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Abstract

Intelligent agents should be able to learn useful
representations by observing changes in their en-
vironment. We model such observations as pairs
of non-i.i.d. images sharing at least one of the
underlying factors of variation. First, we theoret-
ically show that only knowing how many factors
have changed, but not which ones, is sufficient
to learn disentangled representations. Second, we
provide practical algorithms that learn disentan-
gled representations from pairs of images without
requiring annotation of groups, individual factors,
or the number of factors that have changed. Third,
we perform a large-scale empirical study and
show that such pairs of observations are sufficient
to reliably learn disentangled representations on
several benchmark data sets. Finally, we evaluate
our learned representations and find that they are
simultaneously useful on a diverse suite of tasks,
including generalization under covariate shifts,
fairness, and abstract reasoning. Overall, our
results demonstrate that weak supervision enables
learning of useful disentangled representations
in realistic scenarios.

1. Introduction

A recent line of work argued that representations which are
disentangled offer useful properties such as interpretabil-
ity (Adel et al., 2018; Bengio et al., 2013; Higgins et al.,
2017a), predictive performance (Locatello et al., 2019b;
2020), reduced sample complexity on abstract reasoning
tasks (van Steenkiste et al., 2019), and fairness (Locatello
et al., 2019a; Creager et al., 2019). The key underlying
assumption is that high-dimensional observations x (such
as images or videos) are in fact a manifestation of a
low-dimensional set of independent ground-truth factors
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Figure 1. (left) The proposed generative model. We observe pairs
of observations (x1,x2) sharing a random subset S of latent fac-
tors: x1 is generated by z; x2 is generated by combining the
subset S of z and resampling the remaining entries (modeled by z̃).
(right) Real-world example of the model: A pair of images from
MPI3D (Gondal et al., 2019) where all factors are shared except
the first degree of freedom and the background color (red values).
This corresponds to a setting where few factors in a causal genera-
tive model change, which, by the independent causal mechanisms

principle, leaves the others invariant (Schölkopf et al., 2012).

of variation z (Locatello et al., 2019b; Bengio et al.,
2013; Tschannen et al., 2018). The goal of disentangled
representation learning is to learn a function r(x) mapping
the observations to a low-dimensional vector that contains
all the information about each factor of variation, with
each coordinate (or a subset of coordinates) containing
information about only one factor. Unfortunately, Locatello
et al. (2019b) showed that the unsupervised learning of
disentangled representations is theoretically impossible
from i.i.d. observations without inductive biases. In
practice, they observed that unsupervised models exhibit
significant variance depending on hyperparameters and
random seed, making their training somewhat unreliable.

On the other hand, many data modalities are not observed
as i.i.d. samples from a distribution (Dayan, 1993; Storck
et al., 1995; Hochreiter & Schmidhuber, 1999; Bengio
et al., 2013; Peters et al., 2017; Thomas et al., 2017;
Schölkopf, 2019). Changes in natural environments,
which typically correspond to changes of only a few
underlying factors of variation, provide a weak supervision
signal for representation learning algorithms (Földiák,
1991; Schmidt et al., 2007; Bengio, 2017; Bengio et al.,
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2019). State-of-the-art weakly-supervised disentanglement
methods (Bouchacourt et al., 2018; Hosoya, 2019; Shu et al.,
2020) assume that observations belong to annotated groups
where two things are known at training time: (i) the relation
between images in the same group, and (ii) the group each
image belongs to. Bouchacourt et al. (2018); Hosoya (2019)
consider groups of observations differing in precisely one
of the underlying factors. An example of such a group are
images of a given object with a fixed orientation, in a fixed
scene, but of varying color. Shu et al. (2020) generalized
this notion to other relations (e.g., single shared factor,
ranking information). In general, precise knowledge of the
groups and their structure may require either explicit human
labeling or at least strongly controlled acquisition of the
observations. As a motivating example, consider the video
feedback of a robotic arm. In two temporally close frames,
both the manipulated objects and the arm may have changed
their position, the objects themselves may be different, or
the lighting conditions may have changed due to failures.

In this paper, we consider learning disentangled represen-
tations from pairs of observations which differ by a few
factors of variation (Bengio, 2017; Schmidt et al., 2007;
Bengio et al., 2019) as in Figure 1. Unlike previous work on
weakly-supervised disentanglement, we consider the realis-
tic and broadly applicable setting where we observe pairs of
images and have no additional annotations: It is unknown
which and how many factors of variation have changed. In
other words, we do not know which group each pair belongs
to, and what is the precise relation between the two images.
The only condition we require is that the two observations
are different and that the change in the factors is not dense.
The key contributions of this paper are:

• We present simple adaptive group-based disentanglement
methods which do not require annotations of the groups,
as opposed to (Bouchacourt et al., 2018; Hosoya, 2019;
Shu et al., 2020). Our approach is readily applicable to a
variety of settings where groups of non-i.i.d. observations
are available with no additional annotations.

