focus on the case that MHT is approximately estimated by the HTP algorithm.

3.1. A key lemma

We start by presenting a key lemma which lays the foundation for deriving the error expansion
bounds of MHT and its approximate estimation via HTP. In the following analysis, we denote
λmax(A, k) = max‖x‖=1,‖x‖0≤k x

>Ax the largest k-sparse eigenvalue of a positive semi-definite
matrix A. The smallest k-sparse eigenvalue λmin(A, k) is defined analogously. We denote supp(u)
the index set of nonzero entries of a vector u. A full list of notation can be found in Appendix A.

Lemma 1 Consider a given vectorw ∈ Rp, a k̄-sparse vector w̄ ∈ Rp, and a positive semi-definite
matrix A ∈ Rp×p. Let u be a k-sparse vector and Su = supp(u). Assume that

ASu,:(u− w) = 0, [u]min ≥
‖A(u− w)‖∞

ν
,

where ν > 0 is some scalar. Then for any k ≥
(
1 + 3ν2λ−2

min(A, 2k)
)
k̄, the following estimation

error expansion bound holds:

‖u− w̄‖2A ≤

1 +
3ν

λmin(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
5
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Proof The key ingredient of the proof argument is to bound the numerator and denominator of
the ratio (‖u − w̄‖2A − ‖w − w̄‖2A)/‖w − w̄‖2A respectively from above based on the orthogonal
conditionASu,:(u−w) = 0 and from below using the strong-signal condition [u]min ≥ ‖A(u−w)‖∞

ν .
See Appendix B.1 for a detailed proof of this result.

Remark 2 We comment on the conditions required in the lemma. The condition ASu,:(u− w) = 0
implies that u>A(u−w) = 0, i.e., u and A(u−w) are orthogonal. The [u]min ≥ ‖A(u−w)‖∞/ν
basically requires that the magnitude of the non-zero entries of u should be significantly larger
than those of the vector A(u − w). As we will shortly see in the subsequent sections that these
two conditions can be fulfilled by MHT and its HTP estimation as well. Finally, the condition
k ≥

(
1 + 3ν2λ−2

min(A, 2k)
)
k̄ guarantees that the expansion ratio is no larger than 4.

3.2. Results for exact MHT

We first consider an ideal setting where the MHT operator HA,k(w) in (1) is exactly known. The
following is our main result on the estimation error expansion bound of exact MHT.

Theorem 3 (Expansion bound of exact MHT) LetA be a positive semi-definite matrix. Consider
a given vector w and a target k̄-sparse vector w̄. Then for any k > k̄, the following estimation error
bound ofHA,k(w) holds:

‖HA,k(w)− w̄‖2A ≤ min

4, 1 + 3κ(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
Proof It is straightforwardly known that ‖HA,k(w)−w̄‖2A ≤ 4‖w−w̄‖2A. Let S = supp(HA,k(w)).
Based on a standard result in Lemma 19 we can show that

AS,:(HA,k(w)− w) = 0, [HA,k(w)]min ≥
‖A(HA,k(w)− w)‖∞

λmax(A, 2k)
. (5)

Then by substantializing Lemma 1 with u = HA,k(w) and ν = λmax(A, 2k) we immediately get
the other part of the bound. See Appendix B.2 for a full proof of this result.

Remark 4 To compare with the nearly non-expansive expansion ratio bound of HT in (4), our
bound in Theorem 3 for generic MHT enjoys an almost identical near non-expansion property but
at the cost of an additional factor of κ(A, 2k). We remark that the universal constants in our bound
are by no means optimal and might be further improved with more careful treatment.

As discussed previously that the MHT operator by definition is a compressed sensing problem
which is generally non-convex and NP-hard. This means that unlike the Euclidean HT operator
which has close-form expression, it is hopeless to find an exact estimation of MHT in polynomial
time and one must instead seek approximate solutions. The blessing here is that our analysis of exact
MHT does not directly hinge the global optimality of the operator. Rather, we only need to make
use of the first-order optimality condition of MHT over its own supporting set and a strong-signal
property of the operator as listed in (5). This offers the potential to extend the near non-expansion
guarantee on exact MHT to its inexact counterpart approximately estimated via HTP-style methods.
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Algorithm 1: Hard Thresholding Pursuit (HTP) for approximately solving min‖θ‖0≤k f(θ)

Input : Learning rate η > 0.
Output: θ(t).
Initialization: θ(0) with ‖θ(0)‖0 ≤ k (typically θ(0) = 0), t = 1.
repeat

(S1) Compute θ̃(t) = Hk
(
θ(t−1) − η∇f(θ(t−1))

)
;

(S2) Compute θ(t) = arg min f(θ) subject to supp(θ) ⊆ supp(θ̃(t));
t = t+ 1;

until S(t) = S(t−1);

3.3. Results for inexact MHT

We now move to study a more realistic case where MHT is approximately estimated via the HTP
algorithm (Foucart, 2011) as outlined in Algorithm 1. The key observation here is that HTP can
find a stationary solution of MHT with identical properties to those in (5) at exponentially fast rate
of convergence. Based on such an observation, we can establish the following main result on the
estimation error expansion bound of the inexact MHT estimatorHHTP

A,k (w) estimated by HTP.

Theorem 5 (Expansion bound of inexact MHT) Let A be a positive semi-definite matrix. Con-
sider a given vector w and a target k̄-sparse vector w̄. Set the learning rate η = 1

2λmax(A,2k) for

HTP invoked to f(θ) = 1
2‖θ−w‖

2
A. Then for any k ≥ (1+12κ2(A, 2k))k̄, the following estimation

error bound holds after Õ (kκ(A, 2k)) rounds of HTP iteration:

‖HHTP
A,k (w)− w̄‖2A ≤

1 + 6κ(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
Proof As a key step, we first prove Lemma 20 which tells that for restricted strongly convex func-
tions, HTP with proper learning rate converges exponentially fast to a stationary point with the de-
sirable first-order optimality and strong-signal properties. By substantializing this lemma to MHT
we can show that the following conditions hold after Õ (kκ(A, 2k)) rounds of HTP iteration:

AS,:(HHTP
A,k (w)− w) = 0, [HHTP

A,k (w)]min ≥
‖A(HHTP

A,k (w)− w)‖∞
2λmax(A, 2k)

, (6)

where S = supp(HHTP
A,k (w)). The desired bound then follows immediately by applying Lemma 1 to

u = HHTP
A,k (w) and ν = 2λmax(A, 2k). A full proof is provided in Appendix B.3.

Remark 6 We remark that the required Õ (kκ(A, 2k)) iteration complexity to find a stationary s-
parse solution satisfying (6) is higher by a factor k than the corresponding Õ (κ(A, 2k)) complexity
of HTP for sparse parameter estimation and loss minimiztion (Jain et al., 2014; Yuan et al., 2018).
It is an interesting open issue to explore the opportunity of tightening such a complexity bound in
our considered problem regime, which we will leave for future investigation.
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4. Implications

In this section, we discuss two implications of our main results in the theoretical understanding and
algorithm extension of HTP for the sparsity-constrained least squares regression problem (2). We
first analyze the MSE performance of the conventional HTP based on Theorem 5. Then we present
a novel preconditioning HTP method along with its MSE and computational complexity analysis.