• We theoretically show that identifiability is possible from
non-i.i.d. pairs of observations under weak assumptions.
Our proof motivates the setup we consider, which is iden-
tifiable as opposed to the standard one, which was proven
to be non-identifiable (Locatello et al., 2019b). Further,
we use theoretical arguments to inform the design of
our algorithms, recover existing group-based VAE meth-
ods (Bouchacourt et al., 2018; Hosoya, 2019) as special
cases, and relax their impractical assumptions.

• We perform a large-scale reproducible experimental
study training over 15 000 disentanglement models and
over one million downstream classifiers1 on five different
data sets, one of which consisting of real images of a
1Our experiments required ⇠5.85 GPU years (NVIDIA P100).

robotic platform (Gondal et al., 2019).

• We demonstrate that one can reliably learn disentangled
representations with weak supervision only, without

relying on supervised disentanglement metrics for model

selection, as done in previous works. Further, we show
that these representations are useful on a diverse suite
of downstream tasks, including a novel experiment
targeting strong generalization under covariate shifts,
fairness (Locatello et al., 2019a) and abstract visual
reasoning (van Steenkiste et al., 2019).

2. Related work

Recovering independent components of the data generating
process is a well-studied problem in machine learning. It
has roots in the independent component analysis (ICA) liter-
ature, where the goal is to unmix independent non-Gaussian
sources of a d-dimensional signal (Comon, 1994). Crucially,
identifiability is not possible in the nonlinear case from i.i.d.
observations (Hyvärinen & Pajunen, 1999). Recently, the
ICA community has considered weak forms of supervision
such as temporal consistency (Hyvarinen & Morioka,
2016; 2017), auxiliary supervised information (Hyvarinen
et al., 2019; Khemakhem et al., 2019), and multiple
views (Gresele et al., 2019). A parallel thread of work has
studied distribution shifts by identifying changes in causal
generative factors (Zhang et al., 2015; 2017; Huang et al.,
2017), which is linked to a causal view of disentanglement
(Suter et al., 2019; Schölkopf, 2019).

On the other hand, more applied machine learning ap-
proaches have experienced the opposite shift. Initially, the
community focused on more or less explicit and task de-
pendent supervision (Reed et al., 2014; Yang et al., 2015;
Kulkarni et al., 2015; Cheung et al., 2014; Mathieu et al.,
2016; Narayanaswamy et al., 2017). For example, a number
of works rely on known relations between the factors of
variation (Karaletsos et al., 2015; Whitney et al., 2016; Frac-
caro et al., 2017; Denton & Birodkar, 2017; Hsu et al., 2017;
Yingzhen & Mandt, 2018; Locatello et al., 2018; Ridgeway
& Mozer, 2018; Chen & Batmanghelich, 2020) and disen-
tangling motion and pose from content (Hsieh et al., 2018;
Fortuin et al., 2019; Deng et al., 2017; Goroshin et al., 2015).

Recently, there has been a renewed interest in the unsu-
pervised learning of disentangled representations (Higgins
et al., 2017a; Burgess et al., 2018; Kim & Mnih, 2018; Chen
et al., 2018; Kumar et al., 2018) along with quantitative eval-
uation (Kim & Mnih, 2018; Eastwood & Williams, 2018;
Kumar et al., 2018; Ridgeway & Mozer, 2018; Duan et al.,
2019). After the theoretical impossibility result of Locatello
et al. (2019b), the focus shifted back to semi-supervised (Lo-
catello et al., 2020; Sorrenson et al., 2020; Khemakhem
et al., 2019) and weakly-supervised approaches (Boucha-
court et al., 2018; Hosoya, 2019; Shu et al., 2020).
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3. Generative models

We first describe the generative model commonly used in
the disentanglement literature, and then turn to the weakly-
supervised model used in this paper.

Unsupervised generative model First, a z is drawn from a
set of independent ground-truth factors of variation p(z) =Q

i p(zi). Second, the observations are obtained as draws
from p(x|z). The factors of variation zi do not need to be
one-dimensional but we assume so to simplify the notation.

Disentangled representations The goal of disentangle-
ment learning is to learn a mapping r(x) where the effect
of the different factors of variation is axis-aligned with dif-
ferent coordinates. More precisely, each factor of variation
zi is associated with exactly one coordinate (or group of
coordinates) of r(x) and vice-versa (and the groups are non-
overlapping). As a result, varying one factor of variation and
keeping the others fixed results in a variation of exactly one
coordinate (group of coordinates) of r(x). Locatello et al.
(2019b) theoretically showed that learning such a mapping r
is theoretically impossible without inductive biases or some
other, possibly weak, form of supervision.