4.1. MSE analysis of HTP

The sparsity recovery performance of HTP is typically measured by parameter estimation error
and loss value sub-optimality (Foucart, 2011; Jain et al., 2014; Li et al., 2016; Yuan et al., 2018).
The bounds of these measurements usually depend on the restricted strong convexity parameter of
objective function. In contrast, as discussed in the motivation section that the MSE bound of ŵ`0
in (3) is free of the dependency on restricted strong convexity which can lead to tighter bounds
on parameter estimation error. However, it remains an open question whether such an attractive
MSE bound can be generalized to HTP for estimating ŵ`0 . In view of the expansion ratio bound in
Theorem 5, we can establish the following result which shows that an almost identical MSE bound
still holds for HTP, and thus answer the question affirmatively.

Theorem 7 (MSE bound of HTP) Letw(t) be the output of HTP with learning rate η = 1
2λmax(H,2k)

for estimating the sparse least squares regression problem (2) after t = Õ(kκ(H, 2k)) rounds of
sufficient iteration. Then for any k ≥ (1 + 12κ2(H, 2k))k̄, the following bound holds with proba-
bility at least 1− δ:

MSE(w(t), w̄;X) ≤ O

κ(H, 2k)

√
k̄

k − k̄

(
σ2k log(p/k)

n
+
σ2k

n
+
σ2 log(1/δ)

n

) .

Proof A proof of this result is provided in Section C.1.

Remark 8 We comment that the scale factor κ(H, 2k)
√
k̄/(k − k̄) = O(1) under the condition of

k ≥ (1 + 12κ2(H, 2k))k̄. As a direct consequence of the MSE bound in Theorem 7, the squared
parameter estimation error of w(t) can be bounded with probability at least 1− δ as

‖w(t) − w̄‖2 ≤ O
(

1

λmin(H, 2k)

(
σ2k log(p/k)

n
+
σ2k

n
+
σ2 log(1/δ)

n

))
,

which is substantially tighter than the existing bounds (Jain et al., 2014; Shen and Li, 2018; Yuan
et al., 2018) in the considered setting in terms of the dependence on λmin(H, 2k). Also, the MSE
bound in Theorem 7 essentially reveals that the MSE lower bound of Zhang et al. (2014) for
polynomial-time sparse linear regression estimators can be attained efficiently by HTP.

4.2. A preconditioning HTP method

We further show an application of the near non-expansion bounds of MHT to analyzing a novel
preconditioning variant of HTP, namely PC-HTP, for solving the sparsity-constrained least squares
regression problem (2). As outlined in Algorithm 2, the PC-HTP algorithm contains two nested
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Algorithm 2: Preconditioning Hard Thresholding Pursuit (PC-HTP) for solving the `0-estimator (2)
Input : Hyper parameter γ > 0.
Output: w(t).
Initialization Sample D̃m ⊆ Dn to form F̃ (w) := 1

2m

∑
(xi,yi)∈D̃m(yi − w>xi)2. Set w(0) = 0.

for t = 1, 2, ... do
(S1) Construct a quadratic function

P (t−1)(w) := 〈∇F (w(t−1))−∇F̃ (w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2 + F̃ (w); (7)

(S2) Estimate k-sparse estimator w(t) = arg min‖w‖0≤k P
(t−1)(w) via HTP.

end

loops: 1) in the outer-loop we construct a quadratic function P (t−1) as expressed in (7) based
on a stochastic approximate function F̃ and the previous full gradient ∇F (w(t−1)); and 2) in the
subsequent inner-loop we minimize P (t−1) under the same sparsity constraint using HTP to obtain
the updated estimator w(t).

4.2.1. THE PRECONDITIONING BEHAVIOR

We first roughly justify the preconditioning behavior of PC-HTP for quadratic objective functions
in the unconstrained case with k = p such that the cardinality constraint is inactive. Let H̃ de-
note the Hessian of F̃ . In this case, since by definition w(t) minimizes P (t−1)(w), we must have
0 = ∇P (t−1)(w(t)) = ∇F̃ (w(t)) − ∇F̃ (w(t−1)) + ∇F (w(t−1)) + γ(w(t) − w(t−1)) = (H̃ +

γI)(w(t)−w(t−1))+∇F (w(t−1)), which then implies w(t) = w(t−1)−
(
H̃ + γI

)−1
∇F (w(t−1)).

This is essentially an approximate Newton iteration form in the sense that H̃ + γI is a stochastic
approximate to the full Hessian H . To see further the preconditioning effect, we note∇F (w∗) = 0

and thus the above leads to w(t) −w∗ =

(
I −

(
H̃ + γI

)−1
H

)
(w(t−1) −w∗). The effect of pre-

conditioning comes from the fact that when the stochastic approximation F̃ (w) is sufficiently close
to F (w) and γ is sufficiently small, the condition number of (H̃ + γI)−1H would be close to 1,

which then implies the contraction factor
∥∥∥∥I − (H̃ + γI

)−1
H

∥∥∥∥ would be much smaller than one.

Therefore, F̃ (w) essentially serves as a preconditioner that is expected to potentially improve the
rate of convergence. From the perspective of algorithmic framework, PC-HTP shares a similar spirit
of preconditioning to the distributed inexact Newton pursuit (DINPS) method for distributed learn-
ing with sparsity (Liu et al., 2019), although our method is designed in the context of single-machine
compressed sensing. Nevertheless, as we will shortly addressed that the analysis of PC-HTP is sub-
stantially different from DINPS: we focus on the MSE analysis of PC-HTP which in turn will imply
a tighter parameter estimation error bound than that of DINPS.

4.2.2. MSE ANALYSIS

The following is our main result on the MSE performance of PC-HTP.

9
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Theorem 9 (MSE bound of PC-HTP) Let H and H̃ be the Hessian matrices of F and F̃ , re-
spectively. Assume that ‖H̃ − H‖ ≤ γ. Let w̄ be a k̄-sparse vector. Let s = 2k + k̄. If
k ≥

(
1 +O

(
(λmax(H,s)+γ)2(λmin(H,s)+γ)2

λ4
min(H,s)

))
k̄, then with probability at least 1 − δ, Algorithm 2

will output w(t) satisfying

MSE(w(t), w̄;X) ≤ O

((
λmin(H, s) + γ

λmin(H, s)

)2(σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

))

after t ≥ Õ
(
λmin(H,s)+γ
λmin(H,s)

)
rounds of iteration.

Proof See Appendix C.2 for a proof of this result.

Remark 10 For the sake of simplicity, we focus on the ideal case where the inner-loop compressed
sensing problem is solved exactly. Our analysis can be easily extended to the setting where the
inner-loop sub-problem is solved approximately via HTP.

The following result is a corollary of Theorem 9 when the subset D̃m for constructing F̃ is
uniformly randomly sampled from the entire sample Dn with m = Õ

(
λ−2

min(H, s)
)
.

Corollary 11 Assume that ‖xi‖ ≤ 1,∀i ∈ [n] and that D̃m is a uniform random subset of Dn.
Assume the conditions in Theorem 9 hold. For any δ ∈ (0, 1), set m = O

(
λ−2

min(H, s) log(p/δ)
)
.