Weakly-supervised generative model We study learning
of disentangled image representations from paired obser-
vations, for which some (but not all) factors of variation
have the same value. This can be modeled as sampling two
images from the causal generative model with an interven-
tion (Peters et al., 2017) on a random subset of the factors of
variation. Our goal is to use the additional information given
by the pair (as opposed to a single image) to learn a disen-
tangled image representations. We generally do not assume
knowledge of which or how many factors are shared, i.e.,
we do not require controlled acquisition of the observations.
This observation model applies to many practical scenarios.
For example, we may want to learn a disentangled repre-
sentation of a robot arm observed through a camera: In two
temporally close frames some joint angles will likely have
changed, but others will have remained constant. Other
factors of variation may also change independently of the
actions of the robot. An example can be seen in Figure 1
(right) where the first degree of freedom of the arm and the
color of the background changed. More generally this obser-
vation model applies to many natural scenes with moving
objects (Földiák, 1991). More formally, we consider the fol-
lowing generative model. For simplicity of exposition, we
assume that the number of factors k in which the two obser-
vations differ is constant (we present a strategy to deal with
varying k in Section 4.1). The generative model is given by

p(z) =
dY

i=1

p(zi), p(z̃) =
kY

i=1

p(z̃i), S ⇠ p(S) (1)

x1 = g?(z), x2 = g?(f(z, z̃, S)), (2)

where S is the subset of shared indices of size
d � k sampled from a distribution p(S) over the set
S = {S ⇢ [d] : |S| = d � k}, and the p(zi) and p(z̃j) are
all identical. The generative mechanism is modeled using
a function g? : Z ! X , with Z = supp(z) ✓ Rd and
X ⇢ Rm, which maps the latent variable to observations
of dimension m, typically m � d. To make the relation
between x1 and x2 explicit, we use a function f obeying

f(z, z̃, S)S = zS and f(z, z̃, S)S̄ = z̃

with S̄ = [d]\S. Intuitively, to generate x2, f selects
entries from z with index in S and substitutes the remaining
factors with z̃, thus ensuring that the factors indexed by
S are shared in the two observations. The generative
model (1)–(2) does not model additive noise; we assume
that noise is explicitly modeled as a latent variable and
its effect is manifested through g? as done by (Bengio
et al., 2013; Locatello et al., 2019b; Higgins et al., 2018;
2017a; Suter et al., 2019; Reed et al., 2015; LeCun et al.,
2004; Kim & Mnih, 2018; Gondal et al., 2019). For
simplicity, we consider the case where groups consisting
of two observations (pairs), but extensions to more than two
observations are possible (Gresele et al., 2019).

4. Identifiability and algorithms

First, we show that, as opposed to the unsupervised case (Lo-
catello et al., 2019b), the generative model (1)–(2) is iden-
tifiable under weak additional assumptions. Note that the
joint distribution of all random variables factorizes as

p(x1,x2, z, z̃, S) = p(x1|z)p(x2|f(z, z̃, S))p(z)p(z̃)p(S)
(3)

where the likelihood terms have the same distribution, i.e.,
p(x1|z̄) = p(x2|z̄), 8z̄ 2 supp(p(z)). We show that to
learn a disentangled generative model of the data p(x1,x2)
it is therefore sufficient to recover a factorized latent distribu-
tion with factors p(ẑi) = p(ˆ̃zj), a corresponding likelihood
q(x1|·) = q(x2|·), as well as a distribution p(Ŝ) over S,
which together satisfy the constraints of the true generative
model (1)–(2) and match the true p(x1,x2) after marginal-
ization over ẑ, ˆ̃z, Ŝ when substituted into (3).
Theorem 1. Consider the generative model (1)–(2). Fur-

ther assume that p(zi) = p(z̃i) are continuous distributions,

p(S) is a distribution over S s.t. for S, S0 ⇠ p(S) we have

P (S \ S0 = {i}) > 0, 8i 2 [d]. Let g? : Z ! X in (2)
be smooth and invertible on X with smooth inverse (i.e., a

diffeomorphism). Given unlimited data from p(x1,x2) and

the true (fixed) k, consider all tuples (p(ẑi), q(x1|ẑ), p(Ŝ))
obeying these assumptions and matching p(x1,x2) after

marginalization over ẑ, ˆ̃z, Ŝ when substituted in (3). Then,

the posteriors q(ẑ|x1) = q(x1|ẑ)p(ẑ)/p(x1) are disentan-

gled in the sense that the aggregate posteriors q(ẑ) =R
q(ẑ|x1)p(x1)dx1 =

RR
q(ẑ|x1)p(x1|z)p(z)dzdx1 are



Weakly-Supervised Disentanglement Without Compromises

coordinate-wise reparameterizations of the ground-truth

prior p(z) up to a permutation of the indices of z.

Discussion Under the assumptions of this theorem, we
established that all generative models that match the
true marginal over the observations p(x1,x2) must be
disentangled. Therefore, constrained distribution matching
is sufficient to learn disentangled representations. Formally,
the aggregate posterior q(ẑ) is a coordinate-wise reparam-
eterization of the true distribution of the factors of variation
(up to index permutations). In other words, there exists a
one-to-one mapping between every entry of z and a unique
matching entry of ẑ, and thus a change in a single coordinate
of z implies a change in a single matching coordinate
of ẑ (Bengio et al., 2013). Changing the observation
model from single i.i.d. observations to non-i.i.d. pairs of
observations generated according to the generative model
(1)–(2) allows us to bypass the non-identifiability result
of (Locatello et al., 2019b). Our result requires strictly
weaker assumptions than the result of Shu et al. (2020) as we
do not require group annotations, but only knowledge of k.
As we shall see in Section 4.1, k can be cheaply and reliably
estimated from data at run-time. Although the weak assump-
tions of Theorem 1 may not be satisfied in practice, we will
show that the proof can inform practical algorithm design.

4.1. Practical adaptive algorithms

We conceive two �-VAE (Higgins et al., 2017a) variants
tailored to the weakly-supervised generative model (1)–(2)
and a selection heuristic to deal with unknown and random
k. We will see that these simple models can very reliably
learn disentangled representations.

The key differences between theory and practice are that:
(i) we use the ELBO and amortized variational inference
for distribution matching (the true and learned distributions
will not exactly match after training), (ii) we have access
to a finite number of data only, and (iii) the theory assumes
known, fixed k, but k might be unknown and random.

Enforcing the structural constraints Here we present
a simple structure for the variational family that allows
us to tractably perform approximate inference on the
weakly-supervised generative model. First note that the
alignment constraints imposed by the generative model (see
(7) and (8) evaluated for g = g? in Appendix A) imply for
the true posterior

p(zi|x1) = p(zi|x2) 8i 2 S, (4)
p(zi|x1) 6= p(zi|x2) 8i 2 S̄, (5)

(with probability 1) and we want to enforce these constraints
on the approximate posterior q�(ẑ|x) of our learned model.
However, the set S is unknown. To obtain an estimate Ŝ
of S we therefore choose for every pair (x1,x2) the d� k

coordinates with the smallest DKL(q�(ẑi|x1)||q�(ẑi|x2)).
To impose the constraint (4) we then replace each shared
coordinate with some average a of the two posteriors

q̃�(ẑi|x1) = a(q�(ẑi|x1), q�(ẑi|x2)) 8i 2 Ŝ,

q̃�(ẑi|x1) = q�(ẑi|x1) else,

and obtain q̃�(zi|x2) in analogous manner. As we later
simply use the averaging strategies of the Group-VAE
(GVAE) (Hosoya, 2019) and the Multi Level-VAE
(ML-VAE) (Bouchacourt et al., 2018), we term variants
of our approach which infers the groups and their prop-
erties adaptively Adaptive-Group-VAE (Ada-GVAE) and
Adaptive-ML-VAE (Ada-ML-VAE), depending on the
choice of the averaging function a. We then optimize the
following variant of the �-VAE objective

max
�,✓

E(x1,x2)Eq̃�(ẑ|x1) log(p✓(x1|ẑ))

+ Eq̃�(ẑ|x2) log(p✓(x2|ẑ))
� �DKL (q̃�(ẑ||x1)|p(ẑ))
� �DKL (q̃�(ẑ||x2)|p(ẑ)) , (6)

where � � 1 (Higgins et al., 2017a). The advantage of this
averaging-based implementation of (4), over implementing
it, for instance, via a DKL-term that encourages the distri-
butions of the shared coordinates Ŝ to be similar, is that av-
eraging imposes a hard constraint in the sense that q�(ẑ|x1)
and q�(ẑ|x2) can jointly encode only one value per shared
coordinate. This in turn implicitly enforces the constraint
(5) as the non-shared dimensions need to be efficiently used
to encode the non-shared factors of x1 and x2.