Then with probability at least 1 − δ over the randomness associated with model noise and D̃m,
Algorithm 2 with γ = O (λmin(H, s)) will output w(t) satisfying

MSE(w(t), w̄;X) ≤ O
(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
after t ≥ Õ (1) rounds of iteration.

Proof See Appendix C.3 for a proof of this result.

Remark 12 The MSE bound in Corollary 11 readily implies that the squared parameter estima-
tion error ‖w(t) − w̄‖2 can be bounded as Õ

(
λ−1

min(H, s)n−1σ2s
)

which is tighter than those
Õ
(
λ−2

min(H, s)n−1σ2s
)

bounds of DINPS (Liu et al., 2019) in terms of the dependence on λ−1
min(H, s).

4.3. Computational complexity

We next analyze the computation complexity of PC-HTP to understand its overall computational
efficiency. We consider using conjugate gradient method to solve the debiasing step (see the step
S2 of Algorithm 1) of HTP when invoked to the sparse estimator w(t) = arg min‖w‖0≤k P

(t−1)(w).
The amount of computation is measured by matrix-vector product for gradient evaluation. As a
consequence of Theorem 5 and Corollary 11, the following result summaries the computational
complexity of PC-HTP in the considered setting.

10
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Corollary 13 (Computational complexity of PC-HTP) Assume the conditions in Corollary 11
hold. For any δ ∈ (0, 1), set m = O(λ−2

min(H, s) log(p/δ)) and γ = O(λmin(H, s)). Then with
probability at least 1− δ, the computational complexity of PC-HTP for attaining

MSE(w(t), w̄;X) ≤ O
(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
is dominantly bounded by Õ

(
nk + kκ(H, 2k)

(
mk + k2

√
κ(H, 2k)

))
.

Proof See Section C.4 for a proof of this result.

Remark 14 For comparison, it can be verified that the computational complexity of the conven-
tional HTP to achieve a similar level of MSE is dominated by

Õ
(
kκ(H, 2k)

(
nk + k2

√
κ(H, 2k)

))
= Õ

(
nk2κ(H, 2k) + k3κ1.5(H, 2k)

)
.

If k � mκ−1/2(H, 2k), then the leading terms in the complexity bound of PC-HTP are of the order
Õ
(
nk + k3κ1.5(H, 2k)

)
. Then in the big sample regime where n � k

√
κ(H, 2k), the complexity

of PC-HTP would be considerably cheaper than that of HTP to achieve comparable MSE.

5. Numerical Study

In this section, we carry out a preliminary numerical study to verify the nearly non-expansive bounds
of MHT established in Section 3 and evaluate the actual computational performance of PC-HTP as
presented in Section 4.2.

5.1. Theory verification

The result in Theorem 5 suggests that given w and w̄, the expansion ratio bound of the HTP-based
MHT estimatorHHTP

A,k (w) relies on the (restricted) condition number ofA and the truncation sparsity
level k. To verify this theory, we consider a k̄-sparse vector w̄ ∈ Rp whose non-zero entries are
sampled from Gaussian distributionN (10, 1), and construct a dense vector w = w̄ + w̄′ + ε where
w̄′ is a k̄-sparse vector satisfying w̄>w̄′ = 0 and its non-zero entries are sampled from Gaussian
distribution N (0, 102), and ε is a standard Gaussian noise vector. We fix p = 1000, k̄ = 200 and
test how the expansion ratio ‖HHTP

A,k (w)− w̄‖A/‖w− w̄‖A evolves under different A with condition
number κ ∈ {1.5, 2, 5, 10}1 and varying truncation sparsity level k with k/p ∈ [0.2, 1]. Figure 1(a)
shows the corresponding expansion ratio evolving curves. From this set of results we can make the
following two observations: 1) for each fixed A with condition number κ, the expansion ratio of
MHT is relatively large when k is relatively small and the ratio converges to one as k approaches to
p; and 2) for each fixed sparsity level k, the expansion ratio grows larger as the condition number κ
increases. These numerical evidences well support the theoretical prediction in Theorem 5.

1. We first generate a semi-positive definite matrix A′ � 0 with λmin(A
′) = 0, and then we set A = A′ + βI with

β = λmax(A′)
κ−1

. It can be verified that the condition number of A equals to κ.

11
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Figure 1: Theory verification for MHT and computational efficiency evaluation for PC-HTP.

5.2. Algorithm evaluation for PC-HTP

We now turn to evaluate the computational efficiency of the proposed PC-HTP algorithm for es-
timating the sparse least squares regression model in (2). The feature points {xi}ni=1 are sampled
from standard multivariate Gaussian distribution and the responses {yi}ni=1 are generated according
to a linear model yi = w̄>xi + εi where w̄ is a k̄-sparse parameter vector whose non-zero entries
are sampled from standard Gaussian distribution, and εi are a standard Gaussian noises. For this
experiment, we set feature dimension p = 10000 and sparsity level k̄ = 100. We evaluate the MSE
performance of PC-HTP under varying subset sample size m with m/n ∈ {0.05, 0.1, 0.2} and
take the conventional HTP as a baseline for comparison. For each m, we set the hyper-parameter
γ = 1/

√
m for PC-HTP. Figure 1(b) shows the MSE evolving curves of HTP and PC-HTP as

functions of wall-clock computation time (in second) for n = p (left panel) and n = 4p (right
panel). From this group of results we can observe that: 1) for all the configurations of sample size
n and subset size m, PC-HTP is consistently faster than HTP in MSE convergence and the margin
becomes more significant for relatively larger n; and 2) for each considered n, the most efficient im-
plementation of PC-HTP occurs when using relatively smallerm. These observations are consistent
with the computational complexity result in Corollary 13 and the related discussions in Remark 14.

6. Conclusions

In this paper, we studied the expansion ratio bound of the MHT operator which plays a fundamental
role in analyzing the MSE performance of compressed sensing algorithms such as HTP. Tradition-
al expansion analysis for hard thresholding, however, does not readily extend to MHT due to its
non-convexity and NP-hardness. For an ideal case where the operator is assumed to be exactly
solved, we established a nearly non-expansive bound for MHT when the truncation sparsity level
is sufficiently large. Then in a more realistic regime where MHT is approximately estimated by
HTP, we show that such a near non-expansion property extends to the stationary output of HTP
with proper learning rate. We have substantialized our theoretical results to the MSE analysis of
HTP and its novel extension with preconditioning method. Particularly, our MSE bounds for HTP
and its preconditioning extension nearly match the known lower bounds for polynomial-time sparse
least squares regression estimators. More importantly, the MSE bounds imply tighter parameter
estimation error bounds of HTP than the existing ones. Preliminary numerical results support our
theoretical findings and demonstrate the computational advantage of the proposed preconditioning
HTP method over the plane HTP.
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Appendix A. Preliminaries and Technical Lemmas

Notation. In the following, u is a vector, A is a matrix, and S ⊆ {1, ..., q} is an index set. The
following notations will be used in this article.

• [u]i: the ith entry of vector u.

• uS : the restriction of u on S, i.e., [uS ]i = [u]i if i ∈ S, and [uS ]i = 0 otherwise.

• ‖u‖ =
√
u>u: the Euclidean norm of u.

• ‖u‖∞ = maxi |[u]i|: the `∞-norm of u.

• ‖u‖0: the number of nonzero entries of u.