We emphasize that the objective (6) is a simple modification
of the �-VAE objective and is very easy to implement. Fi-
nally, we remark that invoking Theorem 4 of (Khemakhem
et al., 2019), we achieve consistency under maximum like-
lihood estimation up to the equivalence class in our Theo-
rem 1, for � = 1 and in the limit of infinite data and capacity.

Inferring k In the (practical) scenario where k is unknown,
we use the threshold

⌧ =
1

2
(max

i
�i +min

i
�i),

where �i = DKL(q�(ẑi|x1)||q�(ẑi|x2)), and average the
coordinates with �i < ⌧ . This heuristic is inspired by the
“elbow method” (Ketchen & Shook, 1996) for model selec-
tion in k-means clustering and k-singular value decompo-
sition and we found it to work surprisingly well in practice
(see the experiments in Section 5). This estimate relies
on the assumption that not all factors have changed. All
our adaptive methods use this heuristic. Although a formal
recovery argument cannot be made for arbitrary data sets,
inductive biases may limit the impact of an approximate
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k in practice. We further remark that this heuristic always
yields the correct k if the encoder is disentangled.

Relation to prior work Closely related to the proposed
objective (6) the GVAE of Hosoya (2019) and the ML-VAE
of Bouchacourt et al. (2018) assume S is known and
implement a using different averaging choices. Both
assume Gaussian approximate posteriors where µj ,⌃j are
the mean and variance of q(ẑS |xj) and µ,⌃ are the mean
and variance, of q̃(ẑS |xj). For the coordinates in S, the
GVAE uses a simple arithmetic mean (µ = 1

2 (µ1 + µ2) and
⌃ = 1

2 (⌃1 + ⌃2)) and the ML-VAE takes the product of
the encoder distributions, with µ,⌃ taking the form:

⌃�1 = ⌃�1
1 + ⌃�1

2 , µT = (µT
1 ⌃

�1
1 + µT

2 ⌃
�1
2 )⌃.

Our approach critically differs in the sense that S is not
known and needs to be estimated for every pair of images.

Recent work combines non-linear ICA with disentan-
glement (Khemakhem et al., 2019; Sorrenson et al.,
2020). Critically, these approaches are based on the setup
of Hyvarinen et al. (2019) which requires access to label
information u such that p(z|u) factorizes as

Q
i p(zi|u).

In contrast, we base our work on the setup of Gresele
et al. (2019), which only assumes access to two sufficiently

distinct views of the latent variable. Shu et al. (2020) train
the same type of generative models over paired data but use
a GAN objective where inference is not required. However,
they require known and fixed k as well as annotations of
which factors change in each pair.

5. Experimental results

Experimental setup We consider the setup of Locatello
et al. (2019b). We use the five data sets where the
observations are generated as deterministic functions of
the factors of variation: dSprites (Higgins et al., 2017a),
Cars3D (Reed et al., 2015), SmallNORB (LeCun et al.,
2004), Shapes3D (Kim & Mnih, 2018), and the real-world
robotics data set MPI3D (Gondal et al., 2019). Our
unsupervised baselines correspond to a cohort of 9000
unsupervised models (�-VAE (Higgins et al., 2017a),
AnnealedVAE (Burgess et al., 2018), Factor-VAE (Kim &
Mnih, 2018), �-TCVAE (Chen et al., 2018), DIP-VAE-I and
II (Kumar et al., 2018)), each with the same six hyperparam-
eters from Locatello et al. (2019b) and 50 random seeds.

To create data sets with weak supervision from the existing
disentanglement data sets, we first sample from the discrete
z according to the ground-truth generative model (1)–(2).
Then, we sample k factors of variation that should not be
shared by the two images and re-sample those coordinates to
obtain z̃. This ensures that each image pair differs in at most
k factors of variation. For k we consider the range from 1 to
d� 1. This last setting corresponds to the case where all but

one factor of variation are re-sampled. We study both the
case where k is constant across all pairs in the data set and
where k is sampled uniformly in the range [d� 1] for every
training pair (k = Rnd in the following). Unless specified
otherwise, we aggregate the results for all values of k.

For each data set, we train four weakly-supervised methods:
Our adaptive and vanilla (group-supervision) variants of
GVAE (Hosoya, 2019) and ML-VAE (Bouchacourt et al.,
2018). For each approach we consider six values for the
regularization strength and 10 random seeds, training a total
of 6000 weakly-supervised models. We perform model
selection using the weakly-supervised reconstruction loss
(i.e., the sum of the first two terms in (6))2. We stress that
we do not require labels for model selection.

To evaluate the representations, we consider the disen-
tanglement metrics in Locatello et al. (2019b): BetaVAE

score (Higgins et al., 2017a), FactorVAE score (Kim
& Mnih, 2018), Mutual Information Gap (MIG) (Chen
et al., 2018), Modularity (Ridgeway & Mozer, 2018), DCI

Disentanglement (Eastwood & Williams, 2018) and SAP

score (Kumar et al., 2018). To directly compare the disen-
tanglement produced by different methods, we report the
DCI Disentanglement (Eastwood & Williams, 2018) in the
main text and defer the plots with the other scores to the
appendix as the same conclusions can be drawn based on
these metrics. Appendix B contains full implementation
details.

5.1. Is weak supervision enough for disentanglement?

In Figure 2, we compare the performance of the weakly-
supervised methods with k = Rnd against the unsupervised
methods. Unlike in unsupervised disentanglement with
�-VAEs where � � 1 is common, we find � = 1 (the
ELBO) performs best in most cases. We clearly observe that
weakly-supervised models outperform the unsupervised
ones. In Figure 6 in the appendix, we further observe that
they are competitive even if we allow fully supervised
model selection on the unsupervised models. The Ada-
GVAE performs similarly to the Ada-ML-VAE. For this
reason, we focus the following analysis on the Ada-GVAE,
and include Ada-ML-VAE results in Appendix C.

Summary With weak supervision, we reliably learn disen-
tangled representations that outperform unsupervised ones.
Our representations are competitive even if we perform fully
supervised model selection on the unsupervised models.

5.2. Are our methods adaptive to different values of k?

In Figure 3 (left), we report the performance of Ada-GVAE
without model selection for different values of k on MPI3D

2In Figure 9 in the appendix, we show that the training loss and
the ELBO correlate similarly with disentanglement.
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Figure 2. Our adaptive variants of the group-based disentanglement methods (models 6 and 7) significantly and consistently outperform
unsupervised methods. In particular, the Ada-GVAE consistently yields the same or better performance than the Ada-ML-VAE. In
this experiment, we consider the case where the number of shared factors of variation is random and different for every pair with high
probability (k = Rnd). Legend: 0=�-VAE, 1=FactorVAE, 2=�-TCVAE, 3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE, 6=Ada-ML-
VAE, 7=Ada-GVAE

Figure 3. (left) Performance of the Ada-GVAE with different k on
MPI3D. The algorithm adapts well to the unknown k and benefits
from sparser changes. (center and right) Comparison of Ada-ML-
VAE with the vanilla ML-VAE which assumes group knowledge.
We note that group knowledge may improve performance (center)
but can also hurt when it is incomplete (right).

(see Figure 10 in the appendix for the other data sets). We
observe that Ada-GVAE is indeed adaptive to different val-
ues of k and it achieves better performance when the change
between the factors of variation is sparser. Note that our
method is agnostic to the sharing pattern between the image
pairs. In applications where the number of shared factors is
known to be constant, the performance may thus be further
improved by injecting this knowledge into the inference
procedure.

Summary Our approach makes no assumption of which
and how many factors are shared and successfully adapts to
different values of k. The sparser the difference on the fac-
tors of variation, the more effective our method is in using
weak supervision and learning disentangled representations.

5.3. Supervision-performance trade-offs

The case k = 1 where we actually know which fac-
tor of variation is not shared was previously considered
in (Bouchacourt et al., 2018; Hosoya, 2019; Shu et al., 2020).
Clearly, this additional knowledge should lead to improve-
ments over our method. On the other hand, this information
may be correct but incomplete in practice: For every pair
of images, we know about one factor of variation that has
changed but it may not be the only one. We therefore also
consider the setup where k = Rnd but the algorithm is only
informed about one factor. Note that the original GVAE
assumes group knowledge, so we directly compare its
performance with our Ada-GVAE. We defer the comparison

with ML-VAE (Bouchacourt et al., 2018) and with the GAN-
based approaches of (Shu et al., 2020) to Appendix C.3.

In Figure 3 (center and right), we observe that when k =
1, the knowledge of which factor was changed generally
improves the performance of weakly-supervised methods
on MPI3D. On the other hand, the GVAE is not robust to
incomplete knowledge as its performance degrades when
the factor that is labeled as non-shared is not the only one.
The performance degradation is stronger on the data sets
with more factors of variation (dSprites/Shapes3D/MPI3D)
as can be seen in Figure 12 in the appendix. This may not
come as a surprise as group-based disentanglement methods
all assume that the group knowledge is precise.

Summary Whenever the groups are fully and precisely
known, this information can be used to improve disentangle-
ment. Even though our adaptive method does not use group
annotations, its performance is often comparable to the
methods of (Bouchacourt et al., 2018; Hosoya, 2019; Shu
et al., 2020). On the other hand, in practical applications
there may not be precise control of which factors have
changed. In this scenario, relying on incomplete group
knowledge significantly harms the performance of GVAE
and ML-VAE as they assume exact group knowledge. A
blend between our adaptive variant and the vanilla GVAE
may further improve performance when only partial group
knowledge is available.