• ‖u‖A =
√
u>Au: the Mahalanobis distance of u with respect to A � 0.

• supp(u): the index set of nonzero entries of u.

• supp(u, k): the index set of the top k (in modulus) entries of u.

• [u]min = mini∈supp(u) |[u]i|: the smallest absolute value of nonzero element of u.

• [A]ij : the element on the ith row and jth column of matrix A.

• ‖A‖ = sup‖x‖≤1 ‖Ax‖: the spectral norm of matrix A.

• AS,S′ : the restriction of A on row index set S and column index set S′.

• AS,: (A:,S): the restriction of A on row (column) index set S.

• λmax(A, k) = max‖x‖=1,‖x‖0≤k x
>Ax: the largest k-sparse eigenvalue of a positive semi-

definite matrix A. Particularly, we denote λmax(A) the largest eigenvalue of A.

• λmin(A, k) = min‖x‖=1,‖x‖0≤k x
>Ax: the smallest k-sparse eigenvalue of a positive semi-

definite matrix A. Particularly, we denote λmin(A) the smallest eigenvalue of A.

• κ(A, k) = λmax(A, k)/λmin(A, k): the k-sparse condition number of A.

In our analysis, we will use the following defined concepts of restricted strong convexity and
smoothness which are conventionally used in the analysis of sparsity recovery methods (Shalev-
Shwartz et al., 2010; Bahmani et al., 2013; Jain et al., 2014).

Definition 15 (Restricted Strong Convexity/Smoothness) For any integer s > 0, we say f is
restricted µs-strongly convex and Ls-smooth if there exist µs, Ls > 0 such that

µs
2
‖u− v‖2 ≤ f(u)− f(v)− 〈∇f(v), u− v〉 ≤ Ls

2
‖u− v‖2, ∀‖u− v‖0 ≤ s. (8)

The ratio number κs := Ls/µs that measures the curvature of the loss function over sparse sub-
spaces is referred to as restricted strong condition number. Specially for quadratic objective function
with Hessian A, we have Ls = λmax(A, s), µs = λmin(A, s) and κs = λmax(A, s)/λmin(A, s).

The following simple lemma is useful in our analysis.
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Lemma 16 Consider a real value function g(x) = bx/(ax2 + c) where a, b, c > 0. Then g(x) ≤
b/(2
√
ac) for all x ∈ R.

Proof Obviously, the inequality holds when x < 0. Next we only consider x ≥ 0. The non-negative
stationary point of g is x∗ =

√
c
a . It can be directly computed that g′′(x∗) = −8bc2√ac < 0,

which indicates that x∗ is the maximizer of g. Then we must have g(x) ≤ g(x∗) = b/(2
√
ac) for

all x ∈ R.

We also need the following technical lemma for spectral analysis.

Lemma 17 Let A and B be two symmetric and positive definite matrices and B � µI for some
µ > 0. If ‖A−B‖ ≤ γ, then (A+ γI)−1B is diagonalizable and

λmax((A+ γI)−1B) ≤ 1, λmin((A+ γI)−1B) ≥ µ

µ+ 2γ
.

Moreover, the following spectral norm bound holds:∥∥∥I − (A+ γI)−1/2B(A+ γI)−1/2
∥∥∥ ≤ 2γ

µ+ 2γ
.

Proof Since bothA+γI andB are symmetric and positive definite, it is known that the eigenvalues
of (A+ γI)−1B are positive real numbers and identical to those of (A+ γI)−1/2B(A+ γI)−1/2.
Let us consider the following eigenvalue decomposition of (A+ γI)−1/2B(A+ γI)−1/2:

(A+ γI)−1/2B(A+ γI)−1/2 = Q>ΛQ,

where Q>Q = I and Λ is a diagonal matrix with eigenvalues as diagonal entries. The above
decomposition then implies

(A+ γI)−1B = (A+ γI)−1/2Q>ΛQ(A+ γI)1/2,

which is a diagonal eigenvalue decomposition of (A+ γI)−1B. Thus (A+ γI)−1B is diagonaliz-
able.

To prove the eigenvalue bounds of (A + γI)−1B, it suffices to prove the same bounds for
(A + γI)−1/2B(A + γI)−1/2. Since ‖A − B‖ ≤ γ, we have B � A + γI which implies (A +
γI)−1/2B(A+ γI)−1/2 � I and hence λmax((A+ γI)−1/2B(A+ γI)−1/2) ≤ 1. Moreover, since
B � µI , it holds that 2γ

µ B − γI � γI � A−B. Then we obtain (A+ γI)−1/2B(A+ γI)−1/2 �
µ

µ+2γ I which implies λmin((A + γI)−1/2B(A + γI)−1/2) ≥ µ
µ+2γ . Therefore we obtain that∥∥I − (A+ γI)−1/2B(A+ γI)−1/2

∥∥ ≤ 1− µ
µ+2γ = 2γ

µ+2γ .

The following standard result will also be used in our analysis.

Lemma 18 If A and B are p×p symmetric matrices such that ‖A−B‖ ≤ γ, then for any positive
integer s ≤ p

λmin(B, s)− γ ≤ λmin(A, s) ≤ λmax(A, s) ≤ λmax(B, s) + γ.

Proof Let x̃ be a largest s-sparse eigenvector ofA. Since ‖A−B‖ ≤ γ, we must haveA � B+γI .
Therefore,

λmax(A, s) = x̃Ax̃ ≤ x̃(B + γI)x̃ ≤ λmax(B, s) + γ,

which shows the right hand side of the inequality. The other side of the bound can be proved
similarly.
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Appendix B. Proofs of Main Results in Section 3

B.1. Proof of Lemma 1

Proof Let us define g = A(u − w). Let Sg = supp(g) and S̄ = supp(w̄). By definition we have
|Su| = k and |S̄| = k̄. It follows immediately from the conditionASu,:(u−w) = 0 that Su∩Sg = ∅,
and thus 〈u, g〉 = 0. We start by showing the following equality:

‖u− w̄‖2A − ‖w − w̄‖2A = ‖u‖2A − ‖w‖2A + 2〈w̄, A(w − u)〉 = −2〈w̄, g〉 − ‖w − u‖2A,

where in the last “=” we have used u>g = 0 which then implies ‖w‖2A = ‖w − u + u‖2A =
‖w−u‖2A + ‖u‖2A. Denote S = Su ∪ S̄, S̄u = Su ∩ S̄ and S̄g = Sg ∩ S̄. Then the previous equality
leads to the following bound:

‖u− w̄‖2A − ‖w − w̄‖2A = −2〈w̄, g〉 − ‖w − u‖2A = −2〈w̄S̄g , gS̄g〉 − ‖w − u‖
2
A ≤ 2‖w̄S̄g‖‖gS̄g‖.