5.4. Are weakly-supervised representations useful?

In this section, we investigate whether the representations
learned by our Ada-GVAE are useful on a variety of tasks.
We show that representations with small weakly-supervised
reconstruction loss (the sum of the first two terms in (6))
achieve improved downstream performance (Locatello et al.,
2019b; 2020), improved downstream generalization (Pe-
ters et al., 2017) under covariate shifts (Shimodaira, 2000;
Quionero-Candela et al., 2009; Ben-David et al., 2010),
fairer downstream predictions (Locatello et al., 2019a),
and improved sample complexity on an abstract reason-
ing task (van Steenkiste et al., 2019). To the best of our
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Figure 4. (left) Rank correlation between our weakly-supervised reconstruction loss and performance of downstream prediction tasks
with logistic regression (LR) and gradient boosted decision-trees (GBT) at different sample sizes for Ada-GVAE. We observe a general
negative correlation that indicates that models with a low weakly-supervised reconstruction loss may also be more accurate. (center) Rank
correlation between the strong generalization accuracy under covariate shifts and disentanglement scores as well as weakly-supervised
reconstruction loss, for Ada-GVAE. (right) Distribution of vanilla (weak) generalization and under covariate shifts (strong generalization)
for Ada-GVAE. The horizontal line corresponds to the accuracy of a naive classifier based on the prior only.

knowledge, strong generalization under covariate shift has
not been tested on disentangled representations before.

Key insight We remark that the usefulness insights of Lo-
catello et al. (2019b; 2020; 2019a); van Steenkiste et al.
(2019) are based on the assumption that disentangled rep-
resentations can be learned without observing the factors
of variation. They consider models trained without super-
vision and argue that some of the supervised disentangle-

ment scores (which require explicit labeling of the factors
of variation) correlate well with desirable properties. In

stark contrast, we here show that all these properties can be

achieved simultaneously using only weakly-supervised data.

5.4.1. DOWNSTREAM PERFORMANCE

In this section, we consider the prediction task of Locatello
et al. (2019b) that predicts the values of the factors of vari-
ation from the representation. We also evaluate whether
our weakly-supervised reconstruction loss is a good proxy
for downstream performance. We use a setup identical
to Locatello et al. (2019b) and train the same logistic re-
gression and gradient boosted decision trees (GBT) on
the learned representations using different sample sizes
(10/100/1000/10 000). All test sets contain 5000 examples.

In Figure 4 (left), we observe that the weakly-supervised re-
construction loss of Ada-GVAE is generally anti-correlated
with downstream performance. The best weakly-supervised
disentanglement methods thus learn representations that are
useful for training accurate classifiers downstream.

Summary The weakly-supervised reconstruction loss of
our Ada-GVAE is a useful proxy for downstream accuracy.

5.4.2. GENERALIZATION UNDER COVARIATE SHIFT

Assume we have access to a large pool of unlabeled paired
data and our goal is to solve a prediction task for which we
have a smaller labeled training set. Both the labeled training
set and test set are biased, but with different biases. For
example, we want to predict object shape but our training
set contains only red objects, whereas the test set does not

contain any red objects. We create a biased training set by
performing an intervention on a random factor of variation
(other than the target variable), so that its value is constant in
the whole training set. We perform another intervention on
the test set, so that the same factor can take all other values.
We train a GBT classifier on 10000 examples from the rep-
resentations learned by Ada-GVAE. For each target factor
of variation, we repeat the training of the classifier 10 times
for different random interventions. For this experiment, we
consider only dSprites, Shapes3D and MPI3D since Cars3D
and SmallNORB are too small (after an intervention on their
most fine grained factor of variation, they only contain 96
and 270 images respectively).

In Figure 4 (center) we plot the rank correlation between
disentanglement scores and weakly-supervised reconstruc-
tion, and the results for generalization under covariate shifts
for Ada-GVAE. We note that both the disentanglement
scores and our weakly-supervised reconstruction loss are
correlated with strong generalization. In Figure 4 (right),
we highlight the gap between the performance of a classifier
trained on a normal train/test split (which we refer to as
weak generalization) as opposed to this covariate shift
setting. We do not perform model selection, so we can show
the performance of the whole range of representations. We
observe that there is a gap between weak and strong gen-
eralization but the distributions of accuracies significantly
overlap and are significantly better than a naive classifier
based on the prior distribution of the classes.