Next we bound ‖w − w̄‖2A from below. In order to avoid heavy notation, we abbreviate µ2k =
λmin(A, 2k). Then we can derive that

‖w − w̄‖2A =‖w − u+ u− w̄‖2A = ‖w − u‖2A + ‖u− w̄‖2A − 2〈g, u− w̄〉
ζ1
=‖w − u‖2A + ‖u− w̄‖2A + 2〈g, w̄〉
≥‖u− w̄‖2A − 2‖gS̄g‖‖w̄S̄g‖ ≥ µ2k‖u− w̄‖2 − 2‖gS̄g‖‖w̄S̄g‖
ζ2
≥µ2k‖uSu\S̄u‖

2 + µ2k‖w̄S̄g‖
2 − 2‖gS̄g‖‖w̄S̄g‖,

where “ζ1” is due to the fact 〈g, u〉 = 0 and in “ζ2” we have used w̄Su\S̄u = 0 and uS̄g = 0. Let us

now distinguish the two complementary cases of ‖w̄S̄g‖ ≤
3‖gS̄g‖
µ2k

and ‖w̄S̄g‖ >
3‖gS̄g‖
µ2k

respectively
in the following analysis.

Case I: Assume that ‖w̄S̄g‖ ≤
3‖gS̄g‖
µ2k

. In this case, we can further show the following bound:

‖w − w̄‖2A ≥µ2k‖uSu\S̄u‖
2 + µ2k‖w̄S̄g‖

2 − 2‖gS̄g‖‖w̄S̄g‖
ζ1
≥µ2k‖uSu\S̄u‖

2 −
‖gS̄g‖

2

µ2k

ζ2
≥µ2k(k − k̄)[u]2min −

k̄‖g‖2∞
µ2k

ζ3
≥ µ2k(k − k̄)

‖g‖2∞
ν2
− k̄‖g‖2∞

µ2k

=
µ2k‖g‖2∞

ν2

(
k − k̄ − ν2

µ2
2k

k̄

)
> 0,

where in the inequality “ζ1” we have used the basic fact ax2 − bx ≥ − b2

4a for any a, b > 0, in
“ζ2” we have used

√
‖x‖0[x]min ≤ ‖x‖ ≤

√
‖x‖0‖x‖∞, in “ζ3” we have used the condition of

[u]min ≥ ‖g‖∞ν , and the last inequality sign “>” is due to the condition k ≥ k̄ + 3ν2

µ2
2k
k̄. Therefore,

‖u− w̄‖2A − ‖w − w̄‖2A
‖w − w̄‖2A

≤
2‖w̄S̄g‖‖gS̄g‖

µ2k

ν2 ‖g‖2∞
(
k − k̄ − ν2

µ2
2k
k̄
) ζ1
≤

6‖gS̄g‖
2

µ2k

µ2k

ν2 ‖g‖2∞
(
k − k̄ − ν2

µ2
2k
k̄
)

≤ 6k̄‖g‖2∞
µ2

2k
ν2 ‖g‖2∞

(
k − k̄ − ν2

µ2
2k
k̄
) =

6ν2

µ2
2k
k̄

k − k̄ − ν2

µ2
2k
k̄
,
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where in the inequality “ζ1” we have again used the assumption ‖w̄S̄g‖ ≤
3‖gS̄g‖
µ2k

. Since k ≥
k̄ + 3ν2

µ2
2k
k̄, the above inequality immediately implies that

‖u− w̄‖2A − ‖w − w̄‖2A
‖w − w̄‖2A

≤
6ν2

µ2
2k
k̄

k − k̄ − ν2

µ2
2k
k̄
≤ 9ν2k̄

µ2
2k(k − k̄)

≤ 3ν

µ2k

√
3k̄

k − k̄
,

where in the last inequality we have used 3ν2k̄
µ2

2k(k−k̄)
< 1 which implies 3ν2k̄

µ2
2k(k−k̄)

≤
√

3ν2k̄
µ2

2k(k−k̄)
.

Case II: Assume that ‖w̄S̄g‖ >
3‖gS̄g‖
µ2k

. In this regime we can show that

‖w − w̄‖2A ≥ µ2k‖uSu\S̄u‖
2 + µ2k‖w̄S̄g‖

2 − 2‖gS̄g‖‖w̄S̄g‖ ≥ µ2k‖uSu\S̄u‖
2 +

µ2k

3
‖w̄S̄g‖

2

where in the last “≥” we have used the assumption ‖w̄S̄g‖ >
3‖gS̄g‖
µ2k

which implies ‖gS̄g‖‖w̄S̄g‖ ≤
µ2k
3 ‖w̄S̄g‖

2. Therefore, we obtain

‖u− w̄‖2A − ‖w − w̄‖2A
‖w − w̄‖2A

≤
2‖w̄S̄g‖‖gS̄g‖

µ2k‖uSu\S̄u‖2 + µ2k
3 ‖w̄S̄g‖2

ζ1
≤
√

3‖gS̄g‖
µ2k‖uSu\S̄u‖

≤
√

3k̄‖g‖∞
µ2k

√
k − k̄[u]min

ζ2
≤ ν

√
3k̄‖g‖∞

µ2k

√
k − k̄‖g‖∞

=
ν

µ2k

√
3k̄

k − k̄
<

3ν

µ2k

√
3k̄

k − k̄
,

where in the inequality “ζ1” we have invoked Lemma 16 with a = µ2k/3, b = 2‖gS̄g‖, c =

µ2k‖uSu\S̄u‖
2, and in “ζ2” we have used the condition of [u]min ≥ ‖g‖∞ν . By combining the results

in the above two cases we can see that the following bound holds when k ≥ k̄ + 3ν2

µ2
2k
k̄:

‖u− w̄‖2A ≤

1 +
3ν

µ2k

√
3k̄

k − k̄

 ‖w − w̄‖2A.
This concludes the proof.

B.2. Proof of Theorem 3

The following lemma from Yuan et al. (2018) gives a necessary condition on the k-sparse minimizer
of an objective function with restrictive smoothness.

Lemma 19 If f is L2k-smooth, then for the global k-sparse minimizer θ∗ = arg min‖θ‖0≤k f(θ)
we have

[∇f(θ∗)]S∗ = 0, [θ∗]min ≥
‖∇f(θ∗)‖∞

L2k
,

where S∗ = supp(θ∗).
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Proof [of Theorem 3] Let S = supp(HA,k(w)). By substantializing Lemma 19 with f(θ) =
1
2‖θ − w‖

2
A and L2k = λmax(A, 2k) we obtain

AS,:(HA,k(w)− w) = 0, [HA,k(w)]min ≥
‖A(HA,k(w)− w)‖∞

λmax(A, 2k)
.

Then invoking Lemma 1 to u = HA,k(w) with ν = λmax(A, 2k) yields

‖HA,k(w)− w̄‖2A ≤

1 +
3λmax(A, 2k)

λmin(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
Since we always have ‖HA,k(w) − w̄‖A ≤ 2‖w − w̄‖A and 1 + 3L2k

µ2k

√
3k̄
k−k̄ > 4 when k̄ < k <

k̄ +
3M2

2k

µ2
2k
k̄, the following bound naturally holds for any k > k:

‖HA,k(w)− w̄‖2A ≤ min

4, 1 +
3L2k

µ2k

√
3k̄

k − k̄

 ‖w − w̄‖2A.
This completes the proof.

B.3. Proof of Theorem 5

The following lemma gives a necessary condition on the k-sparse output of HTP algorithm after
sufficient iteration. It is essentially a counterpart of Lemma 19 for the stationary output of HTP.

Lemma 20 Assume that function f is L2k-smooth and µ2k-strongly convex. Let θ(t) be the output
of HTP when applied to estimating min‖θ‖0≤k f(θ) with learning rate η = 1

2L2k
. Let S(t) =

supp(θ(t)). Then

[∇f(θ(t))]S(t) = 0, [θ(t)]min ≥
‖∇f(θ(t))‖∞

2L2k

after at most

t =

⌊
4kL2k

µ2k
log

(
∆(0)

∆−∗

)⌋
+ 1

rounds of iteration, where ∆(0) = f(θ(0))− f(θ∗) and

∆−∗ = min
‖θ‖0≤k,supp(θ)6=supp(θ∗),f(θ)>f(θ∗)

[f(θ)− f(θ∗)] .

Proof Let θ(t) be the output of HTP when Algorithm 1 terminates at time instance t with S(t) =
S(t−1). The stationary equation [∇f(θ(t))]S(t) = 0 follows immediately from the debiasing step S2
of Algorithm 1. Assume otherwise that [θ(t)]min < ‖∇f(θ(t))‖∞

2L2k
. Since f is µ2k-strongly convex,

the optimality of θ(t) over S(t) together with S(t) = S(t−1) implies that θ(t) = θ(t−1). Then the
following holds for θ(t−1):

[∇f(θ(t−1))]S(t−1) = 0, [θ(t−1)]min <
‖∇f(θ(t−1))‖∞

2L2k
.
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Then according to the truncated gradient descent step S1 of Algorithm 1, S(t−1) must differ from
S(t) in at least one element with value [θ(t−1)]min, which contradicts the assumption. Therefore, it
must be true that [θ(t)]min ≥ ‖∇f(θ(t))‖∞

2L2k
when HTP terminates at time instance t.

Next we bound the total number of iteration steps required to achieve S(t) = S(t−1). To this
end, we assume that S(t) 6= S(t−1) for all t = 0, ..., before termination. From the step S2 we know
that [∇f(θ(t−1))]S(t−1) = 0. Let l := |S(t) \ S(t−1)| = |S(t−1) \ S(t)| ≤ k. By the step S1 we have
that S(t) \S(t−1) contains the top l (in magnitude) entries in∇f(θ(t−1)) while S(t−1) \S(t) contains
the bottom l entries in θ(t−1). Since S(t) 6= S(t−1), we have l ≥ 1. Then from the definition of θ̃(t)

the following inequality holds:

‖θ̃(t) − θ(t−1)‖ ≥ η‖[∇f(θ(t−1))]S(t)\S(t−1)‖. (9)

According to the definition of θ(t), we have f(θ(t)) ≤ f(θ̃(t)). Since f is L2k-smooth, it follows
that

f(θ(t))− f(θ(t−1)) ≤ f(θ̃(t))− f(θ(t−1))

≤〈∇f(θ(t−1)), θ̃(t) − θ(t−1)〉+
L2k

2
‖θ̃(t) − θ(t−1)‖2

ξ1
≤− 1

2η
‖θ̃(t) − θ(t−1)‖2 +

L2k

2
‖θ̃(t) − θ(t−1)‖2 = −1− ηL2k

2η
‖θ̃(t) − θ(t−1)‖2,

(10)

where ξ1 follows from the fact that θ̃(t) is the best k-support approximation to θ(t−1)−η∇f(θ(t−1))
such that

‖θ̃(t) − θ(t−1) + η∇f(θ(t−1))‖2 ≤ ‖θ(t−1) − θ(t−1) + η∇f(θ(t−1))‖2 = ‖η∇f(θ(t−1))‖2,

which implies 2η〈∇f(θ(t−1)), θ̃(t) − θ(t−1)〉 ≤ −‖θ̃(t) − θ(t−1)‖2. By combining (10) and (9) we
get

f(θ(t))− f(θ(t−1)) ≤ −(1− ηL2k)η

2
‖[∇f(θ(t−1))]S(t)\S(t−1)‖2. (11)

Let us now consider S∗ = supp(θ∗). From the µ2k-strong convexity of f we have

µ2k

2
‖θ∗ − θ(t−1)‖2 ≤ f(θ∗)− f(θ(t−1))− 〈θ∗ − θ(t−1),∇f(θ(t−1))〉

ξ1
≤ f(θ∗)− f(θ(t−1)) +

µ2k

2
‖θ∗ − θ(t−1)‖2 +

1

2µ2k
‖[∇f(θ(t−1))]F ∗\S(t−1)‖2,

where ξ1 follows from Cauchy-Schwartz inequality, ma2/2 + b2/(2m) ≥ ab for any m > 0, and
∇S(t−1)f(θ(t−1)) = 0. This implies

‖[∇f(θ(t−1))]F ∗\S(t−1)‖2 ≥ 2µ2k

[
f(θ(t−1))− f(θ∗)

]
.

Let l′ = |F ∗ \S(t−1)|. Obviously, we have l′ ≤ k. Based on the above arguments, it can be verified
that

k‖[∇f(θ(t−1))]S(t)\S(t−1)‖2 ≥ (l′/l)‖[∇f(θ(t−1))]S(t)\S(t−1)‖2

≥ ‖[∇f(θ(t−1))]F ∗\S(t−1)‖2 ≥ 2µ2k

[
f(θ(t−1))− f(θ∗)

]
.
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By setting η = 1
2L2k

and using (11) and (12) we get that

f(θ(t)) ≤ f(θ(t−1))− µ2k

4kL2k

[
f(θ(t−1))− f(θ∗)

]
.

Therefore, we get

f(θ(t))− f(θ∗) ≤
(

1− µ2k

4kL2k

)
(f(θ(t−1))− f(θ∗)).

Note that f(θ(t)) ≥ f(θ∗). By recursively using the above inequality we obtain.

f(θ(t))− f(θ∗) ≤
(

1− µ2k

4kL2k

)t
(f(θ(0))− f(θ∗)).

Therefore f(θ(t))− f(θ∗) ≤ ∆−∗ when t ≥ 4kL2k
µ2k

log
(

∆(0)

∆−∗

)
(note that ∆−? > 0). After that, we

have f(θ(t)) < f(θ−∗) and thus f(θ(t)) = f(θ∗). Then by invoking Lemma 19 we have

[∇f(θ(t))]S(t) = 0, [θ(t)]min ≥
‖∇f(θ(t))‖∞

2L2k

which in turn leads to S(t+1) = S(t) so that the algorithm terminates at t+ 1.

Now we are ready to prove the main result.
Proof [of Theorem 5] Let S = supp(HHTP

A,k (w)). By substantializing Lemma 20 with f(θ) =
1
2‖θ − w‖

2
A and L2k = λmax(A, 2k) we can show that the following two conditions hold

AS,:(HHTP
A,k (w)− w) = 0, [HHTP

A,k (w)]min ≥
‖A(HHTP

A,k (w)− w)‖∞
2λmax(A, 2k)

after Õ
(
kλmax(A,2k)
λmin(A,2k)

)
rounds of HTP iteration. Then by invoking Lemma 1 to u = HHTP

A,k (w) with

ν = 2λmax(A, 2k) we have the following holds for any k ≥ k̄ + 12λ2
max(A,2k)

λ2
min(A,2k)

k̄:

‖HA,k(w)− w̄‖2A ≤

1 +
6λmax(A, 2k)

λmin(A, 2k)

√
3k̄

k − k̄

 ‖w − w̄‖2A.
This concludes the proof.