Summary Our results provide compelling evidence that
disentanglement is useful for strong generalization under
covariate shifts. The best Ada-GVAE models in terms of
weakly-supervised reconstruction loss are useful for training
classifiers that generalize under covariate shifts.

5.4.3. FAIRNESS

Recently, Locatello et al. (2019a) showed that disentangled
representations may be useful to train robust classifiers that
are fairer to unobserved sensitive variables independent of
the target variable. While they observed a strong correlation
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Figure 5. (left) Rank correlation between both disentanglement scores and our weakly-supervised reconstruction loss with the unfairness of
GBT10000 on all the data sets for Ada-GVAE. (center) Unfairness of the unsupervised methods with the semi-supervised model selection
heuristic of (Locatello et al., 2019a) and our weakly-supervised Ada-GVAE with k = 1. (right) Rank correlation with down-stream
accuracy of the abstract visual reasoning models of (van Steenkiste et al., 2019) throughout training (i.e., for different sample sizes).

between demographic parity (Calders et al., 2009; Zliobaite,
2015) and disentanglement, the applicability of their ap-
proach is limited by the fact that disentangled representa-
tions are difficult to identify without access to explicit obser-
vations of the factors of variation (Locatello et al., 2019b).

Our experimental setup is identical to the one of Locatello
et al. (2019a) and we measure unfairness of a classifier as
in Locatello et al. (2019a, Section 4). In Figure 5 (left),
we show that the weakly-supervised reconstruction loss of
our Ada-GVAE correlates with unfairness as strongly as
the disentanglement scores, even though the former can be
computed without observing the factors of variation. In par-
ticular, we can perform model selection without observing
the sensitive variable. In Figure 5 (center), we show that
our Ada-GVAE with k = 1 and model selection allows us
to train and identify fairer models compared to the unsuper-
vised models of Locatello et al. (2019a). Furthermore, their
model selection heuristic is based on downstream perfor-
mance which requires knowledge of the sensitive variable.
From both plots we conclude that our weakly-supervised
reconstruction loss is a good proxy for unfairness and allows
us to train fairer classifiers in the setup of Locatello et al.
(2019a) even if the sensitive variable is not observed.

Summary We showed that using weak supervision, we can
train and identify fairer classifiers in the sense of demo-
graphic parity (Calders et al., 2009; Zliobaite, 2015). As op-
posed to Locatello et al. (2019a), we do not need to observe
the target variable and yet, our principled weakly-supervised
approach outperforms their semi-supervised heuristic.

5.4.4. ABSTRACT VISUAL REASONING

Finally, we consider the abstract visual reasoning task
of van Steenkiste et al. (2019). This task is based on Raven’s
progressive matrices (Raven, 1941) and requires completing
the bottom right missing panel of a sequence of context
panels arranged in a 3⇥ 3 grid (see Figure 18 (left) in the
appendix). The algorithm is presented with six potential
answers and needs to choose the correct one. To solve
this task, the model has to infer the abstract relationships

between the panels. We replicate the experiment of van
Steenkiste et al. (2019) on Shapes3D under the same exact
experimental conditions (see Appendix B for more details).

In Figure 5 (right), one can see that at low sample sizes,
the weakly-supervised reconstruction loss is strongly
anti-correlated with performance on the abstract visual
reasoning task. As previously observed by van Steenkiste
et al. (2019), this benefit only occurs at low sample sizes.

Summary We demonstrated that training a relational net-
work on the representations learned by our Ada-GVAE im-
proves its sample efficiency. This result is in line with
the findings of van Steenkiste et al. (2019) where disentan-
glement was found to correlate positively with improved
sample complexity.

6. Conclusion

In this paper, we considered the problem of learning
disentangled representations from pairs of non-i.i.d.
observations sharing an unknown, random subset of factors
of variation. We demonstrated that, under certain technical
assumptions, the associated disentangled generative model
is identifiable. We extensively discussed the impact of
the different supervision modalities, such as the degree
of group-level supervision, and studied the impact of the
(unknown) number of shared factors. These insights will
be particularly useful to practitioners having access to
specific domain knowledge. Importantly, we show how to
select models with strong performance on a diverse suite
of downstream tasks without using supervised disentan-

glement metrics, relying exclusively on weak supervision.
This result is of great importance as the community is
becoming increasingly interested in the practical benefits
of disentangled representations (van Steenkiste et al., 2019;
Locatello et al., 2019a; Creager et al., 2019; Chao et al.,
2019; Iten et al., 2020; Chartsias et al., 2019; Higgins et al.,
2017b). Future work should apply the proposed framework
to challenging real-world data sets where the factors of
variation are not observed and extend it to an interactive
setup involving reinforcement learning.
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