Appendix C. Proofs of Main Results in Section 4

C.1. Proof of Theorem 7

Lemma 21 Consider the sparse least squares regression model in (2). Let S be an index set such
that |S| ≤ s and w̄ ⊆ S. Let wS = arg minsupp(w)⊆S F (w). Then for any δ ∈ (0, 1), with
probability at least 1− δ,

MSE(wS , w̄;X) ≤ O
(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
.
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Proof The lemma can be proved by using similar arguments to those for (Rigollet, 2015, Theorem
2.6) and thus we omit the details.

Now we can prove the main result.
Proof [of Theorem 7] Let S(t) = supp(w(t)) and S = supp(w̄) ∪ supp(ŵ`0) ∪ S(t). Define wS =
arg minsupp(w)⊆S F (w). Using Taylor expansion we can re-express the quadratic function F as

F (w) = F (wS) + 〈∇F (wS), w − wS〉+
1

2
(w − wS)>H(w − wS).

Based on Lemma 20 and the optimality of wS over S ⊇ S(t) we have

∇S(t)F (w(t)) = 0, [w(t)]min ≥
‖∇F (w(t))‖∞
2λmax(H, 2k)

≥ ‖∇SF (w(t))‖∞
2λmax(H, 2k)

=
‖HS,:(w

(t) − wS)‖∞
2λmax(H, 2k)

.

Let us consider the quadratic form 1
2(w−wS)H̃(w−wS) in which H̃ := HSS over the supporting

set S. Then the above implies that

H̃S(t),:(w
(t) − wS) = 0, [w(t)]min ≥

‖H̃(w(t) − wS)‖∞
2λmax(H, 2k)

.

Then by invoking Lemma 1 to u = w(t) with ν = 2λmax(H, 2k) we can shwo that the following
holds for any k ≥ k̄ + 12λ2

max(H,2k)
λ2

min(H,2k)
k̄ ≥ k̄ + 12λ2

max(H,2k)

λ2
min(H̃,2k)

k̄:

‖w(t) − w̄‖2H = ‖w(t) − w̄‖2
H̃
≤

1 +
6λmax(H, 2k)

λmin(H̃, 2k)

√
3k̄

k − k̄

 ‖wS − w̄‖2H̃
≤

1 +
6λmax(H, 2k)

λmin(H, 2k)

√
3k̄

k − k̄

 ‖wS − w̄‖2H
≤O

1 + κ(H, 2k)

√
k̄

k − k̄

(σ2k log(p/k)

n
+
σ2k

n
+
σ2 log(1/δ)

n

) ,

where in the last inequality we have used Lemma 21. This then implies the desired bound.

C.2. Proof of Theorem 9

The following simple lemma, which is an application of the tail bound from (Hsu et al., 2012),
controls the norm of a sub-Gaussian random vector.

Lemma 22 Let u = (u1, ..., us) be an s-dimensional zero-mean σ2-sub-Gaussian random vector.
Then for any δ ∈ (0, 1), with probability at least 1− δ

‖u‖2 ≤ σ2

(
s+ 2

√
s log

(
1

δ

)
+ 2 log

(
1

δ

))
.
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Proof By invoking (Hsu et al., 2012, Theorem 2.1) to u with identity scaling matrix we have that
for all t > 0,

P
(
‖u‖2 > σ2(s+ 2

√
st+ 2t)

)
≤ exp(−t).

The desired bound then follows readily from setting t = log(1/δ) in the above bound.

The following lemma is useful to our statistical analysis.

Lemma 23 For any δ ∈ (0, 1), the following bound holds with probability at least 1 − δ for all
index set S ⊆ {1, ..., p} with |S| ≤ s:

‖∇SF (w̄)‖2
H−1
SS
≤ O

(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
.

Proof Let S be an index set such that |S| ≤ s. Recall that Y = Xw̄ + ε and ∇SF (w̄) = 1
nX
>
:,Sε.

Then we can write

‖∇SF (w̄)‖2
H−1
SS

= (∇SF (w̄))>H−1
SS∇SF (w̄) =

1

n2
ε>X:,SH

−1
SSX

>
:,Sε =

1

n
‖ε̃S‖2, (12)

where ε̃S = U>S ε and US = 1√
n
X:,SH

−1/2
SS ∈ Rn×s is an orthonormal matrix as U>S US = Is×s.

Note that for any ‖v‖ = 1, ‖USv‖ = ‖v‖ = 1. Thus, for any r ∈ R,

E
[
exp(rε̃>S v)

]
= E

[
exp(rε>SUSv)

]
≤ exp

(
r2σ2

2

)
,

which indicates that ε̃S is a s-dimensional zero-mean σ2-sub-Gaussian vector. Then based on Lem-
ma 22, the following norm bound holds with probability at least 1− δ

‖ε̃S‖2 ≤ σ2

(
s+ 2

√
s log

(
1

δ

)
+ 2 log

(
1

δ

))
.

It follows from (12) that with probability at least 1− δ

‖∇SF (w̄)‖2
H−1
SS
≤ σ2

n

(
s+ 2

√
s log

(
1

δ

)
+ 2 log

(
1

δ

))
.

Let S = {S ⊆ {1, ..., p} : |S| = s} be the set of index set of cardinality s. It is standard to know
|S| =

(
p
s

)
≤
( ep
s

)s. Thus, by simple union probability and preserving leading terms we obtain that

‖∇SF (w̄)‖2
H−1
SS
≤σ

2

n

(
s+ 2

√
s2 log

(ep
s

)
+ s log

(
1

δ

)
+ 2s log

(ep
s

)
+ 2 log

(
1

δ

))

≤O
(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
holds with probability at least 1− δ.

The following key lemma characterizes the progress made in step of iteration.
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Lemma 24 Consider an index set S with |S| ≤ s and a vector w with supp(w) ⊆ S. Let w′ =

w−
(
H̃SS + γI

)−1
∇SF (w). Let w̄ be a sparse vector such that supp(w̄) ⊆ S. If ‖H − H̃‖ ≤ γ,

then the following inequality holds:

‖w′ − w̄‖H̃+γI ≤
(

1− µs
µs + 2γ

)
‖w − w̄‖H̃+γI + ‖∇SF (w̄)‖H−1

SS
.

Proof From the definition of w′ we have

w′ − w̄ =w − w̄ −
(
H̃SS + γI

)−1
∇SF (w)

=w − w̄ −
(
H̃SS + γI

)−1
(∇SF (w)−∇SF (w̄)) +

(
H̃SS + γI

)−1
∇SF (w̄)

=

(
I −

(
H̃SS + γI

)−1
HSS

)
(w − w̄) +

(
H̃SS + γI

)−1
∇SF (w̄).

By multiplying (H̃SS + γI)1/2 on both sides of the above recurrent form we get

(H̃SS + γI)1/2(w′ − w̄) =
(
I − (H̃SS + γI)−1/2HSS(H̃SS + γI)−1/2

)
(H̃SS + γI)1/2(w − w̄)

+
(
H̃SS + γI

)−1/2
∇SF (w̄).

It follows readily from the triangle and Cauchy-Schwarz inequalities that

‖w′ − w̄‖H̃SS+γI

≤
∥∥∥I − (H̃SS + γI)−1/2HSS(H̃SS + γI)−1/2

∥∥∥ ‖w − w̄‖H̃SS+γI +

∥∥∥∥(H̃SS + γI
)−1/2

∇SF (w̄)

∥∥∥∥
≤
∥∥∥I − (H̃SS + γI)−1/2HSS(H̃SS + γI)−1/2

∥∥∥ ‖w − w̄‖H̃SS+γI + ‖∇SF (w̄)‖H−1
SS

ζ1
≤
(

1− µs
µs + 2γ

)
‖w − w̄‖H̃SS+γI + ‖∇SF (w̄)‖H−1

SS
,

where in the inequality “ζ1” we have used Lemma 17 in view of ‖H̃SS −HSS‖ ≤ ‖H̃ −H‖ ≤ γ.
Since w,w′, w̄ are all vectors with supporting set inside S, we must have ‖w′ − w̄‖H̃SS+γI =
‖w′ − w̄‖H̃+γI and ‖w − w̄‖H̃SS+γI = ‖w − w̄‖H̃+γI . Then based on the above inequality we
further obtain that

‖w′ − w̄‖H̃+γI ≤
(

1− µs
µs + 2γ

)
‖w − w̄‖H̃+γI + ‖∇SF (w̄)‖H−1

SS
.

This proves the desired bound.

Now we are in the position to prove the main result.
Proof [of Theorem 9] Let S(t) = supp(w(t)) and S̄ = supp(w̄). Consider S = S(t−1) ∪ S(t) ∪ S̄.
Let s = 2k + k̄, Ls = λmax(H, s) and µs = λmin(H, s) . Let us define ŵ(t) = w(t−1) −(
H̃SS + γI

)−1
∇SF (w(t−1)). By invoking Lemma 24 we get

‖ŵ(t) − w̄‖H̃+γI ≤
(

1− µs
µs + 2γ

)
‖w(t−1) − w̄‖H̃+γI + ‖∇SF (w̄)‖H−1

SS
. (13)
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Since ŵ(t) is the minimizer of the quadratic function P (t−1)(w) restricted on the supporting set S,
it is easy to verify that for any w with supp(w) ⊆ S,

P (t−1)(w) =
1

2
(w − ŵ(t))>

(
H̃SS + γISS

)
(w − ŵ(t)) + constant

=
1

2
(w − ŵ(t))>

(
H̃ + γI

)
(w − ŵ(t)) + constant,

where the term constant is not relying on w(t−1). Then, the definition of w(t) implies that

w(t) = arg min
‖w‖0≤k

P (t−1)(w) = arg min
‖w‖0≤k,supp(w)⊆S

1

2
‖w − ŵ(t)‖2

H̃+γI
.

Applying Theorem 3 to the above quadratic form over S we get

‖w(t) − w̄‖H̃+γI ≤min

2,

√√√√
1 +

3(λmax(H̃, s) + γ)

λmin(H̃, s) + γ

√
3k̄

k − k̄

 ‖ŵ(t) − w̄‖H̃+γI

ζ1
≤min

2,

√√√√
1 +

3(Ls + 2γ)

µs

√
3k̄

k − k̄

 ‖ŵ(t) − w̄‖H̃+γI

≤ρ
(

1− µs
µs + 2γ

)
‖w(t−1) − w̄‖H̃+γI + ρ‖∇SF (w̄)‖H−1

SS
,

where ρ =

√
1 + 3(Ls+2γ)

µs

√
3k̄
k−k̄ , in “ζ1” we have used Lemma 18 and in the last inequality we

have used (13). By choosing k ≥
(

1 + 108(Ls+2γ)2(µs+2γ)2

µ4
s

)
k̄, we have ρ ≤

√
1 + µs

2(µs+2γ) ≤
1 + µs

2(µs+2γ) ≤ 1.5. Then it follows from the previous inequality and Lemma 23 that the following
holds with probability at least 1− δ:

‖w(t) − w̄‖H̃+γI ≤
(

1− µs
2(µs + 2γ)

)
‖w(t−1) − w̄‖H̃+γI +O (∆(n, s, p, δ)) ,

where the quantity

∆(n, s, p, δ) := σ

√
s log(p/s)

n
+ σ

√
s

n
+ σ

√
log(1/δ)

n

abbreviates the error term. The above inequality then leads to that with probability at least 1− δ

‖w(t) − w̄‖H̃+γI ≤
(

1− µs
2(µs + 2γ)

)t
‖w(0) − w̄‖H̃+γI +O

(
(µs + γ)

µs
∆(n, s, p, δ)

)
.

Based on fact (1− x)t ≤ exp {−xt} and H � H̃ + γI we can show that

‖w(t) − w̄‖H ≤ ‖w(t) − w̄‖H̃+γI ≤ O
(
µs + γ

µs
∆(n, s, p, δ)

)
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when

t ≥ O

(
(µs + γ)

µs
log

(
µs‖w(0) − w̄‖H̃+γI

(µs + γ)∆(n, s, p, δ)

))
.

The above then implies the desired result.

C.3. Proof of Corollary 11

The following lemma, which is based on a matrix concentration bound in Tropp (2012), shows that
the Hessian of the quadratic function F̃ is close to that of F when the subset size m is sufficiently
large. A similar result appears in Shamir et al. (2014).

Lemma 25 Assume that ‖xi‖ ≤ L holds for all i ∈ [n]. Then with probability at least 1 − δ over
the m data points drawn to construct F̃ , the following bound holds:

‖H̃ −H‖ ≤ L
√

32 log(p/δ)

m
.

Based on this lemma, we can prove the corollary.
Proof [of Corollary 11] Since ‖xi‖ ≤ 1, we know from Lemma 25 that ‖H̃ − H‖ ≤ γ =√

32 log(2p/δ)
m holds with probability at least 1− δ/2. Provided that m = O

(
λ−2

min(H, s) log(p/δ)
)
,

we have γ = O(λmin(H, s)). Then Theorem 9 shows that with probability at least 1 − δ/2, Algo-
rithm 2 will output w(t) satisfying

MSE(w(t), w̄;X) ≤ O
(
σ2s log(p/s)

n
+
σ2s

n
+
σ2 log(1/δ)

n

)
after t ≥ Õ (1) rounds of iteration. The desired result then follows readily by union probability.

C.4. Proof of Corollary 13

Proof From Corollary 11 we know that with probability 1 − δ, the outer-loop iteration complex-
ity of PC-HTP is of the order Õ(1). For each outer-loop iteration, two gradient vectors of F
and F̃ are computed via sparse matrix-vector product with complexity O(nk) to construct the
quadratic form in (7), which is then solved via HTP. From Theorem 5 we know that HTP need-
s Õ

(
kκ(H̃ + γI, 2k)

)
≤ Õ (kκ(H, 2k)) rounds of iteration to converge. In each iteration, the

computational complexity is dominated by local batch gradient computation (see step S1 in Algo-
rithm 1) and solving a linear system (see step S2 in Algorithm 1), which are respectively of the
order O (mk) = O

(
kλ−2

min(H, s) log(p/δ)
)

and O
(
k2
√
κ(H, 2k)

)
. Combing the inner-loop and

outer-loop complexity bounds yields the following overall computational complexity bound

Õ
(
nk + kκ(H, 2k)

(
mk + k2

√
κ(H, 2k)

))
,

which holds with probability at least 1− δ.
